Testing Newton’s Inverse Square Law

  • S. Focardi
Conference paper


We briefly describe a recent experiment aimed at verifying the dependence on the distance in Newton’s inverse square law. Then we present two new experiments for: (i) testing the previous result; (ii) making a measurement of the G constant by a method different from those normally employed.


Superconducting Gravimeter Absolute Gravimeter Gravitational Signal Satellite LAGEOS Lake Level Variation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Fischbach E., Sudarsky D., Szafer A., Talmadge C, Aronson S.H. (1986): Reanalysis of the Eötwös experiment. Phys. Rev. Lett. 56, 3–6ADSCrossRefGoogle Scholar
  2. 2.
    Cook A.H. (1988): Experiments on gravitation. Rep. Prog. Phys. 51, 707–757ADSCrossRefGoogle Scholar
  3. 3.
    Cook A.H. (1987): The inverse square law of gravitation. Contemp. Phys. 28, 159–175ADSCrossRefGoogle Scholar
  4. 4.
    Speake C.C. (1992): Experiments on the Fifth Force, in Proc. International School of Physics E. Fermi, ed. by L. Crovini, J.J. Quinn, Course CX, North Holland, Amsterdam, pp. 154–177Google Scholar
  5. 5.
    Achilli V., Baldi P., Casula G., Errani M., Focardi S., Palmonari F., Pedrielli F. (1997): A geophysical experiment on Newton’s inversesquare law. Nuovo Cimento B 112, 775–804Google Scholar
  6. 6.
    Achilli V., Baldi P., Casula G., Errani M., Focardi S., Guerzoni M., Palmonari E, Ragunf G. (1995): A calibration system for superconducting gravimeters. Bull. Geod. 69, 73–80CrossRefGoogle Scholar
  7. 7.
    Baldi P., Casula G., Focardi S., Palmonari F. (1995): Tidal analysis of data recorded by a superconducting gravimeter. Ann. Geofis. 38, 161–166Google Scholar
  8. 8.
    Niebauer T.M., Sasagawa G.S., Faller J.E., Hilt R., Klopping F. (1995): A new generation of absolute gravimeters. Metrologia 32, 159–180ADSCrossRefGoogle Scholar
  9. 9.
    Gillies G.T. (1997): The Newtonian gravitational constant: recent measurements and related studies. Rep. Prog. Phys. 60, 151–225ADSCrossRefGoogle Scholar
  10. 10.
    Kuroda K. (1995): Does the time-of swing method give a correct value of the Newtonian gravitational constant? Phys Rev. Lett. 75, 2796–2798ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Italia 2000

Authors and Affiliations

  • S. Focardi

There are no affiliations available

Personalised recommendations