Heterogeneous and opportunistic wireless networks

  • Giovanni Corazza
  • Alessandro Vanelli-Coralli
  • Raffaella Pedone
  • Andreas Polydoros
  • Dominique Noguet
  • Adrian Klicks
  • Jordi Pérez-Romero
  • Alessandro Guidotti
  • Flavia Martelli


Recent years have witnessed the evolution of a large plethora of wireless technologies with different characteristics, as a response of the operators’ and users’ needs in terms of an efficient and ubiquitous delivery of advanced multimedia services. The wireless segment of network infrastructure has penetrated in our lives, and wireless connectivity has now reached a state where it is considered to be an indispensable service as electricity or water supply. Wireless data networks grow increasingly complex as a multiplicity of wireless information terminals with sophisticated capabilities get embedded in the infrastructure.


Cognitive Radio Vehicular Network Radio Resource Management Software Define Radio Opportunistic Networking 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    ABI Research. Femtocell access points: Fixed-mobile convergence for residential, smb, and enterprise markets. Available: Scholar
  2. 2.
    Tölli A., Hakalin P., Holma H.: Performance evaluation of common radio resource management (crrm). In: Proc. IEEE Int. Conf. Commun., New York, NY, pp. 3429–3433 (2002).Google Scholar
  3. 3.
    Pérez-Romero J., Sallent O., Agustí R.: On the optimum traffic allocation in heterogeneous CDMA/TDMA networks. IEEE Trans. Wireless Commun. 6(9), pp. 3170–3174 (2007).CrossRefGoogle Scholar
  4. 4.
    Pérez-Romero J., Sallent O., Agustí R., Díaz-Guerra M.A.: Radio resource management strategies in UMTS. Wiley & Sons, New York, NY (2005).CrossRefGoogle Scholar
  5. 5.
    Zander J.: Radio resource management in future wireless networks: requirements and limitations. IEEE Commun. Mag. 35(8), pp. 30–36 (1997).CrossRefGoogle Scholar
  6. 6.
    Sallent O., Pérez-Romero J., Agustí R., Casadevall F.: Provisioning multimedia wireless networks for betterQoS: RRM strategies for 3GWCDMA. IEEE Commun. Mag. 41(2), pp. 100–106 (2003).CrossRefGoogle Scholar
  7. 7.
    Hoffmeyer J.A.: Regulatory and standardization aspects of dsa technologies — global requirements and perspectives. In: Proc. IEEE Int. Symp. New Frontiers in Dynamic Spectrum Access Networks, Baltimore, MD (2005).Google Scholar
  8. 8.
    Buddhikot M., Ryan K.: Spectrum management in coordinated dynamic spectrum accessbased cellular networks. In: Proc. IEEE Int. Symp. New Frontiers in Dynamic Spectrum Access Networks, Baltimore, MD (2005).Google Scholar
  9. 9.
    Xiao F.H.Y (Ed.): Cognitive Radio Networks. CRC Press, Boca Raton, FL (2009).Google Scholar
  10. 10.
    Mueck M., et al.: ETSI reconfigurable radio systems: Status and future directions on software defined radio and cognitive radio standards. IEEE Commun. Mag. 48(9), pp. 78–86 (2010).CrossRefGoogle Scholar
  11. 11.
    UMTS Forum: Annual Report 2008 and Directions for 2009 (2009).Google Scholar
  12. 12.
    3GPP Telecommunication Management: Self-Organizing Networks (SON), Concepts and Requirements (Release 8). Tech. Rep. (2008).Google Scholar
  13. 13.
    Next Generation Mobile Networks (NGMN): NGMN Recommendation on SON and O&M Requirements (2008).Google Scholar
  14. 14.
    Bogenfeld E., Gaspard I. (Eds.): Self-x in Radio Access Networks (2008).Google Scholar
  15. 15.
    Next Generation Mobile Networks (NGMN): NGMN Use Cases related to Self Organising Network, Overall Description (2007).Google Scholar
  16. 16.
    Schmelz L., der Berg J.V., Litjens R., Zetterberg K., Amirijoo M., Spaey K., Balan I., Scully N., Stefanski S.: Self-organisation in wireless networks — use cases and their interrelation. In: Proc. WWRF Meeting, Paris, France (2009).Google Scholar
  17. 17.
    3GPP Telecommunication Management: Evolved Universal Terrestrial Radio Access Network (E-UTRAN). Self-configuring and self-optimizingnetwork use cases and solutions. Tech. Rep. (2010).Google Scholar
  18. 18.
    Amirijoo M., Jorguseski L., Kurner T., Litjens R., Neuland M., Schmelz L., Turke U.: Cell outage management in LTE networks.Google Scholar
  19. 19.
    Prehofer C., Bettstetter C.: Self-organization in communication networks: Principles and design paradigms. IEEE Commun. Mag. 43(7), pp. 78–85 (2005).CrossRefGoogle Scholar
  20. 20.
    Hu H., Zheng X., Yang Y.: Self-configuration and self-optimization for LTE networks. IEEE Commun. Mag. 48(2), pp. 94–100 (2010).CrossRefGoogle Scholar
  21. 21.
    Sallent O., Pérez-Romero J., Sánchez-González J., Agustí R., Díaz-Guerra M.A., Henche D., Paul D.: A roadmap from UMTS optimisation to LTE self-optimisation, to appear.Google Scholar
  22. 22.
    Mitola, J. III, Maguire G.: Cognitive radio: Making software radios more personal. IEEE Personal Commun. 6(4), pp. 13–18 (1999).CrossRefGoogle Scholar
  23. 23.
    Mahmoud Q. (Ed.): Cognitive Networks: Towards Self-Aware Networks. Wiley and Sons. New York, NY (2007).Google Scholar
  24. 24.
    Thomas R., DaSilva L., MacKenzie A.: Cognitive networks. In: Proc. IEEE Int. Symp. New Frontiers in Dynamic Spectrum Access Networks, Baltimore, MD (2005).Google Scholar
  25. 25.
    Pantazopoulos P., Stavrakakis I., Passarella A., Conti M.: Efficient social-aware content placement for opportunistic networks. In: Proc. Int. Conf. Wireless On-demand Network Systems and Services, Kranjska Gora, Slovenia (2010).Google Scholar
  26. 26.
    Karlsson G., Lenders V., May M.: Delay-tolerant broadcasting. IEEE Trans. Broadcasting 53(1), pp. 369–381 (2007).CrossRefGoogle Scholar
  27. 27.
    Karlsson G., Lenders V., May M., Wacha C.: Wireless ad hoc podcasting. In: Proc. IEEE Conf. Sensor, Mesh and Ad Hoc Communications and Networks (SECON), San Diego, CA (2007).Google Scholar
  28. 28.
    Cenceme website. [Online]. Available: Scholar
  29. 29.
    Metrosense website. [Online]. Available: Scholar
  30. 30.
    Crawdad website. [Online]. Available: Scholar
  31. 31.
    World Health Organization, World report on road traffic injury prevention, 2004.Google Scholar
  32. 32.
    Vehicle infrastructure integration (vii). [Online]. Available: fact sheets/vii.htmGoogle Scholar
  33. 33.
    Dot’s intellidrive program. [Online]. Available: program.phpGoogle Scholar
  34. 34.
    ETSI intelligent transport systems. [Online]. Available: Technologies/IntelligentTransportSystems.aspxGoogle Scholar
  35. 35.
    ITS project web site. [Online]. Available: Scholar
  36. 36.
    ITS standards on the move — etsi. [Online].Available: Technologies/ETSI presentationsGoogle Scholar
  37. 37.
    IEEE 802.11Wireless LAN Working Group, Wlan mac and phy specifications:Wireless access in vehicular environments (wave). Tech. Rep. (2005).Google Scholar
  38. 38.
    IEEE 1609 — family of standards for wireless access in vehicular environments (wave). [Online]. Available: sheet.asp?f=80Google Scholar
  39. 39.
    Gozalvez J., Sepulcre M.: Opportunistic technique for efficient wireless vehicular communications. IEEE Veh. Technol. Mag. 2(4), pp. 33–39 (2007).CrossRefGoogle Scholar
  40. 40.
    Gallagher B., Akatsuka H.: Wireless communications for vehicle safety: Radio link performance & wireless connectivity issues. IEEE Veh. Technol. Mag. 1(4), pp. 4–24 (2006).CrossRefGoogle Scholar
  41. 41.
    ITU-internet report 2005: Internet of things. [Online]. Available: Scholar
  42. 42.
    Yan L., Zhang J., Yang L., Ning H. (Eds.): The Internet of Things. From RF-ID to the Next Generation PervasiveNetworked Systems. CRC Press, Boca Raton, FL (2008).CrossRefGoogle Scholar
  43. 43.
    Atzori L., Iera A., Morabito G.: The internet of things: A survey. Computer Networks 54(15), pp. 2787–2805 (2010).zbMATHCrossRefGoogle Scholar
  44. 44.
    Jacobson V., Smetters D.K., Thornton J.D., Plass M.F., Briggs N.H., Braynard R.L.: Networking named content. In: Proc. ACM Int. Conf. Emerging Networking Experiments and Technologies, Rome, Italy (2009).Google Scholar
  45. 45.
    Taniguchi N.: On the basic concept of nano-technology. In: Proc. Int. Conf. on Production Engineering, London, UK (1974).Google Scholar
  46. 46.
    Suda T., Moore M., Nakano T., Egashira R., Enomoto A.: Exploratory research on molecular communication between nanomachines. In: Proc. Genetic and Evolutionary Computation Conf., Washington, DC (2005).Google Scholar
  47. 47.
    Akyildiz I., Brunetti F., Blázquez C.: Nanonetworks:A new communication paradigm. Computer Networks 52, pp. 2260–2279 (2008).CrossRefGoogle Scholar
  48. 48.
    Dressler F., Akan O.: A survey on bio-inspired networking. ComputerNetworks 54, pp. 881–900 (2010).zbMATHCrossRefGoogle Scholar
  49. 49.
    Moore M., Enomoto A., Nakano T., Egashira R., Suda T., Kayasuga A., Kojima H., Sakakibara H., Oiwa K.: A design of a molecular communication system for nanomachines using Molecular motors. In: Proc. IEEE Int. Conf. Pervasive Computing and Communications, Pisa, Italy (2006).Google Scholar
  50. 50.
    Nakano T., Suda T., Moore M., Egashira R., Enomoto A., Arima K.: Molecular communication for nanomachines using intercellularcalcium signaling. In: Proc. IEEE Conf. Nanotechnology, Nagoya, Japan (2005).Google Scholar
  51. 51.
    Atakan B., Akan O.: An information theoretical approach for molecular communication. In: Proc. IEEE/ACM Int. Conf. Bio-Inspired Models of Network, Information and Computing Systems, Budapest, Hungary (2007).Google Scholar
  52. 52.
    Atakan B., Akan O.B.: On channel capacity and error compensation in molecular communication. Springer Trans. Computational Systems Biology LNBI 5410, pp. 59–80 (2008).Google Scholar
  53. 53.
    Atakan B., Akan O.: On molecular multiple-access, broadcast, and relay channel in nanonetworks. In: Proc. IEEE/ACM Int. Conf. Bio-Inspired Models of Network, Information and Computing Systems, Hyogo, Japan (2008).Google Scholar

Copyright information

© Springer-Verlag Italia 2012

Authors and Affiliations

  • Giovanni Corazza
    • 1
  • Alessandro Vanelli-Coralli
    • 1
  • Raffaella Pedone
    • 1
  • Andreas Polydoros
    • 2
  • Dominique Noguet
    • 3
  • Adrian Klicks
    • 4
  • Jordi Pérez-Romero
    • 5
  • Alessandro Guidotti
    • 1
  • Flavia Martelli
    • 1
  1. 1.CNIT, Consorzio Nazionale Interuniversitario per le TelecomunicazioniBolognaItaly
  2. 2.IASA, Institute of Accelerating Systems and ApplicationsAthensGreece
  3. 3.CEA-LETI, Commisariat à l’ÉnergieAtomique- Laboratoire d’électronique des technologies de l’informationGrenobleFrance
  4. 4.PUT, Poznan University of TechnologyPoland
  5. 5.UPC, Polytechnic University of CatalognaBarcelonaSpain

Personalised recommendations