Immune Control of HCV Infection

Chapter

Abstract

In this chapter, I summarize current knowledge regarding the mechanisms by which infected cells and the immune system control HCV replication and spread, and how HCV infection persists despite targeting by innate antiviral mechanisms and the adaptive immune system. Recognition of viral RNA stimulates infected cells to produce interferons, which are potent antiviral mediators, but HCV proteins may disable RNA recognition and interferon response mechanisms. Spontaneous HCV clearance is associated with a broadly focused and robust HCV-specific T cell response. However, T cell mediated control of HCV is frequently hampered by viral sequence evolution, exhaustion of HCV-specific T cells, and tolerance mechanisms that protect the liver from immunologically mediated pathology. HCV-specific antibodies can limit but not completely ablate HCV infection of new target cells. As for T cell responses, the efficacy of antibody responses may be limited by viral evolution. Interferons and some soon-to-be available antiviral drugs may enhance innate and adaptive immune mechanisms.

Notes

Acknowledgments

The author’s research is supported by the National Institutes of Health (AI60561).

References

  1. 1.
    Lavanchy D (2009) The global burden of hepatitis C. Liver Int 29(Suppl 1):74–81PubMedCrossRefGoogle Scholar
  2. 2.
    Alter MJ (2007) Epidemiology of hepatitis C virus infection. World J Gastroenterol 13:2436–2441PubMedGoogle Scholar
  3. 3.
    Afdhal NH (2004) The natural history of hepatitis C. Semin Liver Dis 24(Suppl 2):3–8PubMedCrossRefGoogle Scholar
  4. 4.
    Brown RS (2005) Hepatitis C and liver transplantation. Nature 436:973–978PubMedCrossRefGoogle Scholar
  5. 5.
    Dustin LB, Rice CM (2007) Flying under the radar: the immunobiology of hepatitis C. Annu Rev Immunol 25:71–99PubMedCrossRefGoogle Scholar
  6. 6.
    Rehermann B (2009) Hepatitis C virus versus innate and adaptive immune responses: a tale of coevolution and coexistence. J Clin Invest 119:1745–1754PubMedCrossRefGoogle Scholar
  7. 7.
    Strickland GT, El-Kamary SS, Klenerman P et al (2008) Hepatitis C vaccine: supply and demand. Lancet Infect Dis 8:379–386PubMedCrossRefGoogle Scholar
  8. 8.
    Stoll-Keller F, Barth H, Fafi-Kremer S et al (2009) Development of hepatitis C virus vaccines: challenges and progress. Expert Rev Vaccines 8:333–345PubMedCrossRefGoogle Scholar
  9. 9.
    Heathcote EJ (2007) Antiviral therapy: chronic hepatitis C. J Viral Hepat 14(Suppl 1):82–88PubMedCrossRefGoogle Scholar
  10. 10.
    Thompson AJ, McHutchison JG (2009) Review article: investigational agents for chronic hepatitis C. Aliment Pharmacol Ther 29:689–705PubMedCrossRefGoogle Scholar
  11. 11.
    Lemon SM, McKeating JA, Pietschmann T et al (2010) Development of novel therapies for hepatitis C. Antiviral Res 86:79–92PubMedCrossRefGoogle Scholar
  12. 12.
    Bartenschlager R, Frese M, Pietschmann T (2004) Novel insights into hepatitis C virus replication and persistence. Adv Virus Res 63:71–180PubMedCrossRefGoogle Scholar
  13. 13.
    Lindenbach BD, Rice CM (2005) Unravelling hepatitis C virus replication from genome to function. Nature 436:933–938PubMedCrossRefGoogle Scholar
  14. 14.
    Moradpour D, Penin F, Rice CM (2007) Replication of hepatitis C virus. Nat Rev Microbiol 5:453–463PubMedCrossRefGoogle Scholar
  15. 15.
    Murray CL, Jones CT, Rice CM (2008) Architects of assembly: roles of Flaviviridae non-structural proteins in virion morphogenesis. Nat Rev Microbiol 6:699–708PubMedCrossRefGoogle Scholar
  16. 16.
    Neumann AU, Lam NP, Dahari H et al (1998) Hepatitis C viral dynamics in vivo and the antiviral efficacy of interferon-α therapy. Science 282:103–107PubMedCrossRefGoogle Scholar
  17. 17.
    Layden TJ, Mika B, Wiley TE (2000) Hepatitis C kinetics: mathematical modeling of viral response to therapy. Semin Liver Dis 20:173–183PubMedCrossRefGoogle Scholar
  18. 18.
    Bigger CB, Brasky KM, Lanford RE (2001) DNA microarray analysis of chimpanzee liver during acute resolving hepatitis C virus infection. J Virol 75:7059–7066PubMedCrossRefGoogle Scholar
  19. 19.
    Su AI, Pezacki JP, Wodicka L et al (2002) Genomic analysis of the host response to hepatitis C virus infection. Proc Natl Acad Sci USA 99:15669–15674PubMedCrossRefGoogle Scholar
  20. 20.
    Wieland SF, Chisari FV (2005) Stealth and cunning: hepatitis B and hepatitis C viruses. J Virol 79:9369–9380PubMedCrossRefGoogle Scholar
  21. 21.
    Thimme R, Bukh J, Spangenberg HC et al (2002) Viral and immunological determinants of hepatitis C virus clearance, persistence, and disease. Proc Natl Acad Sci USA 99:15661–15668PubMedCrossRefGoogle Scholar
  22. 22.
    Major ME, Dahari H, Mihalik K et al (2004) Hepatitis C virus kinetics and host responses associated with disease and outcome of infection in chimpanzees. Hepatology 39:1709–1720PubMedCrossRefGoogle Scholar
  23. 23.
    Dahari H, Major M, Zhang X et al (2005) Mathematical modeling of primary hepatitis C infection: noncytolytic clearance and early blockage of virion production. Gastroenterology 128:1056–1066PubMedCrossRefGoogle Scholar
  24. 24.
    Kawai T, Akira S (2006) Innate immune recognition of viral infection. Nat Immunol 7:131–137PubMedCrossRefGoogle Scholar
  25. 25.
    Pichlmair A, Schulz O, Tan CP et al (2006) RIG-I-mediated antiviral responses to single-stranded RNA bearing 5′-phosphates. Science 314:997–1001PubMedCrossRefGoogle Scholar
  26. 26.
    Saito T, Owen DM, Jiang F et al (2008) Innate immunity induced by composition-dependent RIG-I recognition of hepatitis C virus RNA. Nature 454:523–527PubMedCrossRefGoogle Scholar
  27. 27.
    Pichlmair A, Schulz O, Tan CP et al (2009) Activation of MDA5 requires higher-order RNA structures generated during virus infection. J Virol 83:10761–10769PubMedCrossRefGoogle Scholar
  28. 28.
    Horner SM, Gale M Jr (2009) Intracellular innate immune cascades and interferon defenses that control hepatitis C virus. J Interferon Cytokine Res 29:489–498PubMedCrossRefGoogle Scholar
  29. 29.
    Johnson CL, Gale M Jr (2006) CARD games between virus and host get a new player. Trends Immunol 27:1–4PubMedCrossRefGoogle Scholar
  30. 30.
    Hiscott J, Lin R, Nakhaei P et al (2006) MasterCARD: a priceless link to innate immunity. Trends Mol Med 12:53–56PubMedCrossRefGoogle Scholar
  31. 31.
    Onoguchi K, Yoneyama M, Takemura A et al (2007) Viral infections activate types I and III interferon genes through a common mechanism. J Biol Chem 282:7576–7581PubMedCrossRefGoogle Scholar
  32. 32.
    Österlund PI, Pietilä TE, Veckman V et al (2007) IFN regulatory factor family members differentially regulate the expression of type III IFN (IFN-λ) genes. J Immunol 179:3434–3442PubMedGoogle Scholar
  33. 33.
    Kawai T, Takahashi K, Sato S et al (2005) IPS-1, an adaptor triggering RIG-I- and Mda5-mediated type I interferon induction. Nat Immunol 6:981–988PubMedCrossRefGoogle Scholar
  34. 34.
    Loo YM, Owen DM, Li K et al (2006) Viral and therapeutic control of IFN-β promoter stimulator 1 during hepatitis C virus infection. Proc Natl Acad Sci USA 103:6001–6006PubMedCrossRefGoogle Scholar
  35. 35.
    Foy E, Li K, Sumpter R Jr et al (2005) Control of antiviral defenses through hepatitis C virus disruption of retinoic acid-inducible gene-I signaling. Proc Natl Acad Sci USA 102:2986–2991PubMedCrossRefGoogle Scholar
  36. 36.
    Meylan E, Curran J, Hofmann K et al (2005) Cardif is an adaptor protein in the RIG-I antiviral pathway and is targeted by hepatitis C virus. Nature 437:1167–1172PubMedCrossRefGoogle Scholar
  37. 37.
    Li XD, Sun L, Seth RB et al (2005) Hepatitis C virus protease NS3/4A cleaves mitochondrial antiviral signaling protein off the mitochondria to evade innate immunity. Proc Natl Acad Sci USA 102:17717–17722PubMedCrossRefGoogle Scholar
  38. 38.
    Seth RB, Sun L, Ea CK et al (2005) Identification and characterization of MAVS, a mitochondrial antiviral signaling protein that activates NF-kappaB and IRF 3. Cell 122:669–682PubMedCrossRefGoogle Scholar
  39. 39.
    Stiffler JD, Nguyen M, Sohn JA et al (2009) Focal distribution of hepatitis C virus RNA in infected livers. PLoS One 4:e6661PubMedCrossRefGoogle Scholar
  40. 40.
    Rebsamen M, Meylan E, Curran J et al (2008) The antiviral adaptor proteins Cardif and Trif are processed and inactivated by caspases. Cell Death Differ 15:1804–1811PubMedCrossRefGoogle Scholar
  41. 41.
    Kawai T, Akira S (2007) Antiviral signaling through pattern recognition receptors. J Biochem 141:137–145PubMedCrossRefGoogle Scholar
  42. 42.
    Broering R, Wu J, Meng Z et al (2008) Toll-like receptor-stimulated non-parenchymal liver cells can regulate hepatitis C virus replication. J Hepatol 48:914–922PubMedCrossRefGoogle Scholar
  43. 43.
    Li K, Chen Z, Kato N et al (2005) Distinct poly(I-C) and virus-activated signaling pathways leading to interferon-beta production in hepatocytes. J Biol Chem 280:16739–16747PubMedCrossRefGoogle Scholar
  44. 44.
    Li K, Foy E, Ferreon JC et al (2005) Immune evasion by hepatitis C virus NS3/4A protease-mediated cleavage of the Toll-like receptor 3 adaptor protein TRIF. Proc Natl Acad Sci USA 102:2992–2997PubMedCrossRefGoogle Scholar
  45. 45.
    Takahashi K, Asabe S, Wieland S et al (2010) Plasmacytoid dendritic cells sense hepatitis C virus-infected cells, produce interferon, and inhibit infection. Proc Natl Acad Sci USA 107:7431–7436PubMedCrossRefGoogle Scholar
  46. 46.
    Ge D, Fellay J, Thompson AJ et al (2009) Genetic variation in IL28B predicts hepatitis C treatment-induced viral clearance. Nature 461:399–401PubMedCrossRefGoogle Scholar
  47. 47.
    McCarthy JJ, Li JH, Thompson A et al (2010) Replicated association between an IL28B gene variant and a sustained response to pegylated interferon and ribavirin. Gastroen­terology 138:2307–2314PubMedCrossRefGoogle Scholar
  48. 48.
    Suppiah V, Moldovan M, Ahlenstiel G et al (2009) IL28B is associated with response to chronic hepatitis C interferon-alpha and ribavirin therapy. Nat Genet 41:1100–1104PubMedCrossRefGoogle Scholar
  49. 49.
    Tanaka Y, Nishida N, Sugiyama M et al (2009) Genome-wide association of IL28B with response to pegylated interferon-alpha and ribavirin therapy for chronic hepatitis C. Nat Genet 41:1105–1109PubMedCrossRefGoogle Scholar
  50. 50.
    Thomas DL, Thio CL, Martin MP et al (2009) Genetic variation in IL28B and spontaneous clearance of hepatitis C virus. Nature 461:798–802PubMedCrossRefGoogle Scholar
  51. 51.
    Kotenko SV, Gallagher G, Baurin VV et al (2003) IFN-lambdas mediate antiviral protection through a distinct class II cytokine receptor complex. Nat Immunol 4:69–77PubMedCrossRefGoogle Scholar
  52. 52.
    Marcello T, Grakoui A, Barba-Spaeth G et al (2006) Interferons alpha and lambda inhibit hepatitis C virus replication with distinct signal transduction and gene regulation kinetics. Gastroenterology 131:1887–1898PubMedCrossRefGoogle Scholar
  53. 53.
    Balagopal A, Thomas DL, Thio CL (2010) IL28B and the control of hepatitis C virus infection. Gastroenterology 139:1865–1876PubMedCrossRefGoogle Scholar
  54. 54.
    Gale M Jr, Foy EM (2005) Evasion of intracellular host defence by hepatitis C virus. Nature 436:939–945PubMedCrossRefGoogle Scholar
  55. 55.
    Thimme R, Lohmann V, Weber F (2006) A target on the move: innate and adaptive immune escape strategies of hepatitis C virus. Antiviral Res 69:129–141PubMedCrossRefGoogle Scholar
  56. 56.
    Sen GC (2001) Viruses and interferons. Annu Rev Microbiol 55:255–281PubMedCrossRefGoogle Scholar
  57. 57.
    Samuel CE (2001) Antiviral actions of interferons. Clin Microbiol Rev 14:778–809, table of contentsPubMedCrossRefGoogle Scholar
  58. 58.
    Sheppard P, Kindsvogel W, Xu W et al (2003) IL-28, IL-29 and their class II cytokine receptor IL-28R. Nat Immunol 4:63–68PubMedCrossRefGoogle Scholar
  59. 59.
    Witte K, Witte E, Sabat R et al (2010) IL-28A, IL-28B, and IL-29: promising cytokines with type I interferon-like properties. Cytokine Growth Factor Rev 21:237–251PubMedCrossRefGoogle Scholar
  60. 60.
    Doyle SE, Schreckhise H, Khuu-Duong K et al (2006) Interleukin-29 uses a type 1 interferon-like program to promote antiviral responses in human hepatocytes. Hepatology 44:896–906PubMedCrossRefGoogle Scholar
  61. 61.
    Bode JG, Ludwig S, Ehrhardt C et al (2003) IFN-α antagonistic activity of HCV core protein involves induction of suppressor of cytokine signaling-3. FASEB J 17:488–490PubMedGoogle Scholar
  62. 62.
    Taguchi T, Nagano-Fujii M, Akutsu M et al (2004) Hepatitis C virus NS5A protein interacts with 2′,5′-oligoadenylate synthetase and inhibits antiviral activity of IFN in an IFN sensitivity-determining region-independent manner. J Gen Virol 85:959–969PubMedCrossRefGoogle Scholar
  63. 63.
    Han JQ, Barton DJ (2002) Activation and evasion of the antiviral 2′-5′ oligoadenylate synthetase/ribonuclease L pathway by hepatitis C virus mRNA. RNA 8:512–525PubMedCrossRefGoogle Scholar
  64. 64.
    Garaigorta U, Chisari FV (2009) Hepatitis C virus blocks interferon effector function by inducing protein kinase R phosphorylation. Cell Host Microbe 6:513–522PubMedCrossRefGoogle Scholar
  65. 65.
    Taylor DR, Shi ST, Romano PR et al (1999) Inhibition of the interferon-inducible protein kinase PKR by the HCV E2 protein. Science 285:107–110PubMedCrossRefGoogle Scholar
  66. 66.
    Noguchi T, Satoh S, Noshi T et al (2001) Effects of mutation in hepatitis C virus nonstructural protein 5A on interferon resistance mediated by inhibition of PKR kinase activity in mammalian cells. Microbiol Immunol 45:829–840PubMedGoogle Scholar
  67. 67.
    Gimenez-Barcons M, Wang C, Chen M et al (2005) The oncogenic potential of hepatitis C virus NS5A sequence variants is associated with PKR regulation. J Interferon Cytokine Res 25:152–164PubMedCrossRefGoogle Scholar
  68. 68.
    Chen L, Borozan I, Feld J et al (2005) Hepatic gene expression discriminates responders and nonresponders in treatment of chronic hepatitis C viral infection. Gastroenterology 128:1437–1444PubMedCrossRefGoogle Scholar
  69. 69.
    Sarasin-Filipowicz M, Oakeley EJ, Duong FH et al (2008) Interferon signaling and treatment outcome in chronic hepatitis C. Proc Natl Acad Sci USA 105:7034–7039PubMedCrossRefGoogle Scholar
  70. 70.
    Charles ED, Dustin LB (2011) Chemokine antagonism in chronic hepatitis C virus infection. J Clin Invest 121:25–27PubMedCrossRefGoogle Scholar
  71. 71.
    Butera D, Marukian S, Iwamaye AE et al (2005) Plasma chemokine levels correlate with the outcome of antiviral therapy in patients with hepatitis C. Blood 106:1175–1182PubMedCrossRefGoogle Scholar
  72. 72.
    Romero AI, Lagging M, Westin J et al (2006) Interferon (IFN)-γ-inducible protein 10: association with histological results, viral kinetics, and outcome during treatment with pegylated interferon-α-2a and ribavirin for chronic hepatitis C virus infection. J Infect Dis 194:895–903PubMedCrossRefGoogle Scholar
  73. 73.
    Lagging M, Romero AI, Westin J et al (2006) IP-10 predicts viral response and therapeutic outcome in difficult-to-treat patients with HCV genotype 1 infection. Hepatology 44:1617–1625PubMedCrossRefGoogle Scholar
  74. 74.
    Diago M, Castellano G, Garcia-Samaniego J et al (2006) Association of pretreatment serum interferon-© inducible protein levels with sustained virological response to peginterferon plus ribavirin therapy in genotype 1-infected patients with chronic hepatitis C. Gut 55:374–379PubMedCrossRefGoogle Scholar
  75. 75.
    Crispe IN (2003) Hepatic T cells and liver tolerance. Nat Rev Immunol 3:51–62PubMedCrossRefGoogle Scholar
  76. 76.
    Racanelli V, Rehermann B (2006) The liver as an immunological organ. Hepatology 43:S54–S62PubMedCrossRefGoogle Scholar
  77. 77.
    Durante-Mangoni E, Wang R, Shaulov A et al (2004) Hepatic CD1d expression in hepatitis C virus infection and recognition by resident proinflammatory CD1d-reactive T cells. J Immunol 173:2159–2166PubMedGoogle Scholar
  78. 78.
    Lucas M, Gadola S, Meier U et al (2003) Frequency and phenotype of circulating Vα24/Vβ11 double-positive natural killer T cells during hepatitis C virus infection. J Virol 77:2251–2257PubMedCrossRefGoogle Scholar
  79. 79.
    Guidotti LG, Chisari FV (2001) Noncytolytic control of viral infections by the innate and adaptive immune response. Annu Rev Immunol 19:65–91PubMedCrossRefGoogle Scholar
  80. 80.
    Salazar-Mather TP, Hokeness KL (2006) Cytokine and chemokine networks: pathways to antiviral defense. Curr Top Microbiol Immunol 303:29–46PubMedCrossRefGoogle Scholar
  81. 81.
    Munz C, Steinman RM, Fujii S (2005) Dendritic cell maturation by innate lymphocytes: coordinated stimulation of innate and adaptive immunity. J Exp Med 202:203–207PubMedCrossRefGoogle Scholar
  82. 82.
    Jinushi M, Takehara T, Tatsumi T et al (2004) Negative regulation of NK cell activities by inhibitory receptor CD94/NKG2A leads to altered NK cell-induced modulation of dendritic cell functions in chronic hepatitis C virus infection. J Immunol 173:6072–6081PubMedGoogle Scholar
  83. 83.
    Mondelli MU, Varchetta S, Oliviero B (2010) Natural killer cells in viral hepatitis: facts and controversies. Eur J Clin Invest 40:851–863PubMedCrossRefGoogle Scholar
  84. 84.
    Ahlenstiel G, Martin MP, Gao X et al (2008) Distinct KIR/HLA compound genotypes affect the kinetics of human antiviral natural killer cell responses. J Clin Invest 118:1017–1026PubMedGoogle Scholar
  85. 85.
    Ahlenstiel G, Titerence RH, Koh C et al (2010) Natural killer cells are polarized toward cytotoxicity in chronic hepatitis C in an interferon-alfa-dependent manner. Gastroenterology 138(325–335):e321–e322Google Scholar
  86. 86.
    Khakoo SI, Thio CL, Martin MP et al (2004) HLA and NK cell inhibitory receptor genes in resolving hepatitis C virus infection. Science 305:872–874PubMedCrossRefGoogle Scholar
  87. 87.
    Romero V, Azocar J, Zuniga J et al (2008) Interaction of NK inhibitory receptor genes with HLA-C and MHC class II alleles in hepatitis C virus infection outcome. Mol Immunol 45:2429–2436PubMedCrossRefGoogle Scholar
  88. 88.
    Tseng C-TK, Klimpel GR (2001) Binding of the hepatitis C virus envelope protein E2 to CD81 inhibits natural killer cell functions. J Exp Med 195:43–50CrossRefGoogle Scholar
  89. 89.
    Crotta S, Stilla A, Wack A et al (2001) Inhibition of natural killer cells through engagement of CD81 by the major hepatitis C virus envelope protein. J Exp Med 195:35–42CrossRefGoogle Scholar
  90. 90.
    Yoon JC, Shiina M, Ahlenstiel G et al (2009) Natural killer cell function is intact after direct exposure to infectious hepatitis C virions. Hepatology 49:12–21PubMedCrossRefGoogle Scholar
  91. 91.
    Crotta S, Brazzoli M, Piccioli D et al (2010) Hepatitis C virions subvert natural killer cell activation to generate a cytokine environment permissive for infection. J Hepatol 52:183–190PubMedCrossRefGoogle Scholar
  92. 92.
    Sène D, Levasseur F, Abel M et al (2010) Hepatitis C virus (HCV) evades NKG2D-dependent NK cell responses through NS5A-mediated imbalance of inflammatory cytokines. PLoS Pathog 6:e1001184PubMedCrossRefGoogle Scholar
  93. 93.
    Pelletier S, Drouin C, Bedard N et al (2010) Increased degranulation of natural killer cells during acute HCV correlates with the magnitude of virus-specific T cell responses. J Hepatol 53:805–816PubMedCrossRefGoogle Scholar
  94. 94.
    Amadei B, Urbani S, Cazaly A et al (2010) Activation of natural killer cells during acute infection with hepatitis C virus. Gastroenterology 138:1536–1545PubMedCrossRefGoogle Scholar
  95. 95.
    Pachiadakis I, Pollara G, Chain BM et al (2005) Is hepatitis C virus infection of dendritic cells a mechanism facilitating viral persistence? Lancet Infect Dis 5:296–304PubMedCrossRefGoogle Scholar
  96. 96.
    Albert ML, Decalf J, Pol S (2008) Plasmacytoid dendritic cells move down on the list of suspects: in search of the immune pathogenesis of chronic hepatitis C. J Hepatol 49:1069–1078PubMedCrossRefGoogle Scholar
  97. 97.
    Ito T, Kanzler H, Duramad O et al (2006) Specialization, kinetics, and repertoire of type 1 interferon responses by human plasmacytoid predendritic cells. Blood 107:2423–2431PubMedCrossRefGoogle Scholar
  98. 98.
    Marukian S, Jones CT, Andrus L et al (2008) Cell culture-produced hepatitis C virus does not infect peripheral blood mononuclear cells. Hepatology 48:1843–1850PubMedCrossRefGoogle Scholar
  99. 99.
    Gondois-Rey F, Dental C, Halfon P et al (2009) Hepatitis C virus is a weak inducer of interferon alpha in plasmacytoid dendritic cells in comparison with influenza and human herpesvirus type-1. PLoS One 4:e4319PubMedCrossRefGoogle Scholar
  100. 100.
    Trinchieri G (2003) Interleukin-12 and the regulation of innate resistance and adaptive immunity. Nat Rev Immunol 3:133–146PubMedCrossRefGoogle Scholar
  101. 101.
    Stetson DB, Medzhitov R (2006) Type I interferons in host defense. Immunity 25:373–381PubMedCrossRefGoogle Scholar
  102. 102.
    Shiina M, Rehermann B (2008) Cell culture-produced hepatitis C virus impairs plasmacytoid dendritic cell function. Hepatology 47:385–395PubMedCrossRefGoogle Scholar
  103. 103.
    Rossi M, Young JW (2005) Human dendritic cells: potent antigen-presenting cells at the crossroads of innate and adaptive immunity. J Immunol 175:1373–1381PubMedGoogle Scholar
  104. 104.
    Lauterbach H, Bathke B, Gilles S et al (2010) Mouse CD8{alpha}+ DCs and human BDCA3+ DCs are major producers of IFN-{lambda} in response to poly IC. J Exp Med 207:2703–2717PubMedCrossRefGoogle Scholar
  105. 105.
    Thomson AW, Knolle PA (2010) Antigen-presenting cell function in the tolerogenic liver environment. Nat Rev Immunol 10:753–766PubMedCrossRefGoogle Scholar
  106. 106.
    Saraiva M, O’Garra A (2010) The regulation of IL-10 production by immune cells. Nat Rev Immunol 10:170–181PubMedCrossRefGoogle Scholar
  107. 107.
    Curti A, Trabanelli S, Salvestrini V et al (2009) The role of indoleamine 2,3-dioxygenase in the induction of immune tolerance: focus on hematology. Blood 113:2394–2401PubMedCrossRefGoogle Scholar
  108. 108.
    Kanto T, Hayashi N, Takehara T et al (1999) Impaired ­allostimulatory capacity of peripheral blood dendritic cells recovered from hepatitis C virus-infected individuals. J Immunol 162:5584–5591PubMedGoogle Scholar
  109. 109.
    Auffermann-Gretzinger S, Keeffe EB, Levy S (2001) Impaired dendritic cell maturation in patients with chronic, but not resolved, hepatitis C virus infection. Blood 97:3171–3176PubMedCrossRefGoogle Scholar
  110. 110.
    Bain C, Fatmi A, Zoulim F et al (2001) Impaired allostimulatory function of dendritic cells in chronic hepatitis C infection. Gastroenterology 120:512–524PubMedCrossRefGoogle Scholar
  111. 111.
    Piccioli D, Tavarini S, Nuti S et al (2005) Comparable functions of plasmacytoid and monocyte-derived dendritic cells in chronic hepatitis C patients and healthy donors. J Hepatol 42:61–67PubMedCrossRefGoogle Scholar
  112. 112.
    Longman RS, Talal AH, Jacobson IM et al (2004) Presence of functional dendritic cells in patients chronically infected with hepatitis C virus. Blood 103:1026–1029PubMedCrossRefGoogle Scholar
  113. 113.
    Longman RS, Talal AH, Jacobson IM et al (2005) Normal functional capacity in circulating myeloid and ­plasmacytoid dendritic cells in patients with chronic hepatitis C. J Infect Dis 192:497–503PubMedCrossRefGoogle Scholar
  114. 114.
    Larsson M, Babcock E, Grakoui A et al (2004) Lack of phenotypic and functional impairment in dendritic cells from chimpanzees chronically infected with hepatitis C virus. J Virol 78:6151–6161PubMedCrossRefGoogle Scholar
  115. 115.
    Rollier C, Drexhage JA, Verstrepen BE et al (2003) Chronic hepatitis C virus infection established and maintained in chimpanzees independent of dendritic cell impairment. Hepatology 38:851–858PubMedGoogle Scholar
  116. 116.
    Lai WK, Curbishley SM, Goddard S et al (2007) Hepatitis C is associated with perturbation of intrahepatic myeloid and plasmacytoid dendritic cell function. J Hepatol 47:338–347PubMedCrossRefGoogle Scholar
  117. 117.
    Rodrigue-Gervais IG, Jouan L, Beaule G et al (2007) Poly(I:C) and lipopolysaccharide innate sensing functions of circulating human myeloid dendritic cells are affected in vivo in hepatitis C virus-infected patients. J Virol 81:5537–5546PubMedCrossRefGoogle Scholar
  118. 118.
    Dolganiuc A, Kodys K, Kopasz A et al (2003) Hepatitis C virus core and nonstructural protein 3 proteins induce pro- and anti-inflammatory cytokines and inhibit dendritic cell differentiation. J Immunol 170:5615–5624PubMedGoogle Scholar
  119. 119.
    Sarobe P, Lasarte JJ, Zabaleta A et al (2003) Hepatitis C virus structural proteins impair dendritic cell maturation and inhibit in vivo induction of cellular immune responses. J Virol 77:10862–10871PubMedCrossRefGoogle Scholar
  120. 120.
    Li W, Krishnadas DK, Li J et al (2006) Induction of primary human T cell responses against hepatitis C virus-derived antigens NS3 or core by autologous dendritic cells expressing hepatitis C virus antigens: potential for vaccine and immunotherapy. J Immunol 176:6065–6075PubMedGoogle Scholar
  121. 121.
    Day CL, Lauer GM, Robbins GK et al (2002) Broad specificity of virus-specific CD4+ T-helper-cell responses in resolved hepatitis C virus infection. J Virol 76:12584–12595PubMedCrossRefGoogle Scholar
  122. 122.
    Lechner F, Wong DK, Dunbar PR et al (2000) Analysis of successful immune responses in persons infected with hepatitis C virus. J Exp Med 191:1499–1512PubMedCrossRefGoogle Scholar
  123. 123.
    Kaplan DE, Sugimoto K, Newton K et al (2007) Discordant role of CD4 T-cell response relative to neutralizing antibody and CD8 T-cell responses in acute hepatitis C. Gastroenterology 132:654–666PubMedCrossRefGoogle Scholar
  124. 124.
    Tester I, Smyk-Pearson S, Wang P et al (2005) Immune evasion versus recovery after acute hepatitis C virus infection from a shared source. J Exp Med 201:1725–1731PubMedCrossRefGoogle Scholar
  125. 125.
    van de Laar TJ, Molenkamp R, van den Berg C et al (2009) Frequent HCV reinfection and superinfection in a cohort of injecting drug users in Amsterdam. J Hepatol 51:667–674PubMedCrossRefGoogle Scholar
  126. 126.
    Major ME, Mihalik K, Puig M et al (2002) Previously infected and recovered chimpanzees exhibit rapid responses that control hepatitis C virus replication upon rechallenge. J Virol 76:6586–6595PubMedCrossRefGoogle Scholar
  127. 127.
    Mehta SH, Cox A, Hoover DR et al (2002) Protection against persistence of hepatitis C. Lancet 359:1478–1483PubMedCrossRefGoogle Scholar
  128. 128.
    Lanford RE, Guerra B, Chavez D et al (2004) Cross-genotype immunity to hepatitis C virus. J Virol 78:1575–1581PubMedCrossRefGoogle Scholar
  129. 129.
    Grakoui A, Shoukry NH, Woollard DJ et al (2003) HCV persistence and immune evasion in the absence of memory T cell help. Science 302:659–662PubMedCrossRefGoogle Scholar
  130. 130.
    Shoukry NH, Grakoui A, Houghton M et al (2003) Memory CD8+ T cells are required for protection from persistent hepatitis C virus infection. J Exp Med 197:1645–1655PubMedCrossRefGoogle Scholar
  131. 131.
    Maheshwari A, Ray S, Thuluvath PJ (2008) Acute hepatitis C. Lancet 372:321–332PubMedCrossRefGoogle Scholar
  132. 132.
    Thimme R, Oldach D, Chang KM et al (2001) Determinants of viral clearance and persistence during acute hepatitis C virus infection. J Exp Med 194:1395–1406PubMedCrossRefGoogle Scholar
  133. 133.
    Woollard DJ, Grakoui A, Shoukry NH et al (2003) Characterization of HCV-specific Patr class II restricted CD4+ T cell responses in an acutely infected chimpanzee. Hepatology 38:1297–1306PubMedCrossRefGoogle Scholar
  134. 134.
    Cox AL, Mosbruger T, Lauer GM et al (2005) Comprehensive analyses of CD8+ T cell responses during longitudinal study of acute human hepatitis C. Hepatology 42:104–112PubMedCrossRefGoogle Scholar
  135. 135.
    Radziewicz H, Ibegbu CC, Hon H et al (2008) Impaired hepatitis C virus (HCV)-specific effector CD8+ T cells undergo massive apoptosis in the peripheral blood during acute HCV infection and in the liver during the chronic phase of infection. J Virol 82:9808–9822PubMedCrossRefGoogle Scholar
  136. 136.
    Cooper S, Erickson AL, Adams EJ et al (1999) Analysis of a successful immune response against hepatitis C virus. Immunity 10:439–449PubMedCrossRefGoogle Scholar
  137. 137.
    Smyk-Pearson S, Tester IA, Klarquist J et al (2008) Spontaneous recovery in acute human hepatitis C virus infection: functional T-cell thresholds and relative importance of CD4 help. J Virol 82:1827–1837PubMedCrossRefGoogle Scholar
  138. 138.
    Jo J, Aichele U, Kersting N et al (2009) Analysis of CD8+ T-cell-mediated inhibition of hepatitis C virus replication using a novel immunological model. Gastroenterology 136:1391–1401PubMedCrossRefGoogle Scholar
  139. 139.
    Ulsenheimer A, Gerlach JT, Gruener NH et al (2003) Detection of functionally altered hepatitis C virus-specific CD4 T cells in acute and chronic hepatitis C. Hepatology 37:1189–1198PubMedCrossRefGoogle Scholar
  140. 140.
    Lucas M, Ulsenheimer A, Pfafferot K et al (2007) Tracking virus-specific CD4+ T cells during and after acute hepatitis C virus infection. PLoS One 2:e649PubMedCrossRefGoogle Scholar
  141. 141.
    Gerlach JT, Diepolder HM, Jung MC et al (1999) Recurrence of hepatitis C virus after loss of virus-specific CD4+ T-cell response in acute hepatitis C. Gastroenterology 117:933–941PubMedCrossRefGoogle Scholar
  142. 142.
    Schulze zur Wiesch J, Lauer GM, Day CL et al (2005) Broad repertoire of the CD4+ Th cell response in spontaneously controlled hepatitis C virus infection includes dominant and highly promiscuous epitopes. J Immunol 175:3603–3613PubMedGoogle Scholar
  143. 143.
    Shoukry NH, Cawthon AG, Walker CM (2004) Cell-mediated immunity and the outcome of hepatitis C virus infection. Annu Rev Microbiol 58:391–424PubMedCrossRefGoogle Scholar
  144. 144.
    Oo YH, Adams DH (2010) The role of chemokines in the recruitment of lymphocytes to the liver. J Autoimmun 34:45–54PubMedCrossRefGoogle Scholar
  145. 145.
    Hokeness KL, Deweerd ES, Munks MW et al (2007) CXCR3-dependent recruitment of antigen-specific T lymphocytes to the liver during murine cytomegalovirus infection. J Virol 81:1241–1250PubMedCrossRefGoogle Scholar
  146. 146.
    Narumi S, Tominaga Y, Tamaru M et al (1997) Expression of IFN-inducible protein-10 in chronic hepatitis. J Immunol 158:5536–5544PubMedGoogle Scholar
  147. 147.
    Apolinario A, Diago M, Lo Iacono O et al (2004) Increased circulating and intrahepatic T-cell-specific chemokines in chronic hepatitis C: relationship with the type of virological response to peginterferon plus ribavirin combination therapy. Aliment Pharmacol Ther 19:551–562PubMedCrossRefGoogle Scholar
  148. 148.
    Casrouge A, Decalf J, Ahloulay M et al (2011) Evidence for an antagonist form of the chemokine CXCL10 in patients chronically infected with HCV. J Clin Invest 121:308–317PubMedCrossRefGoogle Scholar
  149. 149.
    Lauer GM, Ouchi K, Chung RT et al (2002) Comprehensive analysis of CD8+−T-cell responses against hepatitis C virus reveals multiple unpredicted specificities. J Virol 76:6104–6113PubMedCrossRefGoogle Scholar
  150. 150.
    He XS, Rehermann B, Lopez-Labrador FX et al (1999) Quantitative analysis of hepatitis C virus-specific CD8+ T cells in peripheral blood and liver using peptide-MHC tetramers. Proc Natl Acad Sci USA 96:5692–5697PubMedCrossRefGoogle Scholar
  151. 151.
    Spangenberg HC, Viazov S, Kersting N et al (2005) Intrahepatic CD8+ T-cell failure during chronic hepatitis C virus infection. Hepatology 42:828–837PubMedCrossRefGoogle Scholar
  152. 152.
    Chang KM, Thimme R, Melpolder JJ et al (2001) Differential CD4+ and CD8+ T-cell responsiveness in hepatitis C virus infection. Hepatology 33:267–276PubMedCrossRefGoogle Scholar
  153. 153.
    Wedemeyer H, He X-S, Nascimbeni M et al (2002) Impaired effector function of hepatitis C virus-specific CD8+ T cells in chronic hepatitis C virus infection. J Immunol 169:3447–3458PubMedGoogle Scholar
  154. 154.
    Klenerman P, Lucas M, Barnes E et al (2002) Immunity to hepatitis C virus: stunned but not defeated. Microbes Infect 4:57–65PubMedCrossRefGoogle Scholar
  155. 155.
    Lauer GM, Barnes E, Lucas M et al (2004) High resolution analysis of cellular immune responses in resolved and persistent hepatitis C virus infection. Gastroenterology 127:924–936PubMedCrossRefGoogle Scholar
  156. 156.
    Appay V, Dunbar PR, Callan M et al (2002) Memory CD8+ T cells vary in differentiation phenotype in different persistent virus infections. Nat Med 8:379–385PubMedCrossRefGoogle Scholar
  157. 157.
    Kasprowicz V, Kang YH, Lucas M et al (2010) Hepatitis C virus (HCV) sequence variation induces an HCV-specific T-cell phenotype analogous to spontaneous resolution. J Virol 84:1656–1663PubMedCrossRefGoogle Scholar
  158. 158.
    Wherry EJ, Ahmed R (2004) Memory CD8 T-cell differentiation during viral infection. J Virol 78:5535–5545PubMedCrossRefGoogle Scholar
  159. 159.
    Castellino F, Germain RN (2006) Cooperation between CD4+ and CD8+ T cells: when, where, and how. Annu Rev Immunol 24:519–540PubMedCrossRefGoogle Scholar
  160. 160.
    Wherry EJ, Blattman JN, Murali-Krishna K et al (2003) Viral persistence alters CD8 T-cell immunodominance and tissue distribution and results in distinct stages of functional impairment. J Virol 77:4911–4927PubMedCrossRefGoogle Scholar
  161. 161.
    Matloubian M, Concepcion RJ, Ahmed R (1994) CD4+ T cells are required to sustain CD8+ cytotoxic T-cell responses during chronic viral infection. J Virol 68:8056–8063PubMedGoogle Scholar
  162. 162.
    Day CL, Seth NP, Lucas M et al (2003) Ex vivo analysis of human memory CD4 T cells specific for hepatitis C virus using MHC class II tetramers. J Clin Invest 112:831–842PubMedGoogle Scholar
  163. 163.
    Kalams SA, Walker BD (1998) The critical need for CD4 help in maintaining effective cytotoxic T lymphocyte responses. J Exp Med 188:2199–2204PubMedCrossRefGoogle Scholar
  164. 164.
    Williams MA, Bevan MJ (2007) Effector and memory CTL differentiation. Annu Rev Immunol 25:171–192PubMedCrossRefGoogle Scholar
  165. 165.
    Radziewicz H, Ibegbu CC, Fernandez ML et al (2007) Liver-infiltrating lymphocytes in chronic human hepatitis C virus infection display an exhausted phenotype with high levels of PD-1 and low levels of CD127 expression. J Virol 81:2545–2553PubMedCrossRefGoogle Scholar
  166. 166.
    Golden-Mason L, Palmer B, Klarquist J et al (2007) Upregulation of PD-1 expression on circulating and ­intrahepatic hepatitis C virus-specific CD8+ T cells ­associated with reversible immune dysfunction. J Virol 81:9249–9258PubMedCrossRefGoogle Scholar
  167. 167.
    Bengsch B, Seigel B, Ruhl M et al (2010) Coexpression of PD-1, 2B4, CD160 and KLRG1 on exhausted HCV-specific CD8+ T cells is linked to antigen recognition and T cell differentiation. PLoS Pathog 6:e1000947PubMedCrossRefGoogle Scholar
  168. 168.
    Kassel R, Cruise MW, Iezzoni JC et al (2009) Chronically inflamed livers up-regulate expression of inhibitory B7 family members. Hepatology 50:1625–1637PubMedCrossRefGoogle Scholar
  169. 169.
    Barber DL, Wherry EJ, Masopust D et al (2006) Restoring function in exhausted CD8 T cells during chronic viral infection. Nature 439:682–687PubMedCrossRefGoogle Scholar
  170. 170.
    Nakamoto N, Kaplan DE, Coleclough J et al (2008) Functional restoration of HCV-specific CD8 T cells by PD-1 blockade is defined by PD-1 expression and compartmentalization. Gastroenterology 134:1927–1937. e1922PubMedCrossRefGoogle Scholar
  171. 171.
    Bowen DG, Shoukry NH, Grakoui A et al (2008) Variable patterns of programmed death-1 expression on fully functional memory T cells after spontaneous resolution of hepatitis C virus infection. J Virol 82:5109–5114PubMedCrossRefGoogle Scholar
  172. 172.
    Kasprowicz V, Schulze Zur Wiesch J, Kuntzen T et al (2008) High level of PD-1 expression on hepatitis C virus (HCV)-specific CD8+ and CD4+ T cells during acute HCV infection, irrespective of clinical outcome. J Virol 82:3154–3160PubMedCrossRefGoogle Scholar
  173. 173.
    McMahan RH, Golden-Mason L, Nishimura MI et al (2010) Tim-3 expression on PD-1+ HCV-specific human CTLs is associated with viral persistence, and its blockade restores hepatocyte-directed in vitro cytotoxicity. J Clin Invest 120:4546–4557PubMedCrossRefGoogle Scholar
  174. 174.
    Erickson AL, Kimura Y, Igarashi S et al (2001) The outcome of hepatitis C virus infection is predicted by escape mutations in epitopes targeted by cytotoxic T lymphocytes. Immunity 15:883–895PubMedCrossRefGoogle Scholar
  175. 175.
    Cox AL, Mosbruger T, Mao Q et al (2005) Cellular immune selection with hepatitis C virus persistence in humans. J Exp Med 201:1741–1752PubMedCrossRefGoogle Scholar
  176. 176.
    Bowen DG, Walker CM (2005) Mutational escape from CD8+ T cell immunity: HCV evolution, from chimpanzees to man. J Exp Med 201:1709–1714PubMedCrossRefGoogle Scholar
  177. 177.
    Timm J, Lauer GM, Kavanagh DG et al (2004) CD8 epitope escape and reversion in acute HCV infection. J Exp Med 200:1593–1604PubMedCrossRefGoogle Scholar
  178. 178.
    Ray SC, Fanning L, Wang XH et al (2005) Divergent and convergent evolution after a common-source outbreak of hepatitis C virus. J Exp Med 201:1753–1759PubMedCrossRefGoogle Scholar
  179. 179.
    Neumann-Haefelin C, McKiernan S, Ward S et al (2006) Dominant influence of an HLA-B27 restricted CD8+ T cell response in mediating HCV clearance and evolution. Hepatology 43:563–572PubMedCrossRefGoogle Scholar
  180. 180.
    Uebelhoer L, Han JH, Callendret B et al (2008) Stable cytotoxic T cell escape mutation in hepatitis C virus is linked to maintenance of viral fitness. PLoS Pathog 4:e1000143PubMedCrossRefGoogle Scholar
  181. 181.
    Fuller MJ, Shoukry NH, Gushima T et al (2010) Selection-driven immune escape is not a significant factor in the failure of CD4 T cell responses in persistent hepatitis C virus infection. Hepatology 51:378–387PubMedCrossRefGoogle Scholar
  182. 182.
    Chang KM, Rehermann B, McHutchison JG et al (1997) Immunological significance of cytotoxic T lymphocyte epitope variants in patients chronically infected by the hepatitis C virus. J Clin Invest 100:2376–2385PubMedCrossRefGoogle Scholar
  183. 183.
    Meyer-Olson D, Shoukry NH, Brady KW et al (2004) Limited T cell receptor diversity of HCV-specific T cell responses is associated with CTL escape. J Exp Med 200:307–319PubMedCrossRefGoogle Scholar
  184. 184.
    Komatsu H, Lauer G, Pybus OG et al (2006) Do antiviral CD8+ T cells select hepatitis C virus escape mutants? Analysis in diverse epitopes targeted by human intrahepatic CD8+ T lymphocytes. J Viral Hepat 13:121–130PubMedCrossRefGoogle Scholar
  185. 185.
    Urbani S, Amadei B, Cariani E et al (2005) The impairment of CD8 responses limits the selection of escape ­mutations in acute hepatitis C virus infection. J Immunol 175:7519–7529PubMedGoogle Scholar
  186. 186.
    Rutebemberwa A, Ray SC, Astemborski J et al (2008) High-programmed death-1 levels on hepatitis C virus-specific T cells during acute infection are associated with viral persistence and require preservation of cognate antigen during chronic infection. J Immunol 181:8215–8225PubMedGoogle Scholar
  187. 187.
    Sugimoto K, Ikeda F, Stadanlick J et al (2003) Suppression of HCV-specific T cells without differential hierarchy demonstrated ex vivo in persistent HCV infection. Hepatology 38:1437–1448PubMedGoogle Scholar
  188. 188.
    Boettler T, Spangenberg HC, Neumann-Haefelin C et al (2005) T cells with a CD4+CD25+ regulatory phenotype suppress in vitro proliferation of virus-specific CD8+ T cells during chronic hepatitis C virus infection. J Virol 79:7860–7867PubMedCrossRefGoogle Scholar
  189. 189.
    Manigold T, Shin EC, Mizukoshi E et al (2006) Foxp3+CD4+CD25+ T cells control virus-specific memory T cells in chimpanzees that recovered from hepatitis C. Blood 107:4424–4432PubMedCrossRefGoogle Scholar
  190. 190.
    Ward SM, Fox BC, Brown PJ et al (2007) Quantification and localisation of FOXP3+ T lymphocytes and relation to hepatic inflammation during chronic HCV infection. J Hepatol 47:316–324PubMedCrossRefGoogle Scholar
  191. 191.
    Heeg MH, Ulsenheimer A, Gruner NH et al (2009) FOXP3 expression in hepatitis C virus-specific CD4+ T cells during acute hepatitis C. Gastroenterology 137(1280–1288):e1281–e1286Google Scholar
  192. 192.
    Franceschini D, Paroli M, Francavilla V et al (2009) PD-L1 negatively regulates CD4+CD25+Foxp3+ Tregs by limiting STAT-5 phosphorylation in patients chronically infected with HCV. J Clin Invest 119:551–564PubMedCrossRefGoogle Scholar
  193. 193.
    Radziewicz H, Dunham RM, Grakoui A (2009) PD-1 tempers Tregs in chronic HCV infection. J Clin Invest 119:450–453PubMedCrossRefGoogle Scholar
  194. 194.
    Schildberg FA, Hegenbarth SI, Schumak B et al (2008) Liver sinusoidal endothelial cells veto CD8 T cell activation by antigen-presenting dendritic cells. Eur J Immunol 38:957–967PubMedCrossRefGoogle Scholar
  195. 195.
    Cabillic F, Rougier N, Basset C et al (2006) Hepatic environment elicits monocyte differentiation into a dendritic cell subset directing Th2 response. J Hepatol 44:552–559PubMedCrossRefGoogle Scholar
  196. 196.
    Warren A, Le Couteur DG, Fraser R et al (2006) T lymphocytes interact with hepatocytes through fenestrations in murine liver sinusoidal endothelial cells. Hepatology 44:1182–1190PubMedCrossRefGoogle Scholar
  197. 197.
    Limmer A, Ohl J, Kurts C et al (2000) Efficient presentation of exogenous antigen by liver endothelial cells to CD8+ T cells results in antigen-specific T-cell tolerance. Nat Med 6:1348–1354PubMedCrossRefGoogle Scholar
  198. 198.
    Bowen DG, Zen M, Holz L et al (2004) The site of primary T cell activation is a determinant of the balance between intrahepatic tolerance and immunity. J Clin Invest 114:701–712PubMedGoogle Scholar
  199. 199.
    Semmo N, Lucas M, Krashias G et al (2006) Maintenance of HCV-specific T-cell responses in antibody-deficient patients a decade after early therapy. Blood 107:4570–4571PubMedCrossRefGoogle Scholar
  200. 200.
    Logvinoff C, Major ME, Oldach D et al (2004) Neutralizing antibody response during acute and chronic hepatitis C virus infection. Proc Natl Acad Sci USA 101:10149–10154PubMedCrossRefGoogle Scholar
  201. 201.
    Netski DM, Mosbruger T, Depla E et al (2005) Humoral immune response in acute hepatitis C virus infection. Clin Infect Dis 41:667–675PubMedCrossRefGoogle Scholar
  202. 202.
    Rehermann B, Nascimbeni M (2005) Immunology of hepatitis B virus and hepatitis C virus infection. Nat Rev Immunol 5:215–229PubMedCrossRefGoogle Scholar
  203. 203.
    Bassett SE, Thomas DL, Brasky KM et al (1999) Viral persistence, antibody to E1 and E2, and hypervariable region 1 sequence stability in hepatitis C virus-inoculated chimpanzees. J Virol 73:1118–1126PubMedGoogle Scholar
  204. 204.
    Pestka JM, Zeisel MB, Blaser E et al (2007) Rapid induction of virus-neutralizing antibodies and viral clearance in a single-source outbreak of hepatitis C. Proc Natl Acad Sci USA 104:6025–6030PubMedCrossRefGoogle Scholar
  205. 205.
    Takaki A, Wiese M, Maertens G et al (2000) Cellular immune responses persist and humoral responses decrease two decades after recovery from a single-source outbreak of hepatitis C. Nat Med 6:578–582PubMedCrossRefGoogle Scholar
  206. 206.
    Hsu M, Zhang J, Cheng-Mayer C et al (2003) Hepatitis C virus glycoproteins mediate pH-dependent fusion and cell entry of pseudotyped retroviral particles. Proc Natl Acad Sci USA 100:7271–7276PubMedCrossRefGoogle Scholar
  207. 207.
    Bartosch B, Bukh J, Meunier JC et al (2003) In vitro assay for neutralizing antibody to hepatitis C virus: evidence for broadly conserved neutralization epitopes. Proc Natl Acad Sci USA 100:14199–14204PubMedCrossRefGoogle Scholar
  208. 208.
    Meunier J-C, Engle RE, Faulk K et al (2005) Evidence for cross-genotype neutralization of hepatitis C virus pseudo-particles and enhancement of infectivity by apolipoprotein C1. Proc Natl Acad Sci USA 102:4560–4565PubMedCrossRefGoogle Scholar
  209. 209.
    Timpe JM, Stamataki Z, Jennings A et al (2008) Hepatitis C virus cell-cell transmission in hepatoma cells in the presence of neutralizing antibodies. Hepatology 47:17–24PubMedCrossRefGoogle Scholar
  210. 210.
    Liu L, Fisher BE, Dowd KA et al (2010) Acceleration of hepatitis C virus envelope evolution in humans is consistent with progressive humoral immune selection during the transition from acute to chronic infection. J Virol 84:5067–5077PubMedCrossRefGoogle Scholar
  211. 211.
    von Hahn T, Yoon JC, Alter H et al (2007) Hepatitis C virus continuously escapes from neutralizing antibody and T-cell responses during chronic infection in vivo. Gastroenterology 132:667–678CrossRefGoogle Scholar
  212. 212.
    Bresee JS, Mast EE, Coleman PJ et al (1996) Hepatitis C virus infection associated with administration of intravenous immune globulin. A cohort study JAMA 276:1563–1567CrossRefGoogle Scholar
  213. 213.
    M-yW Yu, Bartosch B, Zhang P et al (2004) Neutralizing antibodies to hepatitis C virus (HCV) in immune globulins derived from anti-HCV-positive plasma. Proc Natl Acad Sci USA 101:7705–7710CrossRefGoogle Scholar
  214. 214.
    Farci P, Alter HJ, Wong DC et al (1994) Prevention of hepatitis C virus infection in chimpanzee after antibody-mediated in vitro neutralization. Proc Natl Acad Sci USA 91:7792–7796PubMedCrossRefGoogle Scholar
  215. 215.
    Farci P, Shimoda A, Wong D et al (1996) Prevention of hepatitis C virus infection in chimpanzees by hyperimmune serum against the hypervariable region 1 of the envelope 2 protein. Proc Natl Acad Sci USA 93:15394–15399PubMedCrossRefGoogle Scholar
  216. 216.
    Law M, Maruyama T, Lewis J et al (2007) Broadly neutralizing antibodies protect against hepatitis C virus quasispecies challenge. Nat Med 14:25–27PubMedCrossRefGoogle Scholar
  217. 217.
    Burton DR (2002) Antibodies, viruses and vaccines. Nat Rev Immunol 2:706–713PubMedCrossRefGoogle Scholar
  218. 218.
    McKeating JA, Zhang LQ, Logvinoff C et al (2004) Diverse hepatitis C virus glycoproteins mediate viral infection in a CD81 dependent manner. J Virol 78:8496–8505PubMedCrossRefGoogle Scholar
  219. 219.
    Dienstag JL, McHutchison JG (2006) American Gastroen­terological Association technical review on the management of hepatitis C. Gastroenterology 130:231–264PubMedCrossRefGoogle Scholar
  220. 220.
    Heathcote J, Main J (2005) Treatment of hepatitis C. J Viral Hepat 12:223–235PubMedCrossRefGoogle Scholar
  221. 221.
    Layden-Almer JE, Ribeiro RM, Wiley T et al (2003) Viral dynamics and response differences in HCV-infected African American and white patients treated with IFN and ribavirin. Hepatology 37:1343–1350PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Italia 2012

Authors and Affiliations

  1. 1.Center for the Study of Hepatitis C, Laboratory of Virology and Infectious DiseaseThe Rockefeller UniversityNew YorkUSA

Personalised recommendations