Biotechnology in Surgery pp 61-73

Part of the Updates in Surgery book series (UPDATESSURG, volume 0) | Cite as

Technology for Biotechnology

  • Francesco Rosso
  • Manlio Barbarisi
  • Alfonso Barbarisi

Abstract

Nanotechnology is an emerging science that studies how to control matter on an atomic and molecular scale. Generally nanotechnology deals with structures of the size of 100 nanometers or smaller in at least one dimension, and involves developing materials or devices within that size. Nanotechnology ranges from extensions of conventional device physics to completely new approaches based upon molecular self-assembly, from developing new materials with dimensions on the nanoscale to investigating whether we can directly control matter on the atomic

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Jain KK (2003) Nanodiagnostics: application of nanotechnology in molecular diagnostics. Expert Rev Mol Diagn 3:153–161CrossRefPubMedGoogle Scholar
  2. 2.
    Whitesides GM, Xia Y (1998) Short review of soft lithography. Ann Rev Mater Sci 28:153–184CrossRefGoogle Scholar
  3. 3.
    Qin D, Xia Y, Whitesides GM (2010) Soft lithography for micro-and nanoscale patterning. Nat Protoc 5:491–502CrossRefPubMedGoogle Scholar
  4. 4.
    Park H, Cannizzaro C, Vunjak-Novakovic G et al (2007) Nanofabrication and microfabrication of functional materials for tissue engineering. Tissue Eng 13:1867–1877CrossRefPubMedGoogle Scholar
  5. 5.
    Curtis AS, Wilkinson CD (1998) Reactions of cells to topography. J Biomater Sci Polymer Edn 9:313–329CrossRefGoogle Scholar
  6. 6.
    Kataoka K, Suzuki Y, Kitada M (2001) Alginate, a bioresorbable material derived from brown seaweed, enhances elongation of amputated axons of spinal cord in infant rats. J Biomed Mater Res 54:373–384CrossRefPubMedGoogle Scholar
  7. 7.
    Wallman L, Zhang Y, Laurell T, Danielsen N (2001) The geometric design of micromachined silicon sieve electrodes influences functional nerve regeneration. Biomaterials 22:1187–1193CrossRefPubMedGoogle Scholar
  8. 8.
    Dalby MJ, Riehle MO, Sutherland DS et al (2004) Fibroblast response to a controlled nanoenvironment produced by colloidal lithography. J Biomed Mater Res A 69:314–322CrossRefPubMedGoogle Scholar
  9. 9.
    Favia P, Pinto Mota R, Vulpio M et al (2000) Plasma deposition of Agcontaining, polyethileneoxidelike coatings. Plasmas and Polymers 5:1–14CrossRefGoogle Scholar
  10. 10.
    Rosso F, Marino G, Muscariello L et al (2006) Adhesion and proliferation of fibroblasts on plasma-deposited nanostructured fluorocarbon coatings: evidence of FAK activation. J Cell Phys 207:636–643CrossRefGoogle Scholar
  11. 11.
    Bigi A, Boanini E, Panzavolta S, Roveri N (2000) Biomimetic growth of hydroxyapatite on gelatin films doped with sodium polyacrylate. Biomacromolecules 1:752–756CrossRefPubMedGoogle Scholar
  12. 12.
    Campbell N (2002) DNA technology and genomics. In: Wilbur B (ed) Biology: sixth edition. Pearson Education Inc, San Francisco, pp. 391–392Google Scholar
  13. 13.
    van Vlerken LE, Vyas TK, Amiji MM (2007) Poly(ethylene glycol)-modified nanocarriers for tumor-targeted and intracellular delivery. Pharmaceut Res 24:1405–1414CrossRefGoogle Scholar
  14. 14.
    O’Shaughnessy JA (2003) Pegylated liposomal doxorubicin in the treatment of breast cancer. Clin Breast Cancer 4:318–328CrossRefPubMedGoogle Scholar
  15. 15.
    Torchilin VP (2007) Targeted pharmaceutical nanocarriers for cancer therapy and imaging. The AAPS J 9:128–147CrossRefGoogle Scholar
  16. 16.
    Pohanka M, Skladal P, Kroca M (2007) Biosensors for biological warfare agent detection. Def Sci J 57:185–193Google Scholar
  17. 17.
    Pohanka M, Jun D, Kuca K (2007) Mycotoxin assay using biosensor technology: a review. Drug Chem Toxicol 30:253–261CrossRefPubMedGoogle Scholar
  18. 18.
    Cavalcanti A, Shirinzadeh B, Zhang M, Kretly LC (2008) Nanorobot hardware architecture for medical defense. Sensors 8: 2932–2958CrossRefGoogle Scholar
  19. 19.
    Gupta R, Chaudhury NK (2007) Entrapment of biomolecules in sol-gel matrix for applications in biosensors: problems and future prospects. Biosens Bioelectron 22:2387–2399CrossRefPubMedGoogle Scholar
  20. 20.
    Liao KC, Hogen-Esch T, Richmond FJ et al (2008) Percutaneous fiber-optic sensor for chronic glucose monitoring in vivo. Biosens Bioelectron 23:1458–1465CrossRefPubMedGoogle Scholar
  21. 21.
    Walt DR (2005) Miniature analytical methods for medical diagnostics. Science 308:217–219CrossRefPubMedGoogle Scholar
  22. 22.
    Rosi NL, Mirkin CA (2005) Nanostructures in biodiagnostics. Chem Rev 105:1547–1562CrossRefPubMedGoogle Scholar
  23. 23.
    Michalet X, Pinaud FF, Bentolila LA et al (2005) Quantum dots for live cells, in vivo imaging, and diagnostics. Science 307:538–544CrossRefPubMedGoogle Scholar
  24. 24.
    Härmä H, Soukka T, Lovgren T (2001) Europium nanoparticles and time-resolved fluorescence for ultrasensitive detection of prostate-specific antigen. Clin Chem 47:561–568PubMedGoogle Scholar
  25. 25.
    Jin T, Fujii F, Sakata H et al (2005) Amphiphilic p-sulfonatocalix[4]arene-coated CdSe/ZnS quantum dots for the optical detection of the neurotransmitter acetylcholine. Chem Commun (Camb) 4300–4302Google Scholar
  26. 26.
    Akerman ME, Chan WC, Laakkonen P et al (2002) Nanocrystal targeting in vivo. Proc Natl Acad Sci U S A 99:12617–12621CrossRefPubMedGoogle Scholar
  27. 27.
    Wu X, Liu H, Liu J et al (2003) Immunofluorescent labeling of cancer marker Her2 and other cellular targets with semiconductor quantum dots. Nat Biotechnol 21:41–46CrossRefPubMedGoogle Scholar
  28. 28.
    Larson DR, Zipfel WR, Williams RM et al (2003) Water-soluble quantum dots for multiphoton fluorescence imaging in vivo. Science 300:1434–1436CrossRefPubMedGoogle Scholar
  29. 29.
    Green RJ, Frazier RA, Shakesheff KM et al (2000) Surface plasmon resonance analysis of dynamic biological interactions with biomaterials. Biomaterials 21:1823–1835CrossRefPubMedGoogle Scholar
  30. 30.
    Nam JM, Thaxton CS, Mirkin CA (2003) Nanoparticle-based bio-bar codes for the ultrasensitive detection of proteins. Science 301:1884–1886CrossRefPubMedGoogle Scholar
  31. 31.
    Georganopoulou DG, Chang L, Nam JM et al (2005) Nanoparticle-based detection in cerebral spinal fluid of a soluble pathogenic biomarker for Alzheimer’s disease. Proc Natl Acad Sci USA 102:2273–2276CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Italia 2011

Authors and Affiliations

  • Francesco Rosso
    • 1
  • Manlio Barbarisi
    • 2
    • 3
  • Alfonso Barbarisi
    • 1
  1. 1.Department of Anesthesiology, Surgical and Emergency SciencesSecond University of NaplesNaplesItaly
  2. 2.Department of NeurosciencesSecond University of NaplesNaplesItaly
  3. 3.Istituto Neurologico MediterraneoNEUROMEDPozzilli (IS)Italy

Personalised recommendations