Ultrasound Contrast Agent Microbubble Dynamics

  • Marlies Overvelde
  • Hendrik J. Vos
  • Nico de Jong
  • Michel Versluis

Abstract

Ultrasound contrast agents are traditionally used in ultrasound-assisted organ perfusion imaging. Recently the use of coated microbubbles has been proposed for molecular imaging applications where the bubbles are covered with a layer of targeting ligands to bind specifically to their target cells. In this chapter we describe contrast agent microbubble behavior starting from the details of free bubble dynamics leading to a set of equations describing the dynamics of coated microbubbles. Experimentally, the dynamics of ultrasound contrast agent microbubbles is temporally resolved using the ultra-high speed camera Brandaris 128. The influence of a neighboring wall is investigated by combining the Brandaris camera with optical tweezers. It was observed that the presence of the wall can alter the bubble response. A detailed description of the bubble-wall interaction may therefore lead to improved molecular imaging strategies.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ashkin A (1986) Observation of a single-beam gradient force optical trap for dielectric particles. Optics Letters 11(5):288CrossRefGoogle Scholar
  2. 2.
    Bjerknes V (1906) Fields of Force. Columbia University PressGoogle Scholar
  3. 3.
    Brock-Fisher G, Poland M and Rafter P (1996) Means for increasing sensitivity in non-linear ultrasound imaging systems US patent no 55775Google Scholar
  4. 4.
    Chetty K, Stride E, Sennoga C, Hajnal J and Eckersley R (2008) High-speed optical observations and simulation results of sonovue microbubbles at lowpressure insonation. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control 55(6):1333–1342CrossRefGoogle Scholar
  5. 5.
    Chin C, Lancee C, Borsboom J, Mastik F, Frijlink M, de Jong N, Versluis M and Lohse D (2003) Brandaris 128: A digital 25 million frames per second camera with 128 highly sensitive frames. Review of Scientific Instruments 74:5026–5034CrossRefGoogle Scholar
  6. 6.
    Church C (1995) The effects of an elastic solid surface layer on the radial pulsations of gas bubbles. The Journal of the Acoustical Society of America 97(3):1510–1521CrossRefGoogle Scholar
  7. 7.
    De Jong N, Cornet R and Lancee CT (1994) Higher harmonics of vibrating gas-filled microspheres. part one: simulations. Ultrasonics 32:447–453CrossRefGoogle Scholar
  8. 8.
    De Jong N, Emmer M, Chin C, Bouakaz A, Mastik F, Lohse D and Versluis M (2007) “compression-only” behavior of a phosphorlipid-coated contrast bubbles. Ultrasound in Medicine and Biology 33(4)Google Scholar
  9. 9.
    Doinikov A (2001) Translational motion of two interacting bubbles in a strong acoustic field. Physical Review E 64(2):026,301CrossRefGoogle Scholar
  10. 10.
    Emmer M, Wamel AV, Goertz D and Jong ND (2007) The onset of microbubble vibration. Ultrasound in Medicine and Biology 33(6):941–949CrossRefGoogle Scholar
  11. 11.
    Flynn H (1975a) Cavitation dynamics. i. a mathematical formulation. The Journal of the Acoustical Society of America 57(6):1379–1396MATHCrossRefGoogle Scholar
  12. 12.
    Flynn H (1975b) Cavitation dynamics: Ii. free pulsations and models for cavitation bubbles. The Journal of the Acoustical Society of America 58(6):1160–1170CrossRefGoogle Scholar
  13. 13.
    Gahagan K (1996) Optical vortex trapping of particles. Optics Letters 21(827):11Google Scholar
  14. 14.
    Garbin V, Cojoc D, Ferrari E, Fabrizio ED, Overvelde M, van der Meer S, de Jong N, Lohse D and Versluis M (2007) Changes in microbubble dynamics near a boundary revealed by combined optical micromanipulation and highspeed imaging. Applied Physics Letters 90:114,103CrossRefGoogle Scholar
  15. 15.
    Gilmore F (1952) The growth or collapse of a spherical bubble in a viscous compressible liquid. Tech. rep., Hydrodynamics Laboratory, California Institute Technology, Pasadena, report 26-4Google Scholar
  16. 16.
    Gorce JM, Arditi M and Schneider M (2000) Influence of bubble size distribution on the echogenicity of ultrasound contrast agents. Investigative Radiology 35(11):661–671CrossRefGoogle Scholar
  17. 17.
    Herring C (1941) Theory of the pulsations of the gas bubble produced by an underwater explosion. Tech. rep., OSRD report 236Google Scholar
  18. 18.
    Hoff L, Sontum P and Hovem J (2000) Oscillations of polymeric microbubbles: Effect of the encapsulating shell. The Journal of the Acoustical Society of America 107(4):2272–2280CrossRefGoogle Scholar
  19. 19.
    Hope Simpson D, Ting CC and Burns P (1999) Pulse inversion doppler: a new method for detecting nonlinear echoes from microbubble contrast agents. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control 46(2):372–382CrossRefGoogle Scholar
  20. 20.
    Keller J and Kolodner I (1956) Damping of underwater explosion bubble oscillations. Journal of Applied Physics 27(10):1152–1161CrossRefGoogle Scholar
  21. 21.
    Keller JB and Miksis M (1980) Bubble oscillations of large amplitude. The Journal of the Acoustical Society of America 68:628–633MATHCrossRefGoogle Scholar
  22. 22.
    Klibanov A (2002) Ultrasound Contrast Agents: Development of the Field and Current Status, Topics in Current Chemistry 222Google Scholar
  23. 23.
    Lankford M, Behm C, Yeh J, Klibanov A, Robinson P and Linder J (2006) Effect of microbubble ligation to cells on ultrasound signal enhancement: implications for targeted imaging. Investigative Radiology 41(10)Google Scholar
  24. 24.
    Lauterborn W (1976) Numerical investigation of nonlinear oscillations of gas bubbles in liquids. The Journal of the Acoustical Society of America 59(2):283–293CrossRefGoogle Scholar
  25. 25.
    Leighton T (1994) The Acoustic Bubble. Academic Press Inc. San DiegoGoogle Scholar
  26. 26.
    Marmottant P, van der Meer S, Emmer M, Versluis M, de Jong N, Hilgenfeldt S and Lohse D (2005) A model for large amplitude oscillations of coated bubbles accounting for buckling and rupture. The Journal of the Acoustical Society of America 118:3499–3505CrossRefGoogle Scholar
  27. 27.
    Marmottant P, Versluis M, Jong ND, Hilgenfeldt S and Lohse D (2006) Highspeed imaging of an ultrasound-driven bubble in contact with a wall: “narcissus” effect and resolved acoustic streaming. Experiments in Fluids 41(2):147–153CrossRefGoogle Scholar
  28. 28.
    Minnaert M (1933) On musical air-bubbles and sounds of running water. Philosophical Magazine 16:235–248Google Scholar
  29. 29.
    Neppiras E and Noltingk B (1951) Cavitation produced by ultrasonics: Theoretical conditions for the onset of cavitation. Proceedings of the Physical Society Section B 64(12):1032–1038CrossRefGoogle Scholar
  30. 30.
    Noltingk B and Neppiras E (1950) Cavitation produced by ultrasonics. Proceedings of the Physical Society Section B 63(9):674–685CrossRefGoogle Scholar
  31. 31.
    Plesset M (1949) The dynamics of cavitation bubbles. Journal of Applied Mechanics 16:277–282Google Scholar
  32. 32.
    Poritsky H (1952) The collapse or growth of a spherical bubble or cavity in a viscous fluid. Proceedings of the first US National Congress on Applied Mechanics pp 813–821Google Scholar
  33. 33.
    Prosperetti A (1975) Nonlinear oscillations of gas bubbles in liquids. transient solutions and the connection between subharmonic signal and cavitation. The Journal of the Acoustical Society of America 57(4):810–821CrossRefGoogle Scholar
  34. 34.
    Prosperetti A, Crum L and Commander K (1988) Nonlinear bubble dynamics. The Journal of the Acoustical Society of America 83(2):502–514CrossRefGoogle Scholar
  35. 35.
    Rayleigh L (1917) On the pressure developed in a liquid during the collapse of a spherical cavity. Philosophical Magazine 34:94–98Google Scholar
  36. 36.
    Sarkar K, Shi W, Chatterjee D and Forsberg F (2005) Characterization of ultrasound contrast microbubbles using in vitro experiments and viscous and viscoelastic interface models for encapsulation. The Journal of the Acoustical Society of America 118(1):539–550CrossRefGoogle Scholar
  37. 37.
    Trilling L (1952) The collapse and rebound of a gas bubble. Journal of Applied Physics 23(1):14–17CrossRefMathSciNetGoogle Scholar
  38. 38.
    Van der Meer S, Dollet B, Chin CT, Bouakaz A, Voormolen M, de Jong N, Versluis M and Lohse D (2007) Microbubble spectroscopy of ultrasound contrast agents. The Journal of the Acoustical Society of America 120:3327–3327Google Scholar
  39. 39.
    Vos H, Dollet B, Bosch J, Versluis M and de Jong N (2008) Nonspherical vibrations of microbubbles in contact with a wall — a pilot study at low mechanical index. Ultrasound in Medicine and Biology 34(4):685–688Google Scholar
  40. 40.
    Zhao S, Ferrara K and Dayton P (2005) Asymmetric oscillation of adherent targeted ultrasound contrast agents. Applied Physics Letters 87(13)Google Scholar
  41. 41.
    Zhao S, Kruse D, Ferrara K and Dayton P (2006) Acoustic response from adherent targeted contrast agents. The Journal of the Acoustical Society of America 120(6):EL63–EL69CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Italia 2010

Authors and Affiliations

  • Marlies Overvelde
    • 1
  • Hendrik J. Vos
    • 2
  • Nico de Jong
    • 2
  • Michel Versluis
    • 1
  1. 1.Physics of Fluids GroupUniversity of TwenteThe Netherlands
  2. 2.Biomedical EngineeringThorax Centre, Erasmus MCRotterdamThe Netherlands

Personalised recommendations