Skip to main content

Potential Applications of Tissue Engineering in Hand Surgery

  • Chapter
Biomaterials in Hand Surgery
  • 1318 Accesses

Abstract

Tissue engineering is a relatively new discipline aiming at the regeneration of tissues and organs that have been damaged by either traumatic events or diseases. From a technological viewpoint, tissue regeneration is pursued by implantation of the so-called tissue engineering constructs. A tissue engineering construct is based on 3D biomaterials that are able to host and deliver cell types relevant to the regeneration of the target tissue. Ideally, biomaterials should also be able to control the behavior of cells, directing their ability to synthesize and deposit new tissue components. This property should either be intrinsically built into the biomaterial 3D scaffold or achieved through integration of bioactive molecules such as growth factors and drugs. Also, in some clinical scenarios, the possibility of delivering the tissue engineering construct as an injectable formulation should be considered, to facilitate minimally invasive surgery. In this chapter, the main biomaterials and engineering methods for obtaining 3D scaffolds will be presented, together with an overview of the most recommended cell types, the stem cells. A review of specific factors and bioactive molecules that can be included to improve the tissue regeneration potential of the tissue engineering construct is also provided. Finally, the potential of tissue engineering to treat tissues relevant to hand surgery is presented, and the clinical applicability is critically assessed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Murray PM (2003) New-generation implant arthroplasties for the finger joints. J Am Acad Orthop Surg 11:295–301.

    PubMed  Google Scholar 

  2. Mishra V, Kuiper JH, Kelly CP (2003) Influence of core suture material and peripheral repair technique on the strength of Kessler flexor tendon repair. J Hand Surg 28:357–362.

    CAS  Google Scholar 

  3. Bertleff MJOE, Meek MF, Nicolai JPA (2005) A prospective clinical evaluation of biodegradable neurolac nerve guides for sensory nerve repair in the hand. J Hand Surg 30:513–518.

    Article  Google Scholar 

  4. Conolly WB, Rath S (1991) Silastic implant arthroplasty for post-traumatic stiffness of the finger joints. J Hand Surg 16:286–292.

    CAS  Google Scholar 

  5. Hubbell JA (1998) Synthetic biodegradable polymers for tissue engineering and drug delivery. Curr Opin Solid State Mater Sci 3(3):246–251.

    Article  CAS  Google Scholar 

  6. Langer R, Vacanti JP (1993) Tissue engineering. Science 260:920–926.

    Article  CAS  PubMed  Google Scholar 

  7. Chung HJ, Park TG (2007) Surface engineered and drug releasing pre-fabricated scaffolds for tissue engineering. Adv Drug Del Res 59:249–262.

    Article  CAS  Google Scholar 

  8. Pittsburgh Tissue Engineering Institute. www.ptei.org (accessed 15 June 2009).

    Google Scholar 

  9. Hutmacher DW, Singh H (2008) Computational fluid dynamics for improved bioreactor design and 3D culture. Trends Biotechnol 26:166–172.

    Article  CAS  PubMed  Google Scholar 

  10. Sawyer AA, Hennessy KM, Bellis SL (2007) The effect of adsorbed serum proteins, RGD and proteoglycan-binding peptides on the adhesion of mesenchymal stem cells to hydroxyapatite. Biomaterials 28:383–392.

    Article  CAS  PubMed  Google Scholar 

  11. Ehrbar M, Lutolf MP, Rizzi SC et al (2008) Artificial extracellular matrices for bone tissue engineering. Bone 42:S72.

    Article  Google Scholar 

  12. Lee J, Cuddihy MJ, Kotov NA (2008) Three-dimensional cell culture matrices: State of the art. Tissue Eng Part B Rev 14:61–86.

    Article  CAS  PubMed  Google Scholar 

  13. Lutolf MP, Hubbell JA (2005) Synthetic biomaterials as instructive extracellular microenvironments for morphogenesis in tissue engineering. Nature Biotechnol 23:47–55.

    Article  CAS  Google Scholar 

  14. Hubbell JA (2003) Materials as morphogenetic guides in tissue engineering. Curr Opin Biotechnol 14:551–558.

    Article  CAS  PubMed  Google Scholar 

  15. Lutolf MR, Weber FE, Schmoekel HG et al (2003) Repair of bone defects using synthetic mimetics of collagenous extracellular matrices. Nature Biotechnol 21:513–518.

    Article  CAS  Google Scholar 

  16. Lutolf MP, Lauer-Fields JL, Schmoekel HG et al (2003) Synthetic matrix metalloproteinasesensitive hydrogels for the conduction of tissue regeneration: engineering cell-invasion characteristics. Proc Natl Acad Sci U S A 100:5413–5418.

    Article  CAS  PubMed  Google Scholar 

  17. Pratt AB, Weber FE, Schmoekel HG et al (2004) Synthetic extracellular matrices for in situ tissue engineering. Biotechnol Bioeng 86:27–36.

    Article  CAS  PubMed  Google Scholar 

  18. Rizzi SC, Ehrbar M, Halstenberg S et al (2006) Recombinant protein-co-PEG networks as celladhesive and proteolytically degradable hydrogel matrixes. Part II: Biofunctional characteristics. Biomacromolecules 7:3019–3029.

    Article  CAS  PubMed  Google Scholar 

  19. Chua CK, Sudarmadji N, Leong KF (2008) Functionally graded scaffolds: the challenges in design and fabrication processes. In: Bártolo PJ, Mateus AJ, Batista FDC et al (eds) Virtual and rapid manufacturing: advanced research in virtual and rapid prototyping. Monographs in engineering, water and earth sciences. Taylor and Francis, London, pp 115–120.

    Google Scholar 

  20. Jones JR, Gentleman E, Polak J (2007) Bioactive glass scaffolds for bone regeneration. Elements 3:393–399.

    Article  CAS  Google Scholar 

  21. Kochar PG (2004) What are stem cells? www.csa.com/discoveryguides/stemcell/overview.php (accessed 29 May 2009).

    Google Scholar 

  22. Forrester JS, Price MJ, Makkar RR (2003) Stem cell repair of infarcted myocardium: an overview for clinicians. Circulation 108:1139–1145.

    Article  PubMed  Google Scholar 

  23. Lindvall O, Kokaia Z (2006) Stem cells for the treatment of neurological disorders. Nature 441:1094–1096.

    Article  CAS  PubMed  Google Scholar 

  24. Gerecht-Nir S, Itskoviz-Eldor J (2004) Cell therapy using human embryonic stem cells. Transpl Immunol 12:203–209.

    Article  CAS  PubMed  Google Scholar 

  25. Ratajczak MZ, Zuba-Surma EK, Wysoczynski M et al (2008) Hunt for pluripotent stem cell regenerative medicine search for almighty cell. J Autoimmunol 30:151–162.

    Article  Google Scholar 

  26. Hines M, Nielsen L, Cooper-White J (2008) The hematopoietic stem cell niche: what are we trying to replicate? J Chem Technol Biotechnol 83:421–443.

    Article  CAS  Google Scholar 

  27. Kim S, Von Recum H (2007) Endothelial stem cells and precursors for tissue engineering: cell source, differentiation, selection, and application. Tissue Eng Part B Rev 14:133–147.

    Article  Google Scholar 

  28. Yu J, Vodyanik MA, Smuga-Otto K et al (2007) Induced pluripotent stem cells derived from somatic cells. Science 318:1917–1920.

    Article  CAS  PubMed  Google Scholar 

  29. Benjamin M, Kaiser E, Milz S (2008) Structure-function relationships in tendons: a review. J Anat 212:211–228.

    Article  CAS  PubMed  Google Scholar 

  30. Twardowski T, Fertala A, Orgel JPRO, Antonio JDS (2007) Type I collagen and collagen mimetics as angiogenesis promoting superpolymers. Curr Pharm Design 13:3608–3621.

    Article  CAS  Google Scholar 

  31. Peyton SR, Ghajar CM, Khatiwala CB, Putnam AJ (2007) The emergence of ECM mechanics and cytoskeletal tension as important regulators of cell function. Cell Biochem Biophys 47:300–320.

    Article  CAS  PubMed  Google Scholar 

  32. Guilak F, Alexopoulos LG, Upton ML et al (2006) The pericellular matrix as a transducer of biomechanical and biochemical signals in articular cartilage. Ann NY Acad Sci 1068:498–512.

    Article  CAS  PubMed  Google Scholar 

  33. Hui TY, Cheung KMC, Cheung WL et al (2008) In vitro chondrogenic differentiation of human mesenchymal stem cells in collagen microspheres: Influence of cell seeding density and collagen concentration. Biomaterials 29:3201–3212.

    Article  CAS  PubMed  Google Scholar 

  34. Chang CF, Lee MW, Kuo PY et al (2007) Three-dimensional collagen fiber remodeling by mesenchymal stem-cells requires the integrin-matrix interaction. J Biomed Mater Res A 80A:466–474.

    Article  CAS  Google Scholar 

  35. Khoshnoodi J, Pedchenko V, Hudson BG (2008) Mammalian collagen IV. Microsc Res Tech 71:357–370.

    Article  CAS  PubMed  Google Scholar 

  36. LeBleu VS, MacDonald B, Kalluri R (2007) Structure and function of basement membranes. Exp Biol Med 232:1121–1127.

    Article  CAS  Google Scholar 

  37. Lim BBC, Lee EH, Sotomayor M, Schulten K (2008) Molecular basis of fibrin clot elasticity. Structure 16:449–459.

    Article  CAS  PubMed  Google Scholar 

  38. Nurden AT, Nurden P, Sanchez M et al (2008) Platelets and wound healing. Front Biosci 13:3532–3548.

    PubMed  Google Scholar 

  39. Zhao HG, Ma L, Zhou J et al (2008) Fabrication and physical and biological properties of fibrin gel derived from human plasma. Biomed Mat 3:15001.

    Article  Google Scholar 

  40. Yung S, Chan TM (2007) Glycosaminoglycans and proteoglycans: overlooked entities? Perit Dial Int 27(Suppl 2):S104–109.

    Google Scholar 

  41. Taylor KR, Gallo RL (2006) Glycosaminoglycans and their proteoglycans: host-associated molecular patterns for initiation and modulation of inflammation. FASEB J 20:9–22.

    Article  CAS  PubMed  Google Scholar 

  42. Bastow ER, Byers S, Golub SB et al (2008) Hyaluronan synthesis and degradation in cartilage and bone. Cell Mol Life Sci 65:395–413.

    Article  CAS  PubMed  Google Scholar 

  43. Slevin M, Krupinski J, Gaffney J et al (2007) Hyaluronan-mediated angiogenesis in vascular disease: uncovering RHAMM and CD44 receptor signaling pathways. Matrix Biol 26:58–68.

    Article  CAS  PubMed  Google Scholar 

  44. Jiang D, Liang J, Noble PW (2007) Hyaluronan in tissue injury and repair. Annu Rev Cell Dev Biol 23:435–461.

    Article  CAS  PubMed  Google Scholar 

  45. Teixeira S, Oliveira S, Ferraz MP, Monteiro FJ (2008) Three dimensional macroporous calcium phosphate scaffolds for bone tissue engineering. In: Daculsi G, Layrolle P (eds) Bioceramics 20, Parts 1 and 2. Book series: key engineering materials, pp947–950. Trans Tech Publications Inc, Zurich.

    Google Scholar 

  46. Quarto R, Mastrogiacomo M, Cancedda R et al (2001) Repair of large bone defects with the use of autologous bone marrow stromal cells. N Engl J Med 344:385–386.

    Article  CAS  PubMed  Google Scholar 

  47. Evangelista MB, Hsiong SX, Fernandes R et al (2007) Upregulation of bone cell differentiation through immobilization within a synthetic extracellular matrix. Biomaterials 28:3644–3655.

    Article  CAS  PubMed  Google Scholar 

  48. Hersel U, Dahmen C, Kessler H (2003) RGD modified polymers: biomaterials for stimulated cell adhesion and beyond. Biomaterials 24:4385–4415.

    Article  CAS  PubMed  Google Scholar 

  49. Dettin M, Conconi MT, Gambaretto R et al (2002) Novel osteoblast-adhesive peptides for dental/orthopedic biomaterials. J Biomed Mater Res 60:466–471.

    Article  CAS  PubMed  Google Scholar 

  50. Rezania A, Healy KE (1999) Biomimetic peptide surfaces that regulate adhesion, spreading, cytoskeletal organization, and mineralization of the matrix deposited by osteoblast-like cells. Biotechnol Prog 15:19–32.

    Article  CAS  PubMed  Google Scholar 

  51. Pollock JF, Healy KE (2009) Biomimetic and bio-responsive materials in regenerative medicine. In: Santin M (ed) Strategies in regenerative medicine. Integrating biology with materials science. Springer, Milan, pp97–154.

    Google Scholar 

  52. Lloyd AW, Oliver GWJ, Standen G et al (2008) Biomaterial with functionalised surfaces. WO/2008/068531. World Intellectual Property Organization, www.wipo.int/pctdb/en/wo.jsp? WO=2008068531 (accessed 13 June 2009).

    Google Scholar 

  53. Matsumoto R, Omura T, Yoshiyama M et al (2005) Vascular endothelial growth factor-expressing mesenchymal stem cell transplantation for the treatment of acute myocardial infarction. Arterioscl Thromb Vasc Biol 25:1168–1173.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Italia

About this chapter

Cite this chapter

Santin, M. (2009). Potential Applications of Tissue Engineering in Hand Surgery. In: Merolli, A., Joyce, T.J. (eds) Biomaterials in Hand Surgery. Springer, Milano. https://doi.org/10.1007/978-88-470-1195-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-88-470-1195-3_2

  • Publisher Name: Springer, Milano

  • Print ISBN: 978-88-470-1194-6

  • Online ISBN: 978-88-470-1195-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics