ROS and Antioxidants: Relationship in Green Cells

  • Soumen Bhattacharjee


The redox homeostasis of plant cell, which largely depends on prooxidant and antioxidant status, is perturbed under environmental assault. In fact, the imposition of abiotic and biotic stresses changes redox status or homeostasis of the plant cell toward prooxidants and leads to a condition called oxidative stress. Orchestrated antioxidative defense that largely comprises of information-rich redox buffers and enzymes ensues to combat the situation, specifically at the site of action of the stress. Thus, the functional roles of these antioxidative defense responses include the restoration of metabolic redox homeostasis, the protection of the photosynthetic machinery, the preservation of membrane integrity, the protection of nucleic acids and proteins, etc. Current progress of work suggests that complex regulatory mechanisms function at both the gene expression and protein level to coordinate antioxidant responses in plants. To ensure survival, particularly under stress, plants have developed both enzymatic and nonenzymatic defense systems which work hand in hand not only to scavenge ROS but also to tightly regulate the endogenous titer of ROS to induce the signaling role of ROS, required for stress acclimation. Growing body of evidence suggests the role of redox homeostasis under environmental stress in which ROS-antioxidant interaction acts at metabolic interface for signal derived from unfavorable environmental cues. The current research also suggest the function of antioxidants as key arbitrator of intracellular redox status and exhibit high degree of potential with their differential cellular status permitting antioxidant-driven vectorial signaling. In this chapter, an effort has been made to detail the different antioxidative defense mechanisms operating in the cellular and subcellular level for scavenging ROS and maintaining redox homeostasis under stressful conditions. Further, a descriptive account regarding antioxidant-based redox information which influences gene expression associated with unfavorable environmental conditions to maximize defense is also discussed.


Antioxidants Redox buffer Antioxidative enzymes ROS scavengers Antioxidant signaling 


  1. Agati G, Azzarello E, Pollastri S, Tattini M (2012) Flavonoids as antioxidants in plants: location and functional significance. Plant Sci 196:67–76CrossRefPubMedPubMedCentralGoogle Scholar
  2. Aghaei K, Ehsanpour AA, Komatsu S (2009) Potato responds to salt stress by increased activity of antioxidant enzymes. J Integr Plant Biol 51:1095–1103CrossRefPubMedPubMedCentralGoogle Scholar
  3. Agrawal SB, Singh S, Agrawal M (2009) Ultraviolet-B induced changes in gene expression and antioxidants in plants. Adv Bot Res 52:47–86CrossRefGoogle Scholar
  4. Apel K, Hirt H (2004) Reactive oxygen species: Metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol 55:373–399CrossRefGoogle Scholar
  5. Asada K (1999) The water-water cycle in chloroplasts: scavenging of active oxygens and dissipation of excess photons. Annu Rev Plant Physiol Plant Mol Biol 50:601–639CrossRefPubMedPubMedCentralGoogle Scholar
  6. Asada K (2000) The water-water cycle as alternative photon and electron sinks. Phil Trans R Soc Lond B Biol Sci 355:1419–1431CrossRefGoogle Scholar
  7. Asada K (2006) Production and scavenging of reactive oxygen species in chloroplasts and their functions. Plant Physiol 141:391–396CrossRefPubMedPubMedCentralGoogle Scholar
  8. Ashraf M, Akram NA (2009) Improving salinity tolerance of plants through conventional breeding and genetic engineering: analytical comparison. Biotechnology 27:744–752Google Scholar
  9. Athar HUR, Khan A, Ashraf M (2008) Exogenously applied ascorbic acid alleviates salt-induced oxidative stress in wheat. Environ Exp Bot 63:224–223CrossRefGoogle Scholar
  10. Badawi GH, Yamauchia Y, Shimada E, Sasaki R, Kawano N (2004) Enhanced tolerance to salt stress and water deficit by overexpressing superoxide dismutase in tobacco (Nicotiana tabacum) chloroplasts. Plant Sci 66:919–928CrossRefGoogle Scholar
  11. Bajguz A, Hayat S (2009) Effects of brassinosteroids on the plant responses to environmental stresses. Plant Physiol Biochem 47:1–8CrossRefPubMedPubMedCentralGoogle Scholar
  12. Barnes J, Zheng Y, Lyons T (2002) Plant resistance to ozone: the role of ascorbate. In: Omasa K, Saji H, Youssefian S, Kondo N (eds) Air pollution and plant biotechnology—prospects for phytomonitoring and phytoremediation. Springer, Tokyo, pp 235–252CrossRefGoogle Scholar
  13. Basu S, Roychoudhury A, Saha PP, Sengupta DN (2010a) Differential antioxidative responses of indica rice cultivars to drought stress. Plant Growth Regul 60:51–59CrossRefGoogle Scholar
  14. Basu S, Roychoudhury A, Saha PP, Sengupta DN (2010b) Comparative analysis of some biochemical responses of three indica rice varieties during polyethyleneglycol-mediated water stress exhibits distinct varietal differences. Acta Physiol Plant 32:551–563CrossRefGoogle Scholar
  15. Bauer CE, Elsen S, Bird TH (1999) Mechanisms for redox control of gene expression. Annu Rev Microbiol 53:495–523CrossRefPubMedPubMedCentralGoogle Scholar
  16. Bhattacharjee S (2005) Reactive oxygen species and oxidative burst: roles in stress, senescence and signal. Curr Sci 89:1113–1121Google Scholar
  17. Bhattacharjee S (2012) The language of reactive oxygen species signaling in plants. J Bot 2012:22Google Scholar
  18. Bhattacharjee S, Dey N (2017) Redox metabolic and molecular parameters for screening droughttolerant indigenous aromatic rice cultivars. Physiol Mol Biol Plants 24(1):7–23CrossRefPubMedPubMedCentralGoogle Scholar
  19. Biehler K, Fock H (1996) Evidence for the contribution of the Mehler-peroxidase reaction in dissipating excess electrons in drought stressed wheat. Plant Physiol 112:265–272CrossRefPubMedPubMedCentralGoogle Scholar
  20. Boguszewska D, Grudkowska M, Zagdańska B (2010) Drought responsive antioxidant enzymes in potato (Solanum tuberosum L.). Potato Res 53:373–382CrossRefGoogle Scholar
  21. Bonifacio A, Martins MO, Ribeiro CW, Fontenele AV, Carvalho FE, Margis-Pinheiro M, Silveira JA (2011) Role of peroxidases in the compensation of cytosolic ascorbate peroxidase knockdown in rice plants under abiotic stress. Plant Cell Environ 34:1705–1722CrossRefPubMedPubMedCentralGoogle Scholar
  22. Brown JE, Khodr H, Hider RC, Rice-Evans CA (1998) Structural dependence of flavonoid interactions with Cu2+ ions: implications for their antioxidant properties. Biochem J 330(3):1173–1178CrossRefPubMedPubMedCentralGoogle Scholar
  23. Cao G, Sofic E, Prior RL (1997) Antioxidant and prooxidant behavior of flavonoids: structure-activity relationships. Free Radic Biol Med 22(5):749–760CrossRefPubMedPubMedCentralGoogle Scholar
  24. Chakraborty A, Bhattacharjee S (2015) Differential competence of redox-regulatory mechanism under extremes of temperature determines growth performances and cross tolerance in two indica rice cultivars. J Plant Physiol 176:65–77CrossRefPubMedPubMedCentralGoogle Scholar
  25. ChalapathiRao ASV, Reddy AR (2008) Glutathione reductase: a putative redox regulatory system in plant cells. In: Khan NA, Singh S, Umar S (eds) Sulfur assimilation and abiotic stress in plants. Springer, Berlin, pp 111–147Google Scholar
  26. Chang-Quan W, Rui-Chang L (2008) Enhancement of superoxide dismutase activity in the leaves of white clover (Trifolium repens L.) in response to polyethyleneglycol-induced water stress. Acta Physiol Plant 30:841–847CrossRefGoogle Scholar
  27. Chen Z, Gallie DR (2005) Increasing tolerance to ozone by elevating folia ascorbic acid confers greater protection against ozone than increasing avoidance. Plant Physiol 138:1673–1689CrossRefPubMedPubMedCentralGoogle Scholar
  28. Chen Z, Gallie DR (2006) Dehydroascorbate reductase affects leaf growth, development and function. Plant Physiol 142:775–787CrossRefPubMedPubMedCentralGoogle Scholar
  29. Chen Q, Zhang M, Shen S (2010) Effect of salt on malondialdehyde and antioxidant enzymes in seedling roots of Jerusalem artichoke (Helianthus tuberosus L.). Acta Physiol Plant 33:273–278CrossRefGoogle Scholar
  30. Chen Q, Tao S, Bi X, Xu X, Wang L, Li X (2013) Research progress in physiological and molecular biology mechanism of drought resistance in rice. Am J Mol Biol 3(2):102–107CrossRefGoogle Scholar
  31. Chutipaijit S, Cha-Um S, Sompornpailin K (2009) Differential accumulations of proline and flavonoids in indica rice varieties against salinity. Pak J Bot 41:2497–2506Google Scholar
  32. Ciftci-Yilmaz S, Morsy MR, Song L, Coutu A, Krizek BA, Lewis MW, Warren D, Cushman J, Connolly EL, Mittler R (2007) The ear-motif of the C2H2 zinc-finger protein ZAT7 plays a key role in the defense response of Arabidopsis to salinity stress. J Biol Chem 282:9260–9268CrossRefGoogle Scholar
  33. Collins A (2001) Carotenoids and genomic stability. Mutat Res 475:1–28CrossRefGoogle Scholar
  34. Creissen GP, Broadbent P, Kular B, Reynolds H, Wellburn AR, Mullineaux PM (1994) Manipulation of glutathione reductase in transgenic plants: implications for plant responses to environmental stress. Proc R Soc 102B:167–175Google Scholar
  35. Cruz CD, Helena M (2008) Drought stress and reactive oxygen species Production, scavenging and signalling. Plant Signaling Behavior 3(3):156–165CrossRefGoogle Scholar
  36. Das K, Roychoudhuri A (2014) Reactive oxygen species (ROS) and response of antioxidants as ROS-scavengers during environmental stress in plants. Front in Env Sci 2.
  37. Dat JF, Pellinen R, Beeckman T, Van De Cotte B, Langebartels C, Kangasjarvi J, Inze D, Van Breusegem F (2013) Changes in hydrogen peroxide homeostasis trigger an active cell death process in tobacco. Plant J 33:621–632CrossRefGoogle Scholar
  38. Davletova S, Rizhsky L, Liang H, Shengqiang Z, Oliver DJ, Coutu J, Shulaev V, Schlauch K, Mittler R (2005) Cytosolic ascorbate peroxidase 1 is a central component of the reactive oxygen gene network of Arabidopsis. Plant Cell 17:268–281CrossRefPubMedPubMedCentralGoogle Scholar
  39. del Río LA, Corpas FJ, Sandalio LM, Palma JM, Gómez M, Barroso JB (2002a) Reactive oxygen species, antioxidant systems and nitric oxide in peroxisomes. J Exp Bot 53:1255–1272CrossRefPubMedPubMedCentralGoogle Scholar
  40. del Río LA, Sandalio LM, Palma JM, Corpas FJ, LópezHuertas E, Romero-Puertas MC, McCarthy I (2002b) Peroxisomes, reactive oxygen metabolism, and stress-related enzyme activities. In: Baker A, Graham I (eds) Plant peroxisomes biochemistry, cell biology and biotechnological applications. Kluwer Academic Publishers, Dordrecht, pp 221–258Google Scholar
  41. Delauney A, Pflieger D, Barrault MB, Vinh J, Toledano MB (2002) A thiol peroxidase is an H2O2 receptor and redox transducer in gene activation. Cell 111:1–11CrossRefGoogle Scholar
  42. Desikan R, Hancock JT, Bright J, Harrison J, Weir I, Hooley R, Neill SJ (2005) A role for ETR1 in hydrogen peroxide signaling in stomatal guard cells. Plant Physiol 137:831–834CrossRefPubMedPubMedCentralGoogle Scholar
  43. Ding Y, Cao J, Ni L, Zhu Y, Zhang A, Tan M et al (2013a) ZmCPK11 is involved in abscisic acid-induced antioxidant defence and functions upstream of ZmMPK5 in abscisic acid signalling in maize. J Exp Bot 64:871–884CrossRefPubMedPubMedCentralGoogle Scholar
  44. Ding Y, Tao Y, Zhu C (2013b) Emerging roles of microRNAs in the mediation of drought stress response in plants. J Exp Bot 64(11):3077–3086CrossRefPubMedPubMedCentralGoogle Scholar
  45. Divi UK, Krishna P (2009) Brassinosteroid: a biotechnological target for enhancing crop yield and stress tolerance. New Biotechnol 26:131–136CrossRefGoogle Scholar
  46. Dixon DP, Edwards R (2010) Glutathione transferases. Arabidopsis Book 8:e0131. Scholar
  47. Edwards EA, Rawsthorne S, Mullineaux PM (1990) Subcellular distribution of multiple forms of glutathione reductase in leaves of pea (Pisum sativum L.). Planta 180:278–284CrossRefGoogle Scholar
  48. Ellouzi H, Hamed K, Cela J, Müller M, Abdelly C, Munné-Bosch S (2013) Increased sensitivity to salt stress in tocopherol-deficient Arabidopsis mutants growing in a hydroponic system. Plant Signal Behav 8:e23136CrossRefPubMedPubMedCentralGoogle Scholar
  49. Eltayeb AE, Kawano N, Badawi GH, Kaminaka H, Sanekata T, Morishima I, Shibahara T, Inanaga S, Tanaka K (2006) Enhanced tolerance to ozone and drought stresses in transgenic tobacco overexpressing dehydroascorbate reductase in cytosol. Physiol Plant 127:57–65CrossRefGoogle Scholar
  50. Eltayeb AE, Kawano N, Badawi GH, Kaminaka H, Sanekata T, Shibahara T, Inanaga S, Tanaka K (2007) Overexpression of monodehydroascorbate reductase in transgenic tobacco confers enhanced tolerance to ozone, salt and polyethylene glycol stresses. Planta 225:1255–1264CrossRefPubMedPubMedCentralGoogle Scholar
  51. Eyidogan F, Oz MT (2005) Effect of salinity on antioxidant responses of chickpea seedlings. Acta Physiol Plant 29:485–493CrossRefGoogle Scholar
  52. Eyidogan F, Öz MT (2007) Effect of salinity on antioxidant responses of chickpea seedlings. Acta Physiol Plant 29:485–493CrossRefGoogle Scholar
  53. Fini A, Brunetti C, Di Ferdinando M, Ferrini F, Tattini M (2011) Stress- induced flavonoid biosynthesis and the antioxidant machinery of plants. Plant Signal Behav 6:709–711CrossRefPubMedPubMedCentralGoogle Scholar
  54. Foyer CH, Noctor G (2000) Oxygen processing in photosynthesis: regulation and signaling. New Phytol 146(3):359–388CrossRefGoogle Scholar
  55. Foyer CH, Noctor G (2005a) Oxidant and antioxidant signaling in plants: a re-evaluation of the concept of oxidative stress in a physiological context. Plant Cell Environ 28:1056–1071CrossRefGoogle Scholar
  56. Foyer CH, Noctor G (2005b) Redox homeostasis and antioxidant signaling: a metabolic interface between stress perception and physiological responses. Plant Cell 17:1866–1875CrossRefPubMedPubMedCentralGoogle Scholar
  57. Foyer CH, Shigeoka S (2011) Understanding oxidative stress and antioxidant functions to enhance photosynthesis. Plant Physiol 155(1):93–100CrossRefPubMedPubMedCentralGoogle Scholar
  58. Gaber AM (2010) Antioxidative defense under salt stress. Plant Signaling Behavior 5(4):369–374CrossRefGoogle Scholar
  59. Gambarova NG, Gins MS (2008) Characteristics of oxidative stress of plants with C3 and C4 photosynthesis during salinization. Russ Agric Sci 34:77–80CrossRefGoogle Scholar
  60. Gapinska M, Sklodowska M, Gabara B (2008) Effect of short- and long-term salinity on the activities of antioxidative enzymes and lipid peroxidation in tomato roots. Acta Physiol Plant 30:11–18CrossRefGoogle Scholar
  61. Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physioland Biochem 48(12):909–930CrossRefGoogle Scholar
  62. Golldack D, Li C, Mohan H, Probst N (2014) Tolerance to drought and salt stress in plant: unravelling the signalling networks. Frontiers Plant Sci 5Google Scholar
  63. Grene R (2002) Oxidative stress and acclimation mechanisms in plants. In: Somerville CR, Meyerowitz EM (eds) The Arabidopsis Book. The American Society of Plant Biologists, Rockville, pp 1–20Google Scholar
  64. Gupta R, Luan S (2003) Redox control of protein tyrosine phosphatases and mitogen activated protein kinases in plants. Plant Physiol 132:1149–1152CrossRefPubMedPubMedCentralGoogle Scholar
  65. Halliwell B, Gutteridge JMC (1998) Free radicals in biology and medicine. Oxford University Press, OxfordGoogle Scholar
  66. Hasanuzzaman M, Nahar K, Alam MM, Roychowdhury R, Fujita M (2013) Physiological, biochemical and molecular mechanisms of heat stress tolerance in plants. Int J Mol Sci 14:9643–9684CrossRefPubMedPubMedCentralGoogle Scholar
  67. Hojati M, Modarres-Sanavy SAM, Karimi M, Ghanati F (2010) Responses of growth and antioxidant systems in Carthamus tinctorius L. under water deficit stress. Acta Physiol Plant 33:105–112CrossRefGoogle Scholar
  68. Holländer-Czytko H, Grabowski J, Sandorf I, Weckermann K, Weiler EW (2005) Tocopherol content and activities of tyrosine aminotransferase and cystine lyase in Arabidopsis under stress conditions. J Plant Physiol 162:767–770CrossRefPubMedPubMedCentralGoogle Scholar
  69. Hong CY, Hsu YT, Tsai YC, Kao CH (2007) Expression of ASCORBATE PEROXIDASE 8 in roots of rice (Oryza sativa L.) seedlings in response to NaCl. J Exp Bot 58:3273–3283CrossRefPubMedPubMedCentralGoogle Scholar
  70. Horemans N, Foyer CH, Asard H (2000) Transport and action of ascorbate at the plant plasma membrane. Trends Plant Sci 5:263–267CrossRefPubMedPubMedCentralGoogle Scholar
  71. Hu X, Jiang M, Zhang J, Zhang A, Lin F, Tan M (2007) Calcium-calmodulin is required for abscisic acid-induced antioxidant defense and functions both upstream and downstream of H2O2 production in leaves of maize (Zea mays) plants. New Phytol 173:27–38CrossRefPubMedPubMedCentralGoogle Scholar
  72. Igamberdiev AU, Seregelyes C, Manac N, Hill RD (2004) NADH- dependent metabolism of nitric oxide in alfalfa root cultures expressing barley hemoglobin. Planta 219:95–102CrossRefPubMedPubMedCentralGoogle Scholar
  73. Ingram J, Bartels D (1996) The molecular basis of dehydration tolerance in plants. Annu Rev Plant Physiol Plant Mol Biol 47:377–403CrossRefPubMedPubMedCentralGoogle Scholar
  74. Jain K, Kataria S, Guruprasad KN (2003) Changes in antioxidant defenses of cucumber cotyledons in response to UV-Band to the free radicals generating compound AAPH. Plant Sci 165:551–557CrossRefGoogle Scholar
  75. Jiang M, Zhang J (2003) Cross-talk between calcium and reactive oxygen species originated from NADPH oxidase in abscisic acid-induced antioxidant defence in leaves of maize seedlings. Plant Cell Environ 26:929–939CrossRefPubMedPubMedCentralGoogle Scholar
  76. Joo JH, Wang S, Chen JG, Jones AM, Fedoroff NV (2005) Different signaling and cell death roles of heterotrimeric G protein a and b subunits in the Arabidopsis oxidative stress response to ozone. Plant Cell 17:957–970CrossRefPubMedPubMedCentralGoogle Scholar
  77. Jurca ME, Bottka S, Fehér A (2008) Characterization of a family of Arabidopsis receptor-like cytoplasmic kinases (RLCK class VI). Plant Cell Rep 27(4):739–748CrossRefPubMedPubMedCentralGoogle Scholar
  78. Kandziora-Ciupa M, Ciepal R, Nadgórska-Socha A, Barczyk G (2013) A comparative study of heavy metal accumulation and antioxidant responses in VacciniummyrtillusL. leaves in polluted and non-polluted areas. Environ Sci Pollut Res 20:4920–4932CrossRefGoogle Scholar
  79. Karuppanapandian T, Manoharan K (2008) Uptake and translocation of tri- and hexa-valent chromium and their effects on black gram (Vigna mungo L. Hepper cv. Co4) roots. J Plant Biol 51:192–201CrossRefGoogle Scholar
  80. Karuppanapandian T, Sinha PB, Kamarul Haniya A, Manoharan K (2006a) Differential antioxidative responses of ascorbate-glutathione cycle enzymes and metabolites to chromium stress in green gram (Vigna radiata L. Wilczek) leaves. J Plant Biol 49:440–447CrossRefGoogle Scholar
  81. Karuppanapandian T, Sinha PB, Premkumar G, Manoharan K (2006b) Chromium toxicity: Correlated with increased in degradation of photosynthetic pigments and total soluble protein and increased peroxidase activity in green gram (Vigna radiata L.) seedlings. J Swamy Bot-Cl 23:117–122Google Scholar
  82. Kiffin R, Bandyopadhyay U, Cuervo AM (2006) Oxidative stress and autophagy. Antioxid Redox Signal 8:152–162CrossRefPubMedPubMedCentralGoogle Scholar
  83. Koussevitzky S, Suzuki N, Huntington S, Armijo L, Sha W, Cortes D, Shulaev V, Mittler R (2008) Ascorbate peroxidase 1 plays a key role in the response of Arabidopsis thaliana to stress combination. J Biol Chem 283:34197–34203CrossRefPubMedPubMedCentralGoogle Scholar
  84. Kovtun Y, Chiu W-L, Tena G, Sheen J (2000) Functional analysis of oxidative stress-activated mitogen-activated protein kinase cascade in plants. Proc Natl Acad Sci U S A 97:2940–2945CrossRefPubMedPubMedCentralGoogle Scholar
  85. Kukreja S, Nandval AS, Kumar N, Sharma SK, Unvi V, Sharma PK (2005) Plant water status, H2O2 scavenging enzymes, ethylene evolution and membrane integrity of Cicer arietinum roots as affected by salinity. Biol Plant 49:305–308CrossRefGoogle Scholar
  86. Lin F, Ding H, Wang J, Zhang H, Zhang A, Zhang Y et al (2009) Positive feedback regulation of maize NADPHoxidase by mitogen-activated protein kinase cascade in abscisic acid signalling. J Exp Bot 60:3221–3238CrossRefPubMedPubMedCentralGoogle Scholar
  87. Liu X, Hua X, Guo J, Qi D, Wang L, Liu Z (2008) Enhanced tolerance to drought stress in transgenic tobacco plants overexpressing VTE1 for increased tocopherol production from Arabidopsis thaliana. Biotechnol Lett 30:1275–1280CrossRefPubMedPubMedCentralGoogle Scholar
  88. Lopez-Huertas E, Charlton WL, Johnson B, Graham I, Baker A (2000) Stress induces peroxisome biogenesis genes. EMBO J 19(24):6770–6777CrossRefPubMedPubMedCentralGoogle Scholar
  89. Lu ZQ, Liu D, Liu SK (2007) Two rice cytosolic ascorbate peroxidases differentially improve salt tolerance in transgenic Arabidopsis. Plant Cell Rep 26:1909–1917CrossRefPubMedPubMedCentralGoogle Scholar
  90. Li J, Yang L, Jin D et al (2013) UV-B-induced photomorphogenesis in Arabidopsis. Protein Cell 4:485–492CrossRefPubMedPubMedCentralGoogle Scholar
  91. Ma F, Lu R, Liu H, Shi B, Zhang J, Tan M et al (2012) Nitric oxide-activated calcium/calmodulin-dependent protein kinase regulates the abscisic acid-induced antioxidant defence in maize. J Exp Bot 63:4835–4847CrossRefPubMedPubMedCentralGoogle Scholar
  92. Mafakheri A, Siosemardeh A, Bahramnejad B, Struik PC, Sohrabi Y (2010) Effect of drought stress on yield, proline and chlorophyll contents in three chickpea cultivars. Aus J Crop Sci 4:580–585Google Scholar
  93. Marshall A, Aalen RB, Audenaert D, Beeckman T, Broadley MR, Butenko MA, Caño-Delgado AI, de Vries S, Dresselhaus T, Felix G (2012) Tackling drought stress: receptor-like kinases present new approaches. Plant Cell 24(6):2262–2278CrossRefPubMedPubMedCentralGoogle Scholar
  94. Mhamdi A (2010) Catalase function in plants: a focus on Arabidopsis mutants as stress-mimic models. J Exp Bot 61:4107–4320CrossRefGoogle Scholar
  95. Miller G, Suzuki N, Rizhsky L, Hegie A, Koussevitzky S, Mittler R (2007) Double mutants deficient in cytosolic and thylakoid ascorbate peroxidase reveal a complex mode of interaction between reactive oxygen species, plant development, and response to abiotic stresses. Plant Physiol 144:1777–1785CrossRefPubMedPubMedCentralGoogle Scholar
  96. Miller G, Suzuki N, Ciftci-Yilmaz S, Mittler R (2010) Reactive oxygen species homeostasis and signalling during drought and salinity stresses. Plant Cell Environ 33:453–467CrossRefPubMedPubMedCentralGoogle Scholar
  97. Mishra A, Kumar S, Pandey AK (2013) Scientific validation of the medicinal efficacy of Tinospora cordifolia. Sci World J:292934Google Scholar
  98. Mittler R (2002) Oxidative stress, antioxidants, and stress tolerance. Trends Plant Sci 7:405–410CrossRefPubMedPubMedCentralGoogle Scholar
  99. Mittler R (2017) ROS are good. Trends Plant Sci 22(01):11–19CrossRefPubMedPubMedCentralGoogle Scholar
  100. Morris ER, Walker JC (2003) Receptor-like protein kinases: the keys to response. Curr Opin Plant Biol 6(4):339–342CrossRefPubMedPubMedCentralGoogle Scholar
  101. Mortensen A, Skibsted LH, Truscott TG (2001) The interaction of dietary carotenoids with radical species. Arch Biochem Biophys 385:13–19CrossRefPubMedPubMedCentralGoogle Scholar
  102. Mullineaux PM, Rausch T (2005) Glutathione, photosynthesis and the redox regulation of stress-responsive gene expression. Photosyn Res 86:459–474CrossRefPubMedPubMedCentralGoogle Scholar
  103. Munné-Bosch S, Alegre L (2000) Changes in carotenoids, tocopherols and diterpenes during drought and recovery, and the biological significance of chlorophyll loss in Rosmarinus officinalis plants. Planta 210:925–931CrossRefPubMedPubMedCentralGoogle Scholar
  104. Nagamiya K, Motohashi T, Nakao K, Prodhan SH, Hattori E, Hirose S, Ozawa K, Ohkawa Y, Takabe T, Takabe T, Komamine A (2007) Enhancement of salt tolerance in transgenic rice expressing an Escherichia coli catalase gene, katE. Plant Biotechnol Rep 1:49–55CrossRefGoogle Scholar
  105. Nath K, Kumar S, Poudyal RS, Yang YN, Timilsina R, Park YS et al (2014) Developmental stage-dependent differential gene expression of superoxide dismutase isoenzymes and their localization and physical interaction network in rice (Oryza sativa L.). Genes Genom 36:45–55CrossRefGoogle Scholar
  106. Naya L, Ladrera R, Ramos J, González EM, Arrese-Igor C, Minchin FR, Becana M (2007) The response of carbon metabolism and antioxidant defenses of alfalfa nodules to drought stress and to the subsequent recovery of plants. Plant Physiol 144:1104–1114CrossRefPubMedPubMedCentralGoogle Scholar
  107. Noctor G, Foyer CH (1998a) A re-evaluation of the ATP: NADPH budget during C3 photosynthesis. A contribution from nitrate assimilation and its associated respiratory activity? J Exp Bot 49:1895–1908Google Scholar
  108. Noctor G, Foyer CH (1998b) Ascorbate and glutathione: keeping active oxygen under control. Ann Rev Plant Physiol Plant Mol Biol 49:249–279CrossRefGoogle Scholar
  109. Pan Y, Wu LJ, Yu ZL (2006) Effect of salt and drought stress on antioxidant enzymes activities and SOD isoenzymes of liquorice (Glycyrrhiza uralensis Fisch). J Plant Growth Regul 49:157–165CrossRefGoogle Scholar
  110. Pandey K, Mishra AK, Mishra A (2012) Antifungal and antioxidative potential of oil and extracts derived from leaves of Indian spice plant Cinnamomum tamala. Cell Mol Biol 58:142–147PubMedPubMedCentralGoogle Scholar
  111. Porcel R, Barea JM, Ruiz-Lozano JM (2003) Antioxidant activities in mycorrhizal soybean plants under drought stress and their possible relationship to the process of nodule senescence. New Phytol 157(1):135–143CrossRefGoogle Scholar
  112. Ramegowda V, Basu S, Krishnan A, Pereira A (2014) Rice growth under drought kinase is required for drought tolerance and grain yield under normal and drought stress conditions. Plant Physiol 166(3):1634–1645CrossRefPubMedPubMedCentralGoogle Scholar
  113. Rentel MC, Lecourieux D, Ouaked F, Usher SL, Peterson L, Okamoto H, Knight H, Peck SC, Grierson CS, Hirt H, Knight MR (2004) OXI1 kinase is necessary for oxidative burst-mediated signaling in Arabidopsis. Nature 427:858–861CrossRefPubMedPubMedCentralGoogle Scholar
  114. Rice-Evans CA, Burdon R (1993) Free radical-lipid interactions and their pathological consequences. Prog Lipid Res 32:71–110Google Scholar
  115. Rizhsky L, Hallak-Herr E, Van Breusegem F, Rachmilevitch S, Barr JE, Rodermel S, Inze D, Mittler R (2002) Double antisense plants lacking ascorbate peroxidase and catalase are less sensitive to oxidative stress than single antisense plants lacking ascorbate peroxidase or catalase. Plant J 32:329–342CrossRefPubMedPubMedCentralGoogle Scholar
  116. RoyChoudhury A, Basu S (2012) Ascorbate-Glutathione and plant tolerance to various abiotic stresses. In: Anjum NA, Umar S, Ahmad A (eds) Oxidative stress in plants: causes, consequences and tolerance. IK International Publishers, New Delhi, pp 177–258Google Scholar
  117. RoyChoudhury A, Ghosh S (2013) Physiological and biochemical responses of mungbean (Vigna radiate L.Wilczek) to varying concentrations of cadmium chloride or sodium chloride. Unique J Pharm Biol Sci 1:11–21Google Scholar
  118. RoyChoudhury A, Basu S, Sarkar SN, Sengupta DN (2008) Comparative physiological and molecular responses of a common aromatic indica rice cultivar to high salinity with non-aromatic indica rice cultivars. Plant Cell Rep 27:1395–1410CrossRefPubMedPubMedCentralGoogle Scholar
  119. RoyChoudhury A, Pradhan S, Chaudhuri B, Das K (2012a) Phytoremediation of toxic metals and the involvement of Brassica species. In: Anjum NA, Pereira ME, Ahmad I, Duarte AC, Umar S, Khan NA (eds) Phytotechnologies: remediation of Environmental Contaminants. CRC press, Taylor and Francis Group, Boca Raton, pp 219–251CrossRefGoogle Scholar
  120. RoyChoudhury A, Das K, Ghosh S, Mukherjee RN, Banerjee R (2012b) Transgenic Plants: benefits and controversies. J Bot Soc Bengal 66:29–35Google Scholar
  121. RoyChoudhury A, Basu S, Sengupta DN (2012c) Antioxidants and stress- related metabolites in the seedlings of two indica rice varieties exposed to cadmium chloride toxicity. Acta Physiol Plant 34:835–847CrossRefGoogle Scholar
  122. Sairam RK, Deshmukh PS, Saxena DC (1998) Role of antioxidant systems in wheat genotypes tolerance to water stress. Biol Plant 41:387–394CrossRefGoogle Scholar
  123. Selote DS, Khanna-Chopra R (2010) Antioxidant response of wheat roots to drought acclimation. Protoplasma 245:153–163CrossRefPubMedPubMedCentralGoogle Scholar
  124. Setterdahl AT, Chivers PT, Hirasawa M, Lemaire SD, Keryer E, Miginiac-Maslow M, Kim SK, Mason J, Jacquot JP, Longbine CC, de Lamotte-Guery F, Knaff DB (2003) Effect of pH on the oxidation-reduction properties of thioredoxins. Biochemistry 42:14877–14884CrossRefPubMedPubMedCentralGoogle Scholar
  125. Shalata A, Neumann PM (2001) Exogenous ascorbic acid (vitamin C) increases resistance to salt stress and reduces lipid peroxidation. J Exp Bot 52:2207–2211CrossRefPubMedPubMedCentralGoogle Scholar
  126. Shao HB, Liang ZS, Shao MA, Sun Q (2005) Dynamic changes of anti- oxidative enzymes of 10 wheat genotypes at soil water deficits. Colloids Surf B Biointerfaces 42:187–195CrossRefPubMedPubMedCentralGoogle Scholar
  127. Shao HB, Chu LY, Shao MA, Jaleel CA, Mi HM (2008) Higher plant antioxidants and redox signaling under environmental stresses. C R Biol 331(6):433–441CrossRefPubMedPubMedCentralGoogle Scholar
  128. Sharma P, Dubey RS (2004) Ascorbate peroxidase from rice seedlings: properties of enzyme isoforms, effects of stresses and protective roles of osmolytes. Plant Sci 167:541–550CrossRefGoogle Scholar
  129. Sharma P, Dubey RS (2005a) Drought induces oxidative stress and enhances the activities of antioxidant enzymes in growing rice seedlings. Plant Growth Regul 46:209–221CrossRefGoogle Scholar
  130. Sharma P, Dubey RS (2005b) Modulation of nitrate reductase activity in rice seedlings under aluminium toxicity and water stress: role of osmolytes as enzyme protectant. J Plant Physiol 162:854–864CrossRefPubMedPubMedCentralGoogle Scholar
  131. Shi B, Ni L, Zhang A, Cao J, Zhang H, Qin T et al (2012) OsDMI3 is a novel component of abscisic acid signaling in the induction of antioxidant defense in leaves of rice. Mol Plant 5:1359–1374CrossRefPubMedPubMedCentralGoogle Scholar
  132. Shinozaki K, Yamaguchi-Shinozaki K (2007) Gene networks involved in drought stress response and tolerance. J Exp Bot 58(2):221–227CrossRefPubMedPubMedCentralGoogle Scholar
  133. Shinozaki K, Yamaguchi-Shinozaki K, Seki M (2003) Regulatory network of gene expression in the drought and cold stress responses. Curr Opin Plant Biol 6:410–417CrossRefPubMedPubMedCentralGoogle Scholar
  134. Shiu SH, Bleecker AB (2001) Receptor-like kinases from Arabidopsis form a monophyletic gene family related to animal receptor kinases. Proc Nat Acad Sci U S A 98(19):10763–10768CrossRefGoogle Scholar
  135. Shiu SH, Bleecker AB (2003) Expansion of the receptor-like kinase/Pelle gene family and receptor-like proteins in Arabidopsis. Plant Physiol 132:530–543CrossRefPubMedPubMedCentralGoogle Scholar
  136. Simova-Stoilova L, Vaseva I, Grigorova B, Demirevska K, Feller U (2010) Proteolytic activity and cysteine protease expression in wheat leaves under severe soil drought and recovery. Plant Physiol Biochem 48:200–206CrossRefPubMedPubMedCentralGoogle Scholar
  137. Smirnoff N (2000) Ascorbic acid: metabolism and functions of a multi-facetted molecule. Curr Opin Plant Biol 3:229–235CrossRefPubMedPubMedCentralGoogle Scholar
  138. Sreedevi S, Krishnan PN (2012) Detoxification of heavy metal induced oxidative stress in plants, enzymatic and non-enzymatic machanisms-amini review. In: Anjum NA, Umar S, Ahmad A (eds) Oxidative stress in plants: causes, consequences and tolerance. IK International Publishing House, New Delhi, pp 291–307Google Scholar
  139. Srivastava AK, Bhargava P, Rai LC (2005) Salinity and copper-induced oxidative damage and changes in antioxidative defense system of Anabaena doliolum. W J Microb Biotechnol 22:1291–1298CrossRefGoogle Scholar
  140. Stoop JMH, Williamson JD, Pharr DM (1996) Mannitol metabolism in plants: a method for coping with stress. Trends Plant Sci 1:139–155CrossRefGoogle Scholar
  141. Sun YY, Sun YJ, Wang MT, Li XY, Guo X, Hu R, Ma J (2010) Effects of seed priming on germi-nation and seedling growth of rice under water stress. Acta Agron Sin 36(11):1931–1940CrossRefGoogle Scholar
  142. Tarczynski MC, Jensen RG, Bohnert HJ (1993) Stress protection in transgenic tobacco by production of the osmolyte mannitol. Science 259:508–510CrossRefPubMedPubMedCentralGoogle Scholar
  143. Teixeira FK, Menezes-Benavente L, Galvão VC, Margis R, Margis-Pinheiro M (2006) Rice ascorbate peroxidase gene family encodes functionally diverse isoforms localized in different subcellular compartments. Planta 224:300–314CrossRefPubMedPubMedCentralGoogle Scholar
  144. Tippmann HF, Schluter U, Collinge DB (2006) Common Themes in Biotic and Abiotic Stress Signalling in Plants. Floric Ornam Plant Biotechnol 3:52–67Google Scholar
  145. Torres MA (2010) ROS in biotic interactions. Physiol Plant 138:414–429CrossRefPubMedPubMedCentralGoogle Scholar
  146. Tsuchiya H, Linuma M (2000) Reduction of membrane fluidity by antibacterial sophoraflavanone G isolated from Sophoraexigua. Phytomedicine 7(2):161–165CrossRefPubMedPubMedCentralGoogle Scholar
  147. Turan O, Ekmekci Y (2011) Activities of photosystem II and antioxidant enzymes in chickpea (Cicer arietinum L.) cultivars exposed to chilling temperatures. Acta Physiol Plant 33:67–78CrossRefGoogle Scholar
  148. Ushimaru T, Nakagawa T, Fujioka Y, Daicho K, Naito M, Yamauchi Y, Nonaka H, Amako K, Yamawaki K, Murata N (2006) Transgenic Arabidopsis plants expressing the rice dehydroascorbate reductase gene are resistant to salt stress. J Plant Physiol 163:1179–1184CrossRefGoogle Scholar
  149. Vaidyanathan H, Sivakumar P, Chakrabarty R, Thomas G (2003) Scavenging of reactive oxygen species in NaCl-stressed rice (Oryza sativa L.)—differential response in salt-tolerant and sensitive varieties. Plant Sci 165:1411–1418CrossRefGoogle Scholar
  150. Vellosillo T, Vicente J, Kulasekaran S, Hamberg M, Castresana C (2010) Emerging complexity in reactive oxygen species production and signaling during the response of plants to pathogens. Plant Physiol 154:444–448CrossRefPubMedPubMedCentralGoogle Scholar
  151. Verbruggen N, Hermans C (2008) Proline accumulation in plants: a review. Amino Acids 35:753–759CrossRefGoogle Scholar
  152. Vij S, Giri J, Dansana PK, Kapoor S, Tyagi AK (2008) The receptor-like cytoplasmic kinase (OsRLCK) gene family in rice: organization, phylogenetic relationship, and expression during development and stress. Mol Plant 1(5):732–750CrossRefGoogle Scholar
  153. Wang Y, Ying Y, Chen J, Wang XC (2004) Transgenic Arabidopsis overexpressing Mn-SOD enhanced salt-tolerance. Plant Sci 167:671–677CrossRefGoogle Scholar
  154. Wang Y, Wisniewski M, Meilan R, Uratsu SL, Cui MG, Dandekar A, Fuchigami L (2007) Ectopic expression of Mn-SOD in Lycopersicon esculentum leads to enhanced tolerance to salt and oxidative stress. J Appl Horticul 9:3–8Google Scholar
  155. Wang L, Zhou Q, Ding L, Sun Y (2008) Effect of cadmium toxicity on nitrogen metabolism in leaves of Solanum nigrum L. as a newly found cadmium hyperaccumulator. J Hazard Met 154:818–825CrossRefGoogle Scholar
  156. Wang R, Liu S, Zhou F, Ding C, Hua C (2014) Exogenous ascorbic acid and glutathione alleviate oxidative stress induced by salt stress in the chloroplasts of Oryza sativa L. Z Naturforsch C 69:226–236CrossRefPubMedPubMedCentralGoogle Scholar
  157. Wen F, Qin T, Wang Y, Dong W, Zhang A, Tan M et al (2015) OsHK3 is a crucial regulator of abscisic acid signaling involved in antioxidant defense in rice. J Integr Plant Biol 57:213–228CrossRefPubMedPubMedCentralGoogle Scholar
  158. Witzelei K, Weidner A, Surabhi GK (2009) Bo¨ rner A, Mock HP. Salt stress-induced alterations in the root proteome of barley genotypes with contrasting response towards salinity. J Exp Bot 60(12):3545–3557CrossRefGoogle Scholar
  159. Wu L, Zhang Z, Zhang H, Wang XC, Huang R (2008) Transcriptional modulation of ethylene response factor protein JERF3 in the oxidative stress response enhances tolerance of tobacco seedlings to salt, drought, and freezing. Plant Physiol 148:1953–1963CrossRefPubMedPubMedCentralGoogle Scholar
  160. Xing Y, Jia W, Zhang J (2008) AtMKK1 mediates ABA-induced CAT1 expression and H2O2 production via AtMPK6-coupled signaling in Arabidopsis. Plant J 54:440–451CrossRefPubMedPubMedCentralGoogle Scholar
  161. Xiong L, Schumaker KS, Zhu JK (2002) Cell signaling during cold, drought, and salt stress. Plant Cell 14:165–183CrossRefGoogle Scholar
  162. Xu C, Sullivan JH, Garrett WM, Caperna TJ, Natarajan S (2008) Impact of solar Ultraviolet-Bonproteome in soybean lines differing in flavonoid contents. Phytochemistry 69:38–48CrossRefPubMedPubMedCentralGoogle Scholar
  163. Yamaguchi-Shinozaki K, Shinozaki K (2005) Organization of cis-acting regulatory elements in osmotic- and cold-stress-responsive promoters. Trends Plant Sci 10:88–94CrossRefGoogle Scholar
  164. Yamaguchi-Shinozaki K, Shinozaki K (2006) Transcriptional regulatory networks in cellular responses and tolerance to dehydration and cold stresses. Ann Rev in Plant Biol 57:781–803CrossRefGoogle Scholar
  165. Yan J, Guan L, Sun Y, Zhu Y, Liu L, Lu R et al (2015) Calcium and ZmCCaMK are involved in brassinosteroid-induced antioxidant defense in maize leaves. Plant Cell Physiol 56:883–896CrossRefGoogle Scholar
  166. Yang Z, Wu Y, Li Y, Ling HQ, Chu C (2009) OsMT1a, a type 1 metallothionein, plays the pivotal role in zinc homeostasis and drought tolerance in rice. Plant Mol Biol 70:219–229CrossRefGoogle Scholar
  167. Yang CJ, Zhang C, Lu YN, Jin JQ, Wang XL (2011) The mechanisms of brassinosteroids’ action: from signal transduction to plant development. Mol Plant 4:588–600CrossRefGoogle Scholar
  168. Ye N, Zhu G, Liu Y, Li Y, Zhang J (2011) ABA controls H2O2 accumulation through the induction of OsCATB in rice leaves under water stress. Plant Cell Physiol 52:689–698CrossRefPubMedPubMedCentralGoogle Scholar
  169. Zhang A, Jiang M, Zhang J, Tan M, Hu X (2006) Mitogen-activated protein kinase is involved in abscisic acid-induced antioxidant defense and acts downstream of reactive oxygen species production in leaves of maize plants. Plant Physiol 141:475–487CrossRefPubMedPubMedCentralGoogle Scholar
  170. Zhang A, Jiang M, Zhang J, Ding H, Xu S, Hu X et al (2007) Nitric oxide induced by hydrogen peroxide mediates abscisic acid-induced activation of the mitogen-activated protein kinase cascade involved in antioxidant defense in maize leaves. New Phytol 175:36–50CrossRefPubMedPubMedCentralGoogle Scholar
  171. Zhang H, Ni L, Liu Y, Wang Y, Zhang A, Tan M et al (2012a) The C2H2-type zinc finger protein ZFP182 is involved in abscisic acid-induced antioxidant defense in rice. J Integr Plant Biol 54:500–510CrossRefPubMedPubMedCentralGoogle Scholar
  172. Zhang L, Li Y, Lu W, Meng F, Wu CA, Guo X (2012b) Cotton GhMKK5affects disease resistance, induces HR-like cell death, and reduces the tolerance to salt and drought stress in transgenic Nicotiana benthamiana. J Exp Bot 63:3935–3951CrossRefPubMedPubMedCentralGoogle Scholar
  173. Zhang Z, Zhang Q, Wu J, Zheng X, Zheng S, Sun X et al (2013) Gene knockout study reveals that cytosolic ascorbate peroxidase2 (OsAPX2) plays a critical role in growth and reproduction in rice under drought, salt and cold stresses. PLoSONE 8:e57472. Scholar
  174. Zhang H, Liu Y, Wen F, Yao D, Wang L, Guo J et al (2014) A novel rice C2H2-type zinc finger protein, ZFP36, is a key player involved in abscisic acid- induced antioxidant defence and oxidative stress tolerance in rice. J Exp Bot 65:5795–5809CrossRefPubMedPubMedCentralGoogle Scholar
  175. Zhu J-K (2000) Genetic analysis of plant salt tolerance using Arabidopsis thaliana. Plant Physiol 124:941–948CrossRefPubMedPubMedCentralGoogle Scholar
  176. Zhu J-K (2002) Salt and drought stress signal transduction in plants. Annu Rev Plant Biol 53:247–273CrossRefPubMedPubMedCentralGoogle Scholar
  177. Zhu JY, Sae-Seaw J, Wang ZY (2013a) Brassinosteroid signalling. Development 140:1615–1620CrossRefPubMedPubMedCentralGoogle Scholar
  178. Zhu Y, Zuo M, Liang Y, Jiang M, Zhang J, Scheller HV et al (2013b) MAP65-1 a positively regulates H2O2 amplification and enhances brassinosteroid-induced antioxidant defence in maize. J Exp Bot 64:3787–3802CrossRefPubMedPubMedCentralGoogle Scholar
  179. Zlatev ZS, Lidon FC, Ramalho JC, Yordanov IT (2006) Comparison of resistance to drought of three bean cultivars. Biol Plant 50:389–394CrossRefGoogle Scholar

Copyright information

© Springer Nature India Private Limited 2019

Authors and Affiliations

  • Soumen Bhattacharjee
    • 1
  1. 1.Department of BotanyUGC Centre For Advanced Study, The University of BurdwanBurdwanIndia

Personalised recommendations