Molecular Mechanism Regulating Seasonality



The mechanisms of vertebrate seasonal time measurement were a mystery for a long time, but recent comparative studies have uncovered the photoperiodic signal transduction cascades in birds, mammals, and fish. These studies reveal the universality and diversity of photoperiodic mechanisms. That is, the molecules involved are conserved, while the tissues responsible for these mechanisms are different in different species (Nakane and Yoshimura, Front Neurosci 8:115, 2014).

It is well established that the circadian clock is involved in photoperiodic time measurement. However, the underlying mechanism that defines the photoinducible phase or critical photoperiod (i.e., how organisms measure day length using a circadian clock) is at the heart of photoperiodic time measurement, and this question remains to be answered by future studies.


Thyroid hormone Thyroid-stimulating hormone Melatonin Photoreceptor Glycosylation 


  1. 1.
    Garner WW, Allard HA (1920) Effect of the relative length of day and night and other factors of the environment on growth and reproduction in plants. J Agric Res 18:553–606Google Scholar
  2. 2.
    Elliott JA (1976) Circadian rhythms and photoperiodic time measurement in mammals. Fed Proc 35:2339–2346PubMedGoogle Scholar
  3. 3.
    Follett BK, Maung SL (1978) Rate of testicular maturation, in relation to gonadotrophin and testosterone levels, in quail exposed to various artificial photoperiods and to natural daylengths. J Endocrinol 78:267–280CrossRefPubMedGoogle Scholar
  4. 4.
    Bünning E (1936) Die endogene tagesrhythmik als grundlage der photoperiodischen reaction. Berichte der Deutschen botanischen Gesellschaft 54:590–607Google Scholar
  5. 5.
    Bünsow RC (1953) Uber tages-und jahresrhythmische anderungen der photoperiodischen Lighteropfindlichkeit bei Kalanchoe blossfeldiana und ihre Beziehungen zur endogonen Tagesrhythmik. Zschr Botanik 41:257–276Google Scholar
  6. 6.
    Nanda KK, Hamner KC (1958) Studies on the nature of the endogenous rhythm affecting photoperiodic response of Biloxi soybean. Bot Gaz 120:14–28CrossRefGoogle Scholar
  7. 7.
    Follett BK, Sharp PJ (1969) Circadian rhythmicity in photoperiodically induced gonadotrophin release and gonadal growth in the quail. Nature 223:968–971CrossRefPubMedGoogle Scholar
  8. 8.
    Hamner WM (1963) Diurnal rhythm and photoperiodism in testicular recrudescence of the house finch. Science 142:1294–1295CrossRefPubMedGoogle Scholar
  9. 9.
    Farner DS (1964) The photoperiodic control of reproductive cycles in birds. Am Sci 52:137–156Google Scholar
  10. 10.
    Elliott JA, Stetson MH, Menaker M (1972) Regulation of testis function in golden hamsters: a circadian clock measures photoperiodic time. Science 178:771–773CrossRefPubMedGoogle Scholar
  11. 11.
    Pittendrigh CS, Minis DH (1964) The entrainment of circadian oscillations by light and their role as photoperiodic clocks. Am Nat 98:261–299CrossRefGoogle Scholar
  12. 12.
    Pittendrigh CS (1972) Circadian surfaces and the diversity of possible roles of circadian organization in photoperiodic induction. Proc Natl Acad Sci U S A 69:2734–2737CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Reiter RJ (1980) The pineal and its hormones in the control of reproduction in mammals. Endocr Rev 1:109–131CrossRefPubMedGoogle Scholar
  14. 14.
    Takahashi JS, Menaker M (1982) Role of the suprachiasmatic nucleus in the circadian system of the house sparrow. J Neurosci 2:815–828PubMedGoogle Scholar
  15. 15.
    Steele CT, Zivkovic BD, Siopes T, Underwood H (2003) Ocular clocks are tightly coupled and act as pacemakers in the circadian system of Japanese quail. Am J Physiol Regul Integr Comp Physiol 284:R208–R218CrossRefPubMedGoogle Scholar
  16. 16.
    Yoshimura T, Yasuo S, Suzuki Y, Makino E, Yokota Y, Ebihara S (2001) Identification of the suprachiasmatic nucleus in birds. Am J Physiol Regul Integr Comp Physiol 280:R1185–R1189PubMedGoogle Scholar
  17. 17.
    Benoit J (1935) Le role des yeux dans l’action stimulante de la lumiere sure le developpement testiulaire chez le canard. Comptes Rendus des Séatices de la Société de Biologie et de ses Filiales 118:669–671Google Scholar
  18. 18.
    Davies DT, Follett BK (1975) The neuroendocrine control of gonadotrophin release in the Japanese quail. II. The role of the anterior hypothalamus. Proc R Soc Lond B 191:303–315CrossRefPubMedGoogle Scholar
  19. 19.
    Siopes TD, Wilson WO (1974) Extraocular modification of photoreception in intact and pinealectomized coturnix. Poult Sci 53:2035–2041CrossRefPubMedGoogle Scholar
  20. 20.
    Gwinner E, Eriksson LO (1977) Circadiane Rhythmik und photoperiodische Zeitmessuug beim Star (Sfurnus vulgaris). J Ornithol 118:60–67CrossRefGoogle Scholar
  21. 21.
    Gwinner E, Hau H, Heigl S (1997) Melatonin: generation and modification of avian circadian rhythms. Brain Res Bull 44:439–444CrossRefPubMedGoogle Scholar
  22. 22.
    Menaker M, Roberts R, Elliott J, Underwood H (1970) Extraretinal light perception in the sparrow. III. The eyes do not participate in photoperiodic photoreception. Proc Natl Acad Sci U S A 67:320–325CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Homma K, Ohta M, Sakakibara Y (1979) In: Hayaishi O, Nakagawa H, Suda M (eds) Biological rhythms and their central mechanism. Elsevier, Amsterdam, pp 85–94Google Scholar
  24. 24.
    Foster RG, Follett BK, Lythgoe JN (1985) Rhodopsin-like sensitivity of extraretinal photoreceptors mediating the photoperiodic response in quail. Nature 313:50–52CrossRefPubMedGoogle Scholar
  25. 25.
    Silver R, Witkovsky P, Horvath P, Alones V, Barnstable CJ, Lehman MN (1988) Coexpression of opsin- and VIP-like-immunoreactivity in CSF-contacting neurons of the avian brain. Cell Tissue Res 253:189–198CrossRefPubMedGoogle Scholar
  26. 26.
    Chaurasia SS, Rollag MD, Jiang G, Hayes WP, Haque R, Natesan A, Zatz M, Tosini G, Liu C, Korf HW, Iuvone PM, Provencio I (2005) Molecular cloning, localization and circadian expression of chicken melanopsin (Opn4): differential regulation of expression in pineal and retinal cell types. J Neurochem 92:158–170CrossRefPubMedGoogle Scholar
  27. 27.
    Halford S, Pires SS, Turton M, Zheng L, González-Menéndez I, Davies WL, Peirson SN, García-Fernández JM, Hankins MW, Foster RG (2009) VA opsin-based photoreceptors in the hypothalamus of birds. Curr Biol 19:1396–1402CrossRefPubMedGoogle Scholar
  28. 28.
    Nakane Y, Ikegami K, Ono H, Yamamoto N, Yoshida S, Hirunagi K, Ebihara S, Kubo Y, Yoshimura T (2010) A mammalian neural tissue opsin (Opsin 5) is a deep brain photoreceptor in birds. Proc Natl Acad Sci U S A 107:15264–15268CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Nakane Y, Shimmura T, Abe H, Yoshimura T (2014) Intrinsic photosensitivity of a deep brain photoreceptor. Curr Biol 24:R596–R597CrossRefPubMedGoogle Scholar
  30. 30.
    Nakane Y, Yoshimura T (2014) Universality and diversity in the signal transduction pathway that regulates seasonal reproduction in vertebrates. Front Neurosci 8:115CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Tarttlin EE, Bellingham J, Hankins MW, Foster RG, Lucas RJ (2003) Neuropsin (Opn5): a novel opsin identified in mammalian neural tissue. FEBS Lett 554:410–416CrossRefGoogle Scholar
  32. 32.
    Rowan W (1925) Relation of light to bird migration and developmental changes. Nature 115:494–495CrossRefGoogle Scholar
  33. 33.
    Follett BK, King VM, Meddle SL (1998) Rhythms and photoperiodism in birds. In: Lumsden PJ, Miller AJ (eds) Biological rhythms and photoperiodism in plants. Biostatistics Scientific, Oxford, pp 231–242Google Scholar
  34. 34.
    Sharp PJ, Follett BK (1969) The effect of hypothalamic lesions on gonadotrophin release in Japanese quail (Coturnix coturnix japonica). Neuroendocrinology 5:205–218CrossRefPubMedGoogle Scholar
  35. 35.
    Yoshimura T, Yasuo S, Watanabe M, Iigo M, Yamamura T, Hirunagi K, Ebihara S (2003) Light-induced hormone conversion of T4 to T3 regulates photoperiodic response of gonads in birds. Nature 426:178–181CrossRefPubMedGoogle Scholar
  36. 36.
    Nakao N, Ono H, Yamamura T, Anraku T, Takagi T, Higashi K, Yasuo S, Katou Y, Kageyama S, Uno Y, Kasukawa T, Iigo M, Sharp PJ, Iwasawa A, Suzuki Y, Sugano S, Niimi T, Mizutani M, Namikawa T, Ebihara S, Ueda HR, Yoshimura T (2008) Thyrotrophin in the pars tuberalis triggers photoperiodic response. Nature 452:317–322CrossRefPubMedGoogle Scholar
  37. 37.
    Nakao N, Takagi T, Iigo M, Tsukamoto T, Yasuo S, Masuda T, Yanagisawa T, Ebihara S, Yoshimura T (2006) Possible involvement of organic anion transporting polypeptide 1c1 in the photoperiodic response of gonads in birds. Endocrinology 147:1067–1073CrossRefPubMedGoogle Scholar
  38. 38.
    Yamamura T, Yasuo S, Hirunagi K, Ebihara S, Yoshimura T (2006) T3 implantation mimics photoperiodically reduced encasement of nerve terminals by glial processes in the median eminence of Japanese quail. Cell Tissue Res 324:175–179CrossRefPubMedGoogle Scholar
  39. 39.
    Oishi T, Konishi T (1978) Effects of photoperiod and temperature on testicular and thyroid activity of the Japanese quail. Gen Comp Endocrinol 36:250–254CrossRefPubMedGoogle Scholar
  40. 40.
    Ikegami K, Atsumi Y, Yorinaga E, Ono H, Murayama I, Nakane Y, Ota W, Arai N, Tega A, Iigo M, Darras VM, Tsutsui K, Hayashi Y, Yoshida S, Yoshimura T (2015) Low temperature-induced circulating triiodothyronine accelerates seasonal testicular regression. Endocrinology 156:647–659CrossRefPubMedGoogle Scholar
  41. 41.
    Furlow JD, Neff ES (2006) A developmental switch induced by thyroid hormone: Xenopus laevis metamorphosis. Trends Endocrinol Metab 17:40–47CrossRefPubMedGoogle Scholar
  42. 42.
    Nicholls TJ, Follett BK, Goldsmith AR, Pearson H (1988) Possible homologies between photorefractoriness in sheep and birds: the effect of thyroidectomy on the length of the ewe’s breeding season. Reprod Nutr Dev 28:375–385CrossRefPubMedGoogle Scholar
  43. 43.
    Dawson A, King VM, Bentley GE, Ball GF (2001) Photoperiodic control of seasonality in birds. J Biol Rhythm 16:365–380CrossRefGoogle Scholar
  44. 44.
    Watanabe M, Yasuo S, Watanabe T, Yamamura T, Nakao N, Ebihara S, Yoshimura T (2004) Photoperiodic regulation of type 2 deiodinase gene in Djungarian hamster: possible homologies between avian and mammalian photoperiodic regulation of reproduction. Endocrinology 145:1546–1549CrossRefPubMedGoogle Scholar
  45. 45.
    Yasuo S, Watanabe M, Iigo M, Nakamura TJ, Watanabe T, Takagi T, Ono H, Ebihara S, Yoshimura T (2007) Differential response of type 2 deiodinase gene expression to photoperiod between photoperiodic Fischer 344 and nonphotoperiodic Wistar rats. Am J Physiol Regul Integr Comp Physiol 292:R1315–R1319CrossRefPubMedGoogle Scholar
  46. 46.
    Ono H, Hoshino Y, Yasuo S, Watanabe M, Nakane Y, Murai A, Ebihara S, Korf HW, Yoshimura T (2008) Involvement of thyrotropin in photoperiodic signal transduction in mice. Proc Natl Acad Sci U S A 105:18238–18242CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Hanon EA, Lincoln GA, Fustin JM, Dardente H, Masson-Pévet M, Morgan PJ, Hazlerigg DG (2008) Ancestral TSH mechanism signals summer in a photoperiodic mammal. Curr Biol 18:1147–1152CrossRefPubMedGoogle Scholar
  48. 48.
    Yasuo S, Nakao N, Ohkura S, Iigo M, Hagiwara S, Goto A, Ando H, Yamamura T, Watanabe M, Watanabe T, Oda S, Maeda K, Lincoln GA, Okamura H, Ebihara S, Yoshimura T (2006) Long-day suppressed expression of type 2 deiodinase gene in the mediobasal hypothalamus of the Saanen goat, a short-day breeder: implication for seasonal window of thyroid hormone action on reproductive neuroendocrine axis. Endocrinology 147:432–440CrossRefPubMedGoogle Scholar
  49. 49.
    Ebihara S, Marks T, Hudson DJ, Menaker M (1986) Genetic control of melatonin synthesis in the pineal gland of the mouse. Science 231:491–493CrossRefPubMedGoogle Scholar
  50. 50.
    Reppert SM, Weaver DR, Ebisawa T (1994) Cloning and characterization of a mammalian melatonin receptor that mediates reproductive and circadian responses. Neuron 13:1177–1185CrossRefPubMedGoogle Scholar
  51. 51.
    Yasuo S, Yoshimura T, Ebihara S, Korf HW (2009) Melatonin transmits photoperiodic signals through the MT1 melatonin receptor. J Neurosci 29:2885–2889CrossRefPubMedGoogle Scholar
  52. 52.
    Klosen P, Sébert ME, Rasri K, Laran-Chich MP, Simonneaux V (2013) TSH restores a summer phenotype in photoinhibited mammals via the RF-amides RFRP3 and kisspeptin. FASEB J 27:2677–2686CrossRefPubMedGoogle Scholar
  53. 53.
    Dardente H, Hazlerigg DG, Ebling FJ (2014) Thyroid hormone and seasonal rhythmicity. Front Endocrinol 5:19CrossRefGoogle Scholar
  54. 54.
    Ikegami K, Liao XH, Hoshino Y, Ono H, Ota W, Ito Y, Nishiwaki-Ohkawa T, Sato C, Kitajima K, Iigo M, Shigeyoshi Y, Yamada M, Murata Y, Refetoff S, Yoshimura T (2014) Tissue-specific post-translational modification allows functional targeting of thyrotropin. Cell Rep 9:1–9CrossRefGoogle Scholar
  55. 55.
    Strott CA (2002) Sulfonation and molecular action. Endocr Rev 23:703–732CrossRefPubMedGoogle Scholar
  56. 56.
    Borg B (2010) Photoperiodism in fishes. In: Nelson RJ, Denlinger DL, Somers DE (eds) Photoperiodism: the biological calendar. Oxford University Press, New York, pp 371–398Google Scholar
  57. 57.
    Nakane Y, Ikegami K, Iigo M, Ono H, Takeda K, Takahashi D, Uesaka M, Kimijima M, Hashimoto R, Arai N, Suga T, Kosuge K, Abe T, Maeda R, Senga T, Amiya N, Azuma T, Amano M, Abe H, Yamamoto N, Yoshimura T (2013) The saccus vasculosus of fish is a sensor of seasonal changes in day length. Nat Commun 4:2108CrossRefPubMedGoogle Scholar
  58. 58.
    Collins S (1685) A system of anatomy. Thomas Newcomb, LondonGoogle Scholar
  59. 59.
    Yasuo S, Watanabe M, Okabayashi N, Ebihara S, Yoshimura T (2003) Circadian clock genes and photoperiodism: comprehensive analysis of clock gene expression in the mediobasal hypothalamus, the suprachiasmatic nucleus, and the pineal gland of Japanese quail under various light schedules. Endocrinology 144:3742–3748CrossRefPubMedGoogle Scholar
  60. 60.
    Sumová A, Jác M, Sládek M, Sauman I, Illnerová H (2003) Clock gene daily profiles and their phase relationship in the rat suprachiasmatic nucleus are affected by photoperiod. J Biol Rhythm 18:134–144CrossRefGoogle Scholar
  61. 61.
    Lincoln G, Messager S, Andersson H, Hazlerigg DG (2002) Temporal expression of seven clock genes in the suprachiasmatic nucleus and the pars tuberalis of the sheep: evidence for an internal coincidence timer. Proc Natl Acad Sci U S A 99:13890–13895CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Yasuo S, Watanabe M, Tsukada A, Takagi T, Iigo M, Shimada K, Ebihara S, Yoshimura T (2004) Photoinducible phase-specific light induction of Cry1 gene in the pars tuberalis of Japanese quail. Endocrinology 145:1612–1616CrossRefPubMedGoogle Scholar
  63. 63.
    Dardente H, Wyse C, Birnie M, Dupré S, Loudon A, Lincoln G, Hazlerigg D (2010) A molecular switch for photoperiod responsiveness in mammals. Curr Biol 20:2193–2198CrossRefPubMedGoogle Scholar

Copyright information

© Springer (India) Pvt. Ltd. 2017

Authors and Affiliations

  1. 1.Laboratory of Animal Physiology, Graduate School of Bioagricultural SciencesNagoya UniversityNagoyaJapan
  2. 2.Faculty of Medicine, Department of Anatomy and NeurobiologyKindai UniversityOsaka-SayamaJapan
  3. 3.Institute of Transformative Bio-Molecules (WPI-ITbM)Nagoya UniversityNagoyaJapan
  4. 4.Division of Seasonal BiologyNational Institute for Basic BiologyOkazakiJapan

Personalised recommendations