Clock Genes and Cancer

  • Silke Kiessling
  • Nicolas Cermakian


Mismatch between the external time and the internal circadian time causes loss of circadian organization and is frequently linked to cancer. This chapter describes the role of the molecular circadian clock in the incidence and progression of cancer. The first section will present the strong association between disrupted clock gene expression in either the host or the tumor tissue with cancer progression. Furthermore, it will be evaluated whether timed clock gene expression is a relevant factor for tumor development. Possible processes that are regulated by the circadian clock and may trigger tumor growth during circadian disruption will be summarized in the second section. The last section will highlight the importance of circadian timing for the development of effective cancer therapies.


Circadian disruption Clock genes Tumor growth Clock mutants Cell cycle DNA damage response Posttranscriptional modifications 


  1. 1.
    Kiessling S, Eichele G, Oster H (2010) Adrenal glucocorticoids have a key role in circadian resynchronization in a mouse model of jet lag. J Clin Invest 120(7):2600–2609PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Lee S, Donehower LA, Herron AJ, Moore DD, Fu L (2010) Disrupting circadian homeostasis of sympathetic signaling promotes tumor development in mice. PLoS One 5(6):e10995PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Straif K et al (2007) Carcinogenicity of shift-work, painting, and fire-fighting. Lancet Oncol 8(12):1065–1066PubMedCrossRefGoogle Scholar
  4. 4.
    Kamdar BB, Tergas AI, Mateen FJ, Bhayani NH, Oh J (2013) Night-shift work and risk of breast cancer: a systematic review and meta-analysis. Breast Cancer Res Treat 138(1):291–301PubMedCrossRefGoogle Scholar
  5. 5.
    Lie JA et al (2011) Night work and breast cancer risk among Norwegian nurses: assessment by different exposure metrics. Am J Epidemiol 173(11):1272–1279PubMedCrossRefGoogle Scholar
  6. 6.
    Lahti TA, Partonen T, Kyyronen P, Kauppinen T, Pukkala E (2008) Night-time work predisposes to non-Hodgkin lymphoma. Int J Cancer J Int Cancer 123(9):2148–2151CrossRefGoogle Scholar
  7. 7.
    Logan RW et al (2012) Chronic shift-lag alters the circadian clock of NK cells and promotes lung cancer growth in rats. J Immunol 188(6):2583–2591PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Filipski E et al (2004) Effects of chronic jet lag on tumor progression in mice. Cancer Res 64(21):7879–7885PubMedCrossRefGoogle Scholar
  9. 9.
    Kettner NM, Katchy CA, Fu L (2014) Circadian gene variants in cancer. Ann Med 46(4):208–220PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Zienolddiny S et al (2013) Analysis of polymorphisms in the circadian-related genes and breast cancer risk in Norwegian nurses working night shifts. Breast Cancer Res: BCR 15(4):R53PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Truong T et al (2014) Breast cancer risk, nightwork, and circadian clock gene polymorphisms. Endocr Relat Cancer 21(4):629–638PubMedCrossRefGoogle Scholar
  12. 12.
    Zhu Y et al (2009) Testing the circadian gene hypothesis in prostate cancer: a population-based case-control study. Cancer Res 69(24):9315–9322PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Zhu Y, Brown HN, Zhang Y, Stevens RG, Zheng T (2005) Period3 structural variation: a circadian biomarker associated with breast cancer in young women. Cancer Epidemiol Biomarkers Prev: Publ Am Assoc Cancer Res Cosponsored Am Soc Prev Oncol 14(1):268–270Google Scholar
  14. 14.
    Chu LW et al (2008) Variants in circadian genes and prostate cancer risk: a population-based study in China. Prostate Cancer Prostatic Dis 11(4):342–348PubMedCrossRefGoogle Scholar
  15. 15.
    Grundy A et al (2013) Shift work, circadian gene variants and risk of breast cancer. Cancer Epidemiol 37(5):606–612PubMedCrossRefGoogle Scholar
  16. 16.
    Zhu Y et al (2008) Non-synonymous polymorphisms in the circadian gene NPAS2 and breast cancer risk. Breast Cancer Res Treat 107(3):421–425PubMedCrossRefGoogle Scholar
  17. 17.
    Geng P et al (2015) Genetic association between PER3 genetic polymorphisms and cancer susceptibility: a meta-analysis. Medicine 94(13):e568PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Hoffman AE et al (2009) Clock-cancer connection in non-Hodgkin’s lymphoma: a genetic association study and pathway analysis of the circadian gene cryptochrome 2. Cancer Res 69(8):3605–3613PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Fu L, Pelicano H, Liu J, Huang P, Lee C (2002) The circadian gene Period2 plays an important role in tumor suppression and DNA damage response in vivo. Cell 111(1):41PubMedCrossRefGoogle Scholar
  20. 20.
    Chen-Goodspeed M, Lee CC (2007) Tumor suppression and circadian function. J Biol Rhythms 22(4):291–298PubMedCrossRefGoogle Scholar
  21. 21.
    Gery S et al (2006) The circadian gene per1 plays an important role in cell growth and DNA damage control in human cancer cells. Mol Cell 22(3):375–382PubMedCrossRefGoogle Scholar
  22. 22.
    Gauger MA, Sancar A (2005) Cryptochrome, circadian cycle, cell cycle checkpoints, and cancer. Cancer Res 65(15):6828–6834PubMedCrossRefGoogle Scholar
  23. 23.
    Bunger MK et al (2000) Mop3 is an essential component of the master circadian pacemaker in mammals. Cell 103(7):1009–1017PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Relogio A et al (2014) Ras-mediated deregulation of the circadian clock in cancer. PLoS Genet 10(5):e1004338PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Zeng ZL et al (2010) Effects of the biological clock gene Bmal1 on tumour growth and anti-cancer drug activity. J Biochem 148(3):319–326PubMedCrossRefGoogle Scholar
  26. 26.
    Zeng ZL et al (2014) Overexpression of the circadian clock gene Bmal1 increases sensitivity to oxaliplatin in colorectal cancer. Clin Cancer Res: Off J Am Assoc Cancer Res 20(4):1042–1052CrossRefGoogle Scholar
  27. 27.
    Vitaterna MH et al (1994) Mutagenesis and mapping of a mouse gene, clock, essential for circadian behavior. Science 264(5159):719–725PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Antoch MP et al (2008) Disruption of the circadian clock due to the clock mutation has discrete effects on aging and carcinogenesis. Cell Cycle 7(9):1197–1204PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Hirner H et al (2012) Impaired CK1 delta activity attenuates SV40-induced cellular transformation in vitro and mouse mammary carcinogenesis in vivo. PLoS One 7(1):e29709PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Relles D et al (2013) Circadian gene expression and clinicopathologic correlates in pancreatic cancer. J Gastrointest Surg: Off J Soc Surg Aliment Tract 17(3):443–450CrossRefGoogle Scholar
  31. 31.
    Tokunaga H et al (2008) Clinicopathological significance of circadian rhythm-related gene expression levels in patients with epithelial ovarian cancer. Acta Obstet Gynecol Scand 87(10):1060–1070PubMedCrossRefGoogle Scholar
  32. 32.
    Suzuki T et al (2008) Period is involved in the proliferation of human pancreatic MIA-PaCa2 cancer cells by TNF-alpha. Biomed Res 29(2):99–103PubMedCrossRefGoogle Scholar
  33. 33.
    Sotak M, Polidarova L, Ergang P, Sumova A, Pacha J (2013) An association between clock genes and clock-controlled cell cycle genes in murine colorectal tumors. Int J Cancer J Int Cancer 132(5):1032–1041CrossRefGoogle Scholar
  34. 34.
    Yang X, Wood PA, Ansell C, Hrushesky WJ (2009) Circadian time-dependent tumor suppressor function of period genes. Integr Cancer Ther 8(4):309–316PubMedCrossRefGoogle Scholar
  35. 35.
    Iurisci I et al (2006) Improved tumor control through circadian clock induction by Seliciclib, a cyclin-dependent kinase inhibitor. Cancer Res 66(22):10720–10728PubMedCrossRefGoogle Scholar
  36. 36.
    Li XM et al (2010) Cancer inhibition through circadian reprogramming of tumor transcriptome with meal timing. Cancer Res 70(8):3351–3360PubMedCrossRefGoogle Scholar
  37. 37.
    Sotak M, Sumova A, Pacha J (2014) Cross-talk between the circadian clock and the cell cycle in cancer. Ann Med 46(4):221–232PubMedCrossRefGoogle Scholar
  38. 38.
    Matsuo T et al (2003) Control mechanism of the circadian clock for timing of cell division in vivo. Science 302(5643):255–259PubMedCrossRefGoogle Scholar
  39. 39.
    Perez-Roger I, Solomon DL, Sewing A, Land H (1997) Myc activation of cyclin E/Cdk2 kinase involves induction of cyclin E gene transcription and inhibition of p27(Kip1) binding to newly formed complexes. Oncogene 14(20):2373–2381PubMedCrossRefGoogle Scholar
  40. 40.
    Miller BH et al (2007) Circadian and CLOCK-controlled regulation of the mouse transcriptome and cell proliferation. Proc Natl Acad Sci U S A 104(9):3342–3347PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Elshazley M et al (2012) The circadian clock gene BMAL1 is a novel therapeutic target for malignant pleural mesothelioma. Int J Cancer J Int Cancer 131(12):2820–2831CrossRefGoogle Scholar
  42. 42.
    Jamerson MH, Johnson MD, Dickson RB (2004) Of mice and Myc: c-Myc and mammary tumorigenesis. J Mammary Gland Biol Neoplasia 9(1):27–37PubMedCrossRefGoogle Scholar
  43. 43.
    Yeh CM et al (2014) Epigenetic silencing of ARNTL, a circadian gene and potential tumor suppressor in ovarian cancer. Int J Oncol 45(5):2101–2107PubMedGoogle Scholar
  44. 44.
    Grechez-Cassiau A, Rayet B, Guillaumond F, Teboul M, Delaunay F (2008) The circadian clock component BMAL1 is a critical regulator of p21WAF1/CIP1 expression and hepatocyte proliferation. J Biol Chem 283(8):4535–4542PubMedCrossRefGoogle Scholar
  45. 45.
    Alhopuro P et al (2010) Mutations in the circadian gene CLOCK in colorectal cancer. Mol Cancer Res: MCR 8(7):952–960PubMedCrossRefGoogle Scholar
  46. 46.
    Geyfman M et al (2012) Brain and muscle Arnt-like protein-1 (BMAL1) controls circadian cell proliferation and susceptibility to UVB-induced DNA damage in the epidermis. Proc Natl Acad Sci U S A 109(29):11758–11763PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Liu Y et al (2013) The transcription factor DEC1 (BHLHE40/STRA13/SHARP-2) is negatively associated with TNM stage in non-small-cell lung cancer and inhibits the proliferation through cyclin D1 in A549 and BE1 cells. Tumour Biol: J Int Soc Oncodev Biol Med 34(3):1641–1650CrossRefGoogle Scholar
  48. 48.
    Wang Y, Kojetin D, Burris TP (2015) Anti-proliferative actions of a synthetic REV-ERBalpha/beta agonist in breast cancer cells. Biochem Pharmacol 96(4):315–322PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Wang F, Li C, Yongluo, Chen L (2015) The circadian gene clock plays an important role in cell apoptosis and the dna damage response in vitro. Technol Cancer Res Treat 15(3):480–486Google Scholar
  50. 50.
    Sancar A, Lindsey-Boltz LA, Unsal-Kacmaz K, Linn S (2004) Molecular mechanisms of mammalian DNA repair and the DNA damage checkpoints. Annu Rev Biochem 73:39–85PubMedCrossRefGoogle Scholar
  51. 51.
    Mullenders J, Fabius AW, Madiredjo M, Bernards R, Beijersbergen RL (2009) A large scale shRNA barcode screen identifies the circadian clock component ARNTL as putative regulator of the p53 tumor suppressor pathway. PLoS One 4(3):e4798PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Gaddameedhi S, Selby CP, Kaufmann WK, Smart RC, Sancar A (2011) Control of skin cancer by the circadian rhythm. Proc Natl Acad Sci U S A 108(46):18790–18795PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Lee CC (2006) Tumor suppression by the mammalian period genes. Cancer Causes Control 17(4):525–530PubMedCrossRefGoogle Scholar
  54. 54.
    Yang X, He X, Yang Z, Jabbari E (2012) Mammalian PER2 regulates AKT activation and DNA damage response. Biochem Cell Biol = Biochim Biol Cell 90(6):675–682CrossRefGoogle Scholar
  55. 55.
    Altman BJ et al (2015) MYC disrupts the circadian clock and metabolism in cancer cells. Cell Metab 22(6):1009–1019PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Kuo SJ et al (2009) Disturbance of circadian gene expression in breast cancer. Virchows Archiv: Int J Pathol 454(4):467–474CrossRefGoogle Scholar
  57. 57.
    Gossan NC et al (2014) The E3 ubiquitin ligase UBE3A is an integral component of the molecular circadian clock through regulating the BMAL1 transcription factor. Nucleic Acids Res 42(9):5765–5775PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Etchegaray JP, Lee C, Wade PA, Reppert SM (2003) Rhythmic histone acetylation underlies transcription in the mammalian circadian clock. Nature 421(6919):177–182PubMedCrossRefGoogle Scholar
  59. 59.
    Chang HC, Guarente L (2013) SIRT1 mediates central circadian control in the SCN by a mechanism that decays with aging. Cell 153(7):1448–1460PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Pazienza V et al (2012) SIRT1 and the clock gene machinery in colorectal cancer. Cancer Invest 30(2):98–105PubMedCrossRefGoogle Scholar
  61. 61.
    Tavano F et al (2015) SIRT1 and circadian gene expression in pancreatic ductal adenocarcinoma: effect of starvation. Chronobiol Int 32(4):497–512PubMedCrossRefGoogle Scholar
  62. 62.
    Levi F, Schibler U (2007) Circadian rhythms: mechanisms and therapeutic implications. Annu Rev Pharmacol Toxicol 47:593–628PubMedCrossRefGoogle Scholar
  63. 63.
    Innominato PF, Levi FA, Bjarnason GA (2010) Chronotherapy and the molecular clock: clinical implications in oncology. Adv Drug Deliv Rev 62(9–10):979–1001PubMedCrossRefGoogle Scholar
  64. 64.
    Pogue-Geile KL, Lyons-Weiler J, Whitcomb DC (2006) Molecular overlap of fly circadian rhythms and human pancreatic cancer. Cancer Lett 243(1):55–57PubMedCrossRefGoogle Scholar
  65. 65.
    Sato F et al (2009) PERIOD1 is an anti-apoptotic factor in human pancreatic and hepatic cancer cells. J Biochem 146(6):833–838PubMedCrossRefGoogle Scholar
  66. 66.
    Karantanos T et al (2013) Expression of clock genes in patients with colorectal cancer. Int J Biol Markers 28(3):280PubMedCrossRefGoogle Scholar
  67. 67.
    Mostafaie N et al (2009) Correlated downregulation of estrogen receptor beta and the circadian clock gene Per1 in human colorectal cancer. Mol Carcinog 48(7):642–647PubMedCrossRefGoogle Scholar
  68. 68.
    Oshima T et al (2011) Expression of circadian genes correlates with liver metastasis and outcomes in colorectal cancer. Oncol Rep 25(5):1439–1446PubMedCrossRefGoogle Scholar
  69. 69.
    Krugluger W et al (2007) Regulation of genes of the circadian clock in human colon cancer: reduced period-1 and dihydropyrimidine dehydrogenase transcription correlates in high-grade tumors. Cancer Res 67(16):7917–7922PubMedCrossRefGoogle Scholar
  70. 70.
    Mazzoccoli G et al (2011) Clock gene expression levels and relationship with clinical and pathological features in colorectal cancer patients. Chronobiol Int 28(10):841–851PubMedCrossRefGoogle Scholar
  71. 71.
    Zhao H et al (2014) Prognostic relevance of Period1 (Per1) and Period2 (Per2) expression in human gastric cancer. Int J Clin Exp Pathol 7(2):619–630PubMedPubMedCentralGoogle Scholar
  72. 72.
    Cadenas C et al (2014) Loss of circadian clock gene expression is associated with tumor progression in breast cancer. Cell Cycle 13(20):3282–3291PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Winter SL, Bosnoyan-Collins L, Pinnaduwage D, Andrulis IL (2007) Expression of the circadian clock genes Per1 and Per2 in sporadic and familial breast tumors. Neoplasia 9(10):797–800PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Kolomeichuk SN, Gurov EV, Piskunova TS, Tyndyk ML, Anisimov VN (2011) Expression of circadian Per1 and Per2 genes in the liver and breast tumor tissues of HER2/neu transgenic mice of different age. Bull Exp Biol Med 151(2):227–229PubMedCrossRefGoogle Scholar
  75. 75.
    Lin YM et al (2008) Disturbance of circadian gene expression in hepatocellular carcinoma. Mol Carcinog 47(12):925–933PubMedCrossRefGoogle Scholar
  76. 76.
    Geusz ME, Blakely KT, Hiler DJ, Jamasbi RJ (2010) Elevated mPer1 gene expression in tumor stroma imaged through bioluminescence. Int J Cancer J Int Cancer 126(3):620–630CrossRefGoogle Scholar
  77. 77.
    Gery S et al (2007) Epigenetic silencing of the candidate tumor suppressor gene Per1 in non-small cell lung cancer. Clin Cancer Res: Off J Am Assoc Cancer Res 13(5):1399–1404CrossRefGoogle Scholar
  78. 78.
    Xia HC et al (2010) Deregulated expression of the Per1 and Per2 in human gliomas. Can J Neurol Sci J Can Sci Neurol 37(3):365–370CrossRefGoogle Scholar
  79. 79.
    Kovacheva VP et al (2009) Raising gestational choline intake alters gene expression in DMBA-evoked mammary tumors and prolongs survival. FASEB J: Off Publ Fed Am Soc Exp Biol 23(4):1054CrossRefGoogle Scholar
  80. 80.
    Cao Q et al (2009) A role for the clock gene per1 in prostate cancer. Cancer Res 69(19):7619–7625PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Yeh KT et al (2005) Abnormal expression of period 1 (PER1) in endometrial carcinoma. J Pathol 206(1):111–120PubMedCrossRefGoogle Scholar
  82. 82.
    Shih HC et al (2005) Disturbance of circadian gene expression in endometrial cancer: detection by real-time quantitative RT-PCR. Oncol Rep 14(6):1533–1538PubMedGoogle Scholar
  83. 83.
    Lengyel Z et al (2013) Altered expression patterns of clock gene mRNAs and clock proteins in human skin tumors. Tumour Biol: J Int Soc Oncodev Biol Med 34(2):811–819CrossRefGoogle Scholar
  84. 84.
    Hsu CM, Lin SF, Lu CT, Lin PM, Yang MY (2012) Altered expression of circadian clock genes in head and neck squamous cell carcinoma. Tumour Biol: J Int Soc Oncodev Biol Med 33(1):149–155CrossRefGoogle Scholar
  85. 85.
    Roe OD et al (2009) Genome-wide profile of pleural mesothelioma versus parietal and visceral pleura: the emerging gene portrait of the mesothelioma phenotype. PLoS One 4(8):e6554PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Oda A et al (2009) Clock gene mouse period2 overexpression inhibits growth of human pancreatic cancer cells and has synergistic effect with cisplatin. Anticancer Res 29(4):1201–1209PubMedGoogle Scholar
  87. 87.
    Wood PA et al (2008) Period 2 mutation accelerates ApcMin/+ tumorigenesis. Mol Cancer Res: MCR 6(11):1786–1793PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Yang X et al (2009) Down regulation of circadian clock gene Period 2 accelerates breast cancer growth by altering its daily growth rhythm. Breast Cancer Res Treat 117(2):423–431PubMedCrossRefGoogle Scholar
  89. 89.
    Hua H et al (2007) Inhibition of tumorigenesis by intratumoral delivery of the circadian gene mPer2 in C57BL/6 mice. Cancer Gene Ther 14(9):815–818PubMedCrossRefGoogle Scholar
  90. 90.
    Mazzoccoli G et al (2012) Altered expression of the clock gene machinery in kidney cancer patients. Biomed Pharmacother = Biomed Pharmacother 66(3):175–179PubMedCrossRefGoogle Scholar
  91. 91.
    Wang F, Luo Y, Li C, Chen L (2014) Correlation between deregulated expression of PER2 gene and degree of glioma malignancy. Tumori 100(6):e266–e272PubMedGoogle Scholar
  92. 92.
    Miyazaki K, Wakabayashi M, Hara Y, Ishida N (2010) Tumor growth suppression in vivo by overexpression of the circadian component, PER2. Genes Cells: Devoted Mol Cell Mech 15(4):351–358CrossRefGoogle Scholar
  93. 93.
    Cheng AY et al (2015) Construction of a plasmid for overexpression of human circadian gene period2 and its biological activity in osteosarcoma cells. Tumour Biol: J Int Soc Oncodev Biol Med 36(5):3735CrossRefGoogle Scholar
  94. 94.
    Yu H et al (2013) Cryptochrome 1 overexpression correlates with tumor progression and poor prognosis in patients with colorectal cancer. PLoS One 8(4):e61679PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    Jung CH et al (2013) Bmal1 suppresses cancer cell invasion by blocking the phosphoinositide 3-kinase-Akt-MMP-2 signaling pathway. Oncol Rep 29(6):2109PubMedPubMedCentralGoogle Scholar
  96. 96.
    Xue X et al (2014) Silencing NPAS2 promotes cell growth and invasion in DLD-1 cells and correlated with poor prognosis of colorectal cancer. Biochem Biophys Res Commun 450(2):1058–1062PubMedCrossRefGoogle Scholar
  97. 97.
    Yi C et al (2010) The circadian gene NPAS2 is a novel prognostic biomarker for breast cancer. Breast Cancer Res Treat 120(3):663–669PubMedCrossRefGoogle Scholar
  98. 98.
    Madden MH et al (2014) Circadian pathway genes in relation to glioma risk and outcome. Cancer Causes Control 25(1):25–32PubMedCrossRefGoogle Scholar
  99. 99.
    Wu Y et al (2012) The BHLH transcription factor DEC1 plays an important role in the epithelial-mesenchymal transition of pancreatic cancer. Int J Oncol 41(4):1337–1346PubMedGoogle Scholar
  100. 100.
    Liu Y et al (2013) DEC1 is positively associated with the malignant phenotype of invasive breast cancers and negatively correlated with the expression of claudin-1. Int J Mol Med 31(4):855–860PubMedGoogle Scholar
  101. 101.
    Shi XH et al (2011) DEC1 nuclear expression: a marker of differentiation grade in hepatocellular carcinoma. World J Gastroenterol: WJG 17(15):2037–2043PubMedPubMedCentralCrossRefGoogle Scholar
  102. 102.
    Wei H et al (2014) MicroRNA target site polymorphisms in the VHL-HIF1alpha pathway predict renal cell carcinoma risk. Mol Carcinog 53(1):1–7PubMedCrossRefGoogle Scholar
  103. 103.
    Nishiwaki T, Daigo Y, Kawasoe T, Nakamura Y (2000) Isolation and mutational analysis of a novel human cDNA, DEC1 (deleted in esophageal cancer 1), derived from the tumor suppressor locus in 9q32. Genes Chromosomes Cancer 27(2):169–176PubMedCrossRefGoogle Scholar
  104. 104.
    Wong VC et al (2011) Abrogated expression of DEC1 during oesophageal squamous cell carcinoma progression is age- and family history-related and significantly associated with lymph node metastasis. Br J Cancer 104(5):841–849PubMedPubMedCentralCrossRefGoogle Scholar
  105. 105.
    Jia YF et al (2013) Differentiated embryonic chondrocyte-expressed gene 1 is associated with hypoxia-inducible factor 1alpha and Ki67 in human gastric cancer. Diagn Pathol 8:37PubMedPubMedCentralCrossRefGoogle Scholar
  106. 106.
    Yunokawa M et al (2007) Differential regulation of DEC2 among hypoxia-inducible genes in endometrial carcinomas. Oncol Rep 17(4):871–878PubMedGoogle Scholar
  107. 107.
    Muscat GE et al (2013) Research resource: nuclear receptors as transcriptome: discriminant and prognostic value in breast cancer. Mol Endocrinol 27(2):350–365PubMedCrossRefGoogle Scholar
  108. 108.
    Davis LM et al (2007) Amplification patterns of three genomic regions predict distant recurrence in breast carcinoma. J Mol Diagn: JMD 9(3):327PubMedPubMedCentralCrossRefGoogle Scholar
  109. 109.
    Chin K et al (2006) Genomic and transcriptional aberrations linked to breast cancer pathophysiologies. Cancer Cell 10(6):529–541PubMedCrossRefGoogle Scholar
  110. 110.
    Kourtidis A et al (2010) An RNA interference screen identifies metabolic regulators NR1D1 and PBP as novel survival factors for breast cancer cells with the ERBB2 signature. Cancer Res 70(5):1783–1792PubMedPubMedCentralCrossRefGoogle Scholar
  111. 111.
    Mond M et al (2014) Nuclear receptor expression in human differentiated thyroid tumors. Thyroid: Off J Am Thyroid Assoc 24(6):1000–1011CrossRefGoogle Scholar
  112. 112.
    Kottorou AE et al (2012) Altered expression of NFY-C and RORA in colorectal adenocarcinomas. Acta Histochem 114(6):553–561PubMedCrossRefGoogle Scholar
  113. 113.
    Knower KC et al (2013) Distinct nuclear receptor expression in stroma adjacent to breast tumors. Breast Cancer Res Treat 142(1):211–223PubMedCrossRefGoogle Scholar
  114. 114.
    Zhang S et al (2012) ROR1 is expressed in human breast cancer and associated with enhanced tumor-cell growth. PLoS One 7(3):e31127PubMedPubMedCentralCrossRefGoogle Scholar
  115. 115.
    Moretti RM, Montagnani Marelli M, Sala A, Motta M, Limonta P (2004) Activation of the orphan nuclear receptor RORalpha counteracts the proliferative effect of fatty acids on prostate cancer cells: crucial role of 5-lipoxygenase. Int J Cancer J Int Cancer 112(1):87–93CrossRefGoogle Scholar
  116. 116.
    Xiong G, Wang C, Evers BM, Zhou BP, Xu R (2012) RORalpha suppresses breast tumor invasion by inducing SEMA3F expression. Cancer Res 72(7):1728–1739PubMedPubMedCentralCrossRefGoogle Scholar
  117. 117.
    Karasek M, Gruszka A, Lawnicka H, Kunert-Radek J, Pawlikowski M (2003) Melatonin inhibits growth of diethylstilbestrol-induced prolactin-secreting pituitary tumor in vitro: possible involvement of nuclear RZR/ROR receptors. J Pineal Res 34(4):294–296PubMedCrossRefGoogle Scholar
  118. 118.
    Chen ST et al (2005) Deregulated expression of the PER1, PER2 and PER3 genes in breast cancers. Carcinogenesis 26(7):1241–1246PubMedCrossRefGoogle Scholar
  119. 119.
    Maronde E, Motzkus D (2003) Oscillation of human period 1 (hPER1) reporter gene activity in human neuroblastoma cells in vivo. Chronobiol Int 20(4):671PubMedCrossRefGoogle Scholar
  120. 120.
    Yang MY et al (2011) Altered expression of circadian clock genes in human chronic myeloid leukemia. J Biol Rhythms 26(2):136–148PubMedCrossRefGoogle Scholar
  121. 121.
    Ye H, Yang K, Tan XM, Fu XJ, Li HX (2015) Daily rhythm variations of the clock gene PER1 and cancer-related genes during various stages of carcinogenesis in a golden hamster model of buccal mucosa carcinoma. Onco Targets Ther 8:1419–1426PubMedPubMedCentralGoogle Scholar
  122. 122.
    Xiang S et al (2012) Oscillation of clock and clock controlled genes induced by serum shock in human breast epithelial and breast cancer cells: regulation by melatonin. Breast Cancer: Basic Clin Res 6:137–150Google Scholar

Copyright information

© Springer (India) Pvt. Ltd. 2017

Authors and Affiliations

  1. 1.Douglas Mental Health University InstituteMcGill UniversityMontrealCanada

Personalised recommendations