Chromosome Structure and Aberrations pp 181-200 | Cite as
Karyotype Evolution: Concepts and Applications
Abstract
The karyotype is the characterization of number, size, and morphology of the set of chromosomes of a species, as seen under the microscope. Studying the karyotypic evolution of a group of organisms is necessary to obtain data such as number of chromosomes, the position of the centromeres, and the number and positions of secondary constrictions and banding patterns. The karyotype study is important to help identify karyotypic polymorphism and interspecific and intraspecific cytogenetic variation and evolution. It also helps us in understanding the relationship between chromosome number, amount of DNA, and complexity of the organisms. Thus, the main application of studies of evolution karyotype is in the (cyto)taxonomy/systematics and phylogeny which will be discussed in the present chapter with examples in plants of the genus Carex (Cyperaceae), which exhibits karyological peculiarities with holocentric chromosomes and continual variation in chromosome number; of the genus Allium, which has polymorphic species with karyotype analysis and size genome described; of the genus Crepis, which has been a model of cytological studies with karyotype evolution; of the Crocus series (Iridaceae), which is characterized by high intra- and interspecific variability of karyotypes; of the genera Cassia, Chamaecrista, and Senna; and, finally, in epiphytic cacti (Lepismium) and species of the Rhipsalis and Delphinium, in species of scorpions (Androctonus), and in the genus Oligoryzomys (Rodentia).
Keywords
Chromosome number Cytogenetics Cytotaxonomy DNA content Karyotype PhylogenyAbbreviations
- CMA
A3 chromomycin
- DAPI
4′,6-diamidino-2- phenylindole
- RON
Nucleolus organizer regions
- FISH
Fluorescent in situ hybridization
- GISH
Genomic in situ hybridization
- m
Metacentric
- sm
Submetacentric
- a
Acrocentric
- t
Telocentric
- AR
Ratio of arms
- CI
Centromeric index
- Tli
Total length of chromosome i
- TLLH
Total length lot haploid
- RL
Relative length of each chromosome
- FN
Fundamental number
- A1
Intrachromosomal asymmetry index
- A2
Interchromosomal asymmetry index
- SA
Short arm
- LA
Long arm
- OMO
Oligoryzomys moojeni
- pg
Picograms
Notes
Glossary
Derived character that is present exclusively in a single terminal taxon of a given cladogram
Technique related to the differential staining of all chromosomes of the species, using a pool of differently labeled specific fluorescent probes
Formed by several overlapping chromatids, derived from repeated duplication of DNA strands without cell division, found in the salivary glands of Drosophila melanogaster
Technique for counting, examining, and classifying microscopic particles suspended in a liquid medium through an opto-electronic detection apparatus, for example, determining the amount of DNA/nucleus
Cytogenetic technique used to detect and localize specific DNA sequences in chromosomes using fluorescent probes
Cytogenetic technique like FISH to locate genomic probes, i.e., an entire genome, in chromosomal set of a given species
Has only one chromosome of each pair of homologous chromosome
The cells may have several nucleoli, but there is usually a fusion so they have only one or two
Partially decondensed region that relates to the mechanisms of cell division, presenting the kinetochore, where the spindle fibers attach
Observed in at least one of the chromosomes of each species which is closely related to the organizer regions of the nucleolus presenting ribosomal RNA genes for transcription that constitute most of the nucleolus
Derived character shared by more than one group
Presence of two or more loci genes on the same chromosome
References
- Abraham A, Ninan CA (1954) The chromosomes of Ophioglossum reticulatum L. Curr Sci 23:213–214Google Scholar
- Árnason U (1974) Comparative chromosome studies in Cetacea. Hereditas 77(1):1–36CrossRefPubMedGoogle Scholar
- Babcock EB (ed) (1947a) The genus Crepis I. In: The taxonomy, phylogeny, distribution and evolution of Crepis. University of California Press, BerkeleyGoogle Scholar
- Babcock EB (ed) (1947b) The genus I II. In: Systematic treatment. University of California Press, BerkeleyGoogle Scholar
- Balmus G, Trifonov VA, Biltueva LS, O’Brien PC, Alkalaeva ES, Fu B, Ferguson-Smith MA (2007) Cross-species chromosome painting among camel, cattle, pig and human: further insights into the putative Cetartiodactyla ancestral karyotype. Chromosom Res 15(4):499–514CrossRefGoogle Scholar
- Bantock CR, Cockayne WC (1975) Chromosomal polymorphism in Nucella lapillus L. Heredity 34:231–235CrossRefPubMedGoogle Scholar
- Bennetzen JL, Kellogg EA (1997) Do plants have a one-way ticket to genomic obesity? Plant Cell 9:1509–1514CrossRefPubMedPubMedCentralGoogle Scholar
- Coelho P, Sousa P, Harris DJ, van der Meijden A (2014) Deep intraspecific divergences in the medically relevant fat-tailed scorpions (Androctonus, Scorpiones). Acta Trop 134:43–51CrossRefPubMedGoogle Scholar
- Coluzzi M, Sabatini A, Torre A, Deco MA, Petrarca V (2002) A polytene chromosome analysis of the Anopheles gambiae species complex. Science 298(5597):1415–1418CrossRefPubMedGoogle Scholar
- Correia-da-Silva M, Vasconcelos S, da Costa Soares MDL, Mayo SJ, Benko-Iseppon AM (2014) Chromosomal diversity in Philodendron (Araceae): taxonomic significance and a critical review. Plant Syst Evol 300(5):1111–1122CrossRefGoogle Scholar
- Da Cunha AB, Dobzhansky T (1954) A further study of chromosomal polymorphism in Drosophila willistoni in its relation to the environment. Evolution 8:119–134CrossRefGoogle Scholar
- Di-Nizo CB, Ventura K, Ferguson-Smith MA, O’Brien PC, Yonenaga-Yassuda Y, Silva MJ (2015) Comparative chromosome painting in six species of Oligoryzomys (Rodentia, Sigmodontinae) and the karyotype evolution of the genus. PLoS One 10(2):e0117579CrossRefPubMedPubMedCentralGoogle Scholar
- Dutta M, Negi KS, Bandyopadhyay M (2015) Novel cytogenetic resources of wild Allium (Amaryllidaceae) from India. Nucleus:1–7Google Scholar
- Eichler EE, Sankoff D (2003) Structural dynamics of eukaryotic chromosome evolution. Science 301:793–797CrossRefPubMedGoogle Scholar
- Enke N, Fuchs J, Gemeinholzer B (2011) Shrinking genomes? Evidence from genome size variation in Crepis (Compositae). Plant Biol 13(1):185–193. doi: 10.1111/j.1438-8677.2010.00341.x CrossRefPubMedGoogle Scholar
- Enke N, Kunze R, Pustahija F et al (2015) Genome size shifts: karyotype evolution in Crepis section Neglectoides (Asteraceae). Plant Biol 17:775–786. doi: 10.1111/plb.12318 CrossRefPubMedGoogle Scholar
- Ferreira K, Torres GA, de Sousa SM, dos Santos AC (2010) Karyotype, meiotic behavior and pollen features of Senna occidentalis. Biologia 65(5):789–795CrossRefGoogle Scholar
- Flavell RB (1980) The molecular characterization and organization of plant chromosomal DNA sequences. Annu Rev Plant Biol 31:569–596CrossRefGoogle Scholar
- Fontana F, Colombo G (1974) The chromosomes of Italian sturgeons. Experientia 30(7):739–742CrossRefPubMedGoogle Scholar
- Futuyma DJ (ed) (2009) Evolution. Sinauer Associates, SunderlandGoogle Scholar
- Goday C, Pimpinelli S (1986) Cytological analysis of chromosomes in the two species Parascaris univalens and P. equorum. Chromosoma 94(1):1–10CrossRefGoogle Scholar
- Gomes SSL, Saldanha CW, Neves CS, Trevizani M, Raposo NRB, Notini MM, Viccini LF (2014) Karyotype, genome size, and in vitro chromosome doubling of Pfaffia glomerata (Spreng.) Pedersen. Plant Cell Tissue Organ Cult (PCTOC) 118(1):45–56Google Scholar
- Griffiths AJF, Wessler SR, Lewontin RC, Gelbart W, Suzuki DT, Miller JH (eds) (2006) Introdução à Genética. GuanabaraGoogle Scholar
- Guerra MS (1986) Reviewing the chromosome nomenclature of Levan et al. Revista Brasileira de Genética 9(4):741–743Google Scholar
- Guerra M (ed) (1988) Introdução à Citogenética Geral. Guanabara Koogan, Rio de JaneiroGoogle Scholar
- Guerra M (2000) Chromosome number variation and evolution in monocots. In: Monocots: systematics and evolution. CSIRO, Melbourne, pp 127–136Google Scholar
- Guerra M (2008) Chromosome numbers in plant cytotaxonomy: concepts and implications. Cytogenet Genome Res 120:339–350CrossRefPubMedGoogle Scholar
- Guetat A, Rosato M, Rossello JA et al (2015) Karyotype analysis in Allium roseum L. (Alliaceae) using fluorescent in situ hybridization of rDNA sites and conventional stainings. Turk J Bot 39(5):796–807. doi: 10.3906/bot-1402-48 CrossRefGoogle Scholar
- Gurushidze M, Fuchs J, Blattner FR (2012) The evolution of genome size variation in drumstick onions (Allium subgenus Melanocrommyum). Syst Bot 37(1):96–104. doi: 10.1600/036364412X616675 CrossRefGoogle Scholar
- Harpke D, Carta A, Tomović G et al (2015) Phylogeny, karyotype evolution and taxonomy of Crocus series Verni (Iridaceae). Plant Syst Evol 301(1):309–325. doi: 10.1007/s00606-014-1074-0 CrossRefGoogle Scholar
- Hizume M, Shibata F, Matsusaki Y, Garajova Z (2002) Chromosome identification and comparative karyotypic analyses of four Pinus species. Theor Appl Genet 105(4):491–497CrossRefPubMedGoogle Scholar
- Hollingshead L (1930) Cytological investigations of hybrids and hybrid derivative Crepis capillaris and Crepis tectorum. Univ Calif Publ Agric Sci 6:55–94Google Scholar
- Hoxmark RC (1970) The chromosome dimorphism of Nucella lapillus in relation to wave action. Nytt Mag Zool 18:229–238Google Scholar
- Huang L, Wang J, Nie W, Su W, Yang F (2006) Tandem chromosome fusions in karyotypic evolution of Muntiacus: evidence from M. feae and M. gongshanensis. Chromosom Res 14(6):637–647CrossRefGoogle Scholar
- Jabbour F, Renner SS (2012) A phylogeny of Delphinieae (Ranunculaceae) shows that Aconitum is nested within Delphinium and that late miocene transitions to long life cycles in the Himalayas and Southwest China coincide with bursts in diversification. Mol Phylogenet Evol 62(3):928–942CrossRefPubMedGoogle Scholar
- King RC, Riley SF, Cassidy JD, White PE, Paik YK (1981) Giant polytene chromosomes from the ovaries of a Drosophila mutant. Science 212(4493):441–443CrossRefPubMedGoogle Scholar
- Klug WS, Cummings MR, Spencer CA, Palladino MA (eds) (2014) Concepts of genetics. Benjamin-Cummings Publishing CompanyGoogle Scholar
- Kolar FR, Gosavi KVC, Chandore AN et al (2012) Comparative karyotype analysis of Delphinium malabaricum var. malabaricum (Huth) Munz. and Delphinium malabaricum var. ghaticum Billore. Cytologia 77(1):113–119CrossRefGoogle Scholar
- Lawlor TE (1974) Chromosomal evolution in Peromyscus. Evolution 28(4):689–692CrossRefGoogle Scholar
- Leitch IJ, Bennett MD (1997) Polyploidy in angiosperms. Trends Plant Sci 2(12):470–476CrossRefGoogle Scholar
- Leitch IJ, Chase MW, Bennett MD (1998) Phylogenetic analysis of DNA C-values provides evidence for a small ancestral genome size in flowering plants. Ann Bot 82:85–94CrossRefGoogle Scholar
- Levan A, Karl F, Avery AS (1964) Nomenclature for centromeric position on chromosomes. Hereditas 52(2):201–220CrossRefGoogle Scholar
- Levin DA (ed) (2002) The role of chromosomal change in plant evolution. Oxford University Press, OxfordGoogle Scholar
- Lewis GP (2005) Cassieae. In: Lewis G, Schrire B, Mackinder B, Lock M (eds) Legumes of the world. Royal Botanic Gardens Kew, London, pp 111–125Google Scholar
- Lipnerová I, Bureš P, Horová L et al (2013) Evolution of genome size in Carex (Cyperaceae) in relation to chromosome number and genomic base composition. Ann Bot 111(1):79–94. doi: 10.1093/aob/mcs239 CrossRefPubMedGoogle Scholar
- Makapedua DM, Barucca M, Forconi M, Antonucci N, Bizzaro D, Amici A, Canapa A (2011) Genome size, GC percentage and 5mC level in the Indonesian coelacanth Latimeria menadoensis. Mar Genomics 4(3):167–172CrossRefPubMedGoogle Scholar
- Mavrodiev EV, Chester M, Suárez‐Santiago VN, Visger CJ, Rodriguez R, Susanna A, Soltis DE (2015) Multiple origins and chromosomal novelty in the allotetraploid Tragopogon castellanus (Asteraceae). New Phytol 206:1172–1183CrossRefPubMedGoogle Scholar
- Moreno NC, Amarilla LD, Las Peñas ML, Bernardello G (2015) Molecular cytogenetic insights into the evolution of the epiphytic genus Lepismium (Cactaceae) and related genera. Bot J Linn Soc 177(2):263–277CrossRefGoogle Scholar
- Pierre PM, Sousa SM, Davide LC, Machado MA, Viccini LF (2011) Karyotype analysis, DNA content and molecular screening in Lippia alba (Verbenaceae). An Acad Bras Cienc 83(3):993–1006CrossRefPubMedGoogle Scholar
- Rao SR, Pandey R, Chandel KPS (1992) Genetic stability studies in regenerated plants of Allium tuberosum Rottl. ex Spreng. A cytological approach. Cytologia 57(3):339–347CrossRefGoogle Scholar
- Resende K, Prado C, Davide L, Torres G (2014) Polyploidy and apomixis in accessions of Senna rugosa (G. Don) HS Irwin & Barneby. Turk J Biol 38(4):510–515CrossRefGoogle Scholar
- Rubes J, Musilova P, Kopecna O, Kubickova S, Cernohorska H, Kulemsina AI (2011) Comparative molecular cytogenetics in Cetartiodactyla. Cytogen Genome Res 137(2–4):194–207Google Scholar
- Sacristan MD (1971) Karyotypic changes in callus cultures from haploid and diploid plants of Crepis capillaris (L.) Wallr. Chromosoma 33(3):273–283CrossRefGoogle Scholar
- Sadílek D, Nguyen P, Koç H, Kovařík F, Yağmur EA, Šťáhlavský F (2015) Molecular cytogenetics of Androctonus scorpions: an oasis of calm in the turbulent karyotype evolution of the diverse family Buthidae. Biol J Linn Soc 115(1):69–76CrossRefGoogle Scholar
- Schubert I (2007) Chromosome evolution. Curr Opin Plant Biol 10:109–115CrossRefPubMedGoogle Scholar
- Sharma A, Sen S (eds) (2002) Chromosome botany. CRC Press, Boca RatonGoogle Scholar
- Sharma G, Sharma N (2014) Cytology as an important tool for solving evolutionary problems in angiosperms. Proc Natl Acad Sci India Sect B Biol Sci 84(1):1–7. doi: 10.1007/s40011-013-0203-9 CrossRefGoogle Scholar
- Sherman M (1946) Karyotype evolution: a cytogenetic study of seven species and six intraspecific hybrids of Crepis. Univ Calif Publ Bot 18:369–408Google Scholar
- Stace CA (1980) Plant taxonomy and biosystematics. Edward Arnold, LondonGoogle Scholar
- Stebbins GL (1958) Longevity, habitat, e release of genetic variability in the higher plants. In: Cold Spring Harbor symposia quantitative biology, vol 23, pp 365–378Google Scholar
- Stebbins GL (1971) Chromosomal evolution in higher plants. Edward Arnold, LondonGoogle Scholar
- Sturtevant AH (1925) The effects of unequal crossing over at the bar locus in Drosophila. Genetics 10(2):117–147PubMedPubMedCentralGoogle Scholar
- Tanomtong A, Chaveerach A, Phanjun G, Kaensa W, Khunsook AS (2005) New records of chromosomal features in Indian muntjacs (Muntiacus muntjak) and Fea’s muntjacs (M. feae) of Thailand. Cytologia 70(1):71–77CrossRefGoogle Scholar
- Taylor KM, Hungerford DA, Snyder RL, Ulmer JFA (1968) Uniformity of karyotypes in the Camelidae. Cytogenet Genome Res 7(1):8–15CrossRefGoogle Scholar
- Thomas CA (1971) The genetic organization of chromosomes. Annu Rev Genet 5:237–256CrossRefPubMedGoogle Scholar
- Tobgy HA (1943) A cytological study of Crepis fuliginosa, C. neglecta and their F1 hybrid, and its bearing on the mechanism of phylogenetic reduction in chromosome number. J Genet 45:67–111CrossRefGoogle Scholar
- Trifonov VA, Stanyon R, Nesterenko AI, Fu B, Perelman PL, O’Brien PC, Yang F (2008) Multidirectional cross-species painting illuminates the history of karyotypic evolution in Perissodactyla. Chromosom Res 16(1):89–107CrossRefGoogle Scholar
- Wang AH, Sun Y, Wang FG, Schneider H, Zhai JW, Liu DM, Chen HF (2015) Identification of the relationship between Chinese Adiantum reniforme var. sinense and Canary Adiantum reniforme. BMC Plant Biol 15(1):36CrossRefPubMedPubMedCentralGoogle Scholar
- Zarco CR (1986) A new method for estimating karyotype asymmetry. Taxon 35(3):526–530CrossRefGoogle Scholar