tuPOY: Mathematical and Analytical Characterization

  • H. D. MustafaEmail author
  • Sunil H. Karamchandani
  • Shabbir N. Merchant
  • Uday B. Desai
Part of the Advanced Structured Materials book series (STRUCTMAT, volume 23)


The mathematical characterization of a concept embeds a logical element in it, giving the invention a concrete structure. The conducting and radiating properties of tuPOY are given a mathematical emblem in this chapter. The behavioral pattern of tuPOY to a stimuli and its subsequent molecular state change variation due to its conduction, and radiation properties are mathematically modeled, providing an insight into its metallic behavior. A new mathematical concept of interchange phenomenon at molecular level is proposed to support the claims. The numerical manifestations spout a gamut of operations of tuPOY in technologies of future.


Mathematical characterization Micro stress Interchange phenomenon Kinetic energy 


  1. 1.
    Dylla, H.F., Corneliussen, S.T.: John Ambrose Fleming and the beginning of electronics. J. Vac. Sci. Technol. A: Vac. Surf. Films 23(4), 1244–1251, (2005).
  2. 2.
    Jenkin, A.: Irradiated polymers. Nature 243(5404), 247–248 (1973)Google Scholar
  3. 3.
    Bragg, W.H.: Bakerian lecture: X-rays and crystal structure. Philos. Trans. R. Soc. Lond. Ser. A Contain. Papers Math. Phys. Character 215, 253–274 (1915).
  4. 4.
    Mallick, B., Patel, T., Behera, R., Sarangi, S., Sahu, S., Choudhury, R.: Microstrain analysis of proton irradiated pet microfiber. Nucl. Instrum. Methods Phys. Res. Sect. B: Beam Interact. Mater. Atoms 248(2), 305–310 (2006).
  5. 5.
    Hutchinson, J.M., Mccrum, N.G.: Microstress mechanism for the time dependence of the modulus of crystalline polymers following an imposed change in volume. Nature 252(5481), 295–296 (1974)CrossRefGoogle Scholar
  6. 6.
    Kahn, O., Martinez, C.J.: Spin transition polymers: from molecular materials toward memory devices. Science 279(5347), 44–48 (1998)CrossRefGoogle Scholar
  7. 7.
    Garnier, F., Hajlaoui, R., Yassar, A., Srivastava, P.: All-polymer field-effect transistor realized by printing techniques. Science 265(5179), 1684–1686 (1994).
  8. 8.
    Suematsu, K., Okamoto, T.: Theory of ring formation in a reversible system: general solutions. Colloid Polym. Sci. 270, 405–420 (1992). doi: 10.1007/BF00665983 CrossRefGoogle Scholar
  9. 9.
    Suematsu, K., Okamoto, T.: Interchange reactions during polymerization: re-examination of the polymerization mechanism of \(\epsilon \)-caprolactam. J. Phys. Chem. 96(23), 9498–9507 (1992)CrossRefGoogle Scholar
  10. 10.
    Suematsu, K., Okamoto, T.: Theory of ring formation in irreversible system: AB model. Colloid Polym. Sci. 270, 421–430 (1992). doi: 10.1007/BF00665984 CrossRefGoogle Scholar
  11. 11.
    Suematsu, K., Okamoto, T., Kohno, M., Kawazoe, Y.: Functionality dependence of the distribution of cyclic species in network formation. J. Chem. Soc. Faraday Trans. 89, 4181–4184 (1993).

Copyright information

© Springer India 2016

Authors and Affiliations

  • H. D. Mustafa
    • 1
    Email author
  • Sunil H. Karamchandani
    • 1
  • Shabbir N. Merchant
    • 1
  • Uday B. Desai
    • 2
  1. 1.Department of Electrical EngineeringIndian Institute of Technology BombayMumbaiIndia
  2. 2.Indian Institute of Technology HyderabadHyderabadIndia

Personalised recommendations