Chitin-Based Nanocomposites: Biomedical Applications

  • Carlos Filipe Cidre João
  • Jorge Carvalho Silva
  • João Paulo BorgesEmail author
Part of the Advanced Structured Materials book series (STRUCTMAT, volume 74)


Chitin, the second most abundant polymer in nature, is a renewable, nontoxic, biodegradable, and antibacterial polysaccharide. This semicrystalline biopolymer exhibits hierarchical structure from nano to micro-scale and is responsible for interesting living tissue properties. Recently, the scientific interest in chitin nanofibrils for applications in biomedical and tissue engineering fields has increased due to their particular capabilities such as matrix reinforcements, bioactivity and morphology similar to natural tissues. This chapter is focused on composite materials reinforced with chitin nanofibrils and their biomedical applications.


Chitin Nanofibrils Nanowhisker Biomaterials Tissue engineering 



This work is funded by FEDER funds through the COMPETE 2020 Programme and National Funds throught FCT—Portuguese Foundation for Science and Technology under the project UID/CTM/50025/2013. C.F.C. João also acknowledges Portuguese Science Foundation––FCT for his PhD scholarship, ref: SFRH/BD/ 80860/2011.


  1. 1.
    Ang-atikarnkul P, Watthanaphanit A, Rujiravanit R (2014) Fabrication of cellulose nanofiber/chitin whisker/silk sericin bionanocomposite sponges and characterizations of their physical and biological properties. Compos Sci Technol 96:88–96. doi: 10.1016/j.compscitech.2014.03.006 CrossRefGoogle Scholar
  2. 2.
    Araki J, Yamanaka Y, Ohkawa K (2012) Chitin-chitosan nanocomposite gels: reinforcement of chitosan hydrogels with rod-like chitin nanowhiskers. Polym J 44(7):713–717. doi: 10.1038/pj.2012.11 CrossRefGoogle Scholar
  3. 3.
    Azuma K, Osaki T, Ifuku S, Saimoto H, Tsuka T, Imagawa T et al (2012) α-Chitin nanofibrils improve inflammatory and fibrosis responses in inflammatory bowel disease mice model. Carbohydr Polym 90(1):197–200. doi: 10.1016/j.carbpol.2012.05.023 CrossRefGoogle Scholar
  4. 4.
    Bledzki AK, Gassan J (1999) Composites reinforced with cellulose based fibres. Prog Polym Sci 24(2):221–274CrossRefGoogle Scholar
  5. 5.
    Chan CH, Chia CH, Thomas S (2014). Physical chemistry of macromolecules. Apple Academic Press, p 1–636Google Scholar
  6. 6.
    Dugan JM (2012) Cellulose nanowhiskers for tissue engineering skeletal muscleGoogle Scholar
  7. 7.
    Dugan JM, Gough JE, Eichhorn SJ (2013) Bacterial cellulose scaffolds and cellulose nanowhiskers for tissue engineering. Nanomedicine 8(2):287–298. doi: 10.2217/nnm.12.211 CrossRefGoogle Scholar
  8. 8.
    Eichhorn SJ (2011) Cellulose nanowhiskers: promising materials for advanced applications. Soft Matter 7(2):303. doi: 10.1039/c0sm00142b CrossRefGoogle Scholar
  9. 9.
    Faruk O, Bledzki AK, Fink H-P, Sain M (2012) Biocomposites reinforced with natural fibers: 2000–2010. Prog Polym Sci 37(11):1552–1596. doi: 10.1016/j.progpolymsci.2012.04.003 CrossRefGoogle Scholar
  10. 10.
    Gaspar D, Fernandes SN, de Oliveira AG, Fernandes JG, Grey P, Pontes RV et al (2014) Nanocrystalline cellulose applied simultaneously as the gate dielectric and the substrate in flexible field effect transistors. Nanotechnology 25(9):094008. doi: 10.1088/0957-4484/25/9/094008 CrossRefGoogle Scholar
  11. 11.
    Geng Y, Almeida PL, Fernandes SN, Cheng C, Palffy-Muhoray P, Godinho MH (2013) A cellulose liquid crystal motor: a steam engine of the second kind. Sci Rep 3. doi: 10.1038/srep01028
  12. 12.
    Giraud-Guille M-M, Belamie E, Mosser G (2004) Organic and mineral networks in carapaces, bones and biomimetic materials. CR Palevol 3(6–7):503–513. doi: 10.1016/j.crpv.2004.07.004 CrossRefGoogle Scholar
  13. 13.
    Goodrich JD, Winter WT (2007) α-Chitin nanocrystals prepared from shrimp shells and their specific surface area measurement. Biomacromolecules 8:252–257Google Scholar
  14. 14.
    Gopalan Nair K, Dufresne A (2003) Crab shell chitin whisker reinforced natural rubber nanocomposites. 1. processing and swelling behavior. Biomacromolecules 4(3):657–665Google Scholar
  15. 15.
    Gupta NS (2010) Chitin. SpringerGoogle Scholar
  16. 16.
    Hariraksapitak P, Supaphol P (2010) Preparation and properties of α-chitin-whisker-reinforced hyaluronan–gelatin nanocomposite scaffolds. J Appl Polym Sci 117(6):3406–3418. doi: 10.1002/app.32095 Google Scholar
  17. 17.
    Ifuku S, Morooka S, Morimoto M, Saimoto H (2010) Acetylation of chitin nanofibers and their transparent nanocomposite films. Biomacromolecules 11:1326–1330Google Scholar
  18. 18.
    Jayakumar R, Menon D, Manzoor K, Nair SV, Tamura H (2010) Biomedical applications of chitin and chitosan based nanomaterials-A short review. Carbohydr Polym 82(2):6. doi: 10.1016/j.carbpol.2010.04.074 CrossRefGoogle Scholar
  19. 19.
    Ji Y-L, Wolfe PS, Rodriguez IA, Bowlin GL (2012) Preparation of chitin nanofibril/polycaprolactone nanocomposite from a nonaqueous medium suspension. Carbohydr Polym 87(3):7–7Google Scholar
  20. 20.
    Ji Y, Liang K, Shen X, Bowlin GL (2014) Electrospinning and characterization of chitin nanofibril/polycaprolactone nanocomposite fiber mats. Carbohydr Polym 101:68–74. doi: 10.1016/j.carbpol.2013.09.012 CrossRefGoogle Scholar
  21. 21.
    Junkasem J, Rujiravanit R, Supaphol P (2006) Fabrication of α-chitin whisker-reinforced poly(vinyl alcohol) nanocomposite nanofibres by electrospinning. Nanotechnology 17(17):4519–4528. doi: 10.1088/0957-4484/17/17/039 CrossRefGoogle Scholar
  22. 22.
    Junkasem J, Rujiravanit R, Grady BP, Supaphol P (2010) X-ray diffraction and dynamic mechanical analyses of Π± -chitin whisker-reinforced poly (vinyl alcohol) nanocomposite nanofibers. Polym Int 59(1):85–91. doi: 10.1002/pi.2693
  23. 23.
    Kim SK (2013) Chitin and Chitosan Derivatives. CRC PressGoogle Scholar
  24. 24.
    Lagerwall JPF, Schütz C, Salajkova M, Noh J, Park JH, Scalia G, Bergstrom L (2013) Cellulose nanocrystal-based materials: from liquid crystal self-assembly and glass formation to multifunctional thin films 6(1):e80–12Google Scholar
  25. 25.
    Li HY, Li H, Wang BJ, Gu Q, Jiang ZQ, Wu XD (2014) Synthesis and properties of poly(3-hydroxybutyrate-co-3- hydroxyvalerate)/chitin nanocrystals composite scaffolds for tissue engineering. Chin Chem Lett 1–4. doi: 10.1016/j.cclet.2014.06.019
  26. 26.
    Lin N, Huang J, Chang PR, Feng L, Yu J (2011) Effect of polysaccharide nanocrystals on structure, properties, and drug release kinetics of alginate-based microspheres. Colloids Surf B:Biointerfaces 85(2):270–279. doi: 10.1016/j.colsurfb.2011.02.039
  27. 27.
    Lu Y, Weng L, Zhang L (2004) Morphology and properties of soy protein isolate thermoplastics reinforced with chitin whiskers. Biomacromolecules 5(3):1046–1051. doi: 10.1021/bm034516x CrossRefGoogle Scholar
  28. 28.
    Marchessault RH, Morehead FF, Walter NM (1959) Liquid crystal systems from fibrillar polysaccharides. Nature 184:632–633Google Scholar
  29. 29.
    Mincea M, Negrulescu A, Ostafe V (2012) Preparation, modification, and applications of chitin nanowhiskers: a review. Rev Adv Mater Sci 30:225–242Google Scholar
  30. 30.
    Moon RJ, Martini A, Nairn J, Simonsen J, Youngblood J (2011) Cellulose nanomaterials review: structure, properties and nanocomposites. Chem Soc Rev 40(7):3941. doi: 10.1039/c0cs00108b CrossRefGoogle Scholar
  31. 31.
    Morganti P, Morganti G (2008) Chitin nanofibrils for advanced cosmeceuticals. Clin Dermatol 26(4):334–340. doi: 10.1016/j.clindermatol.2008.01.003 CrossRefGoogle Scholar
  32. 32.
    Morin A, Dufresne A (2002) Nanocomposites of chitin whiskers from riftiatubes and poly(caprolactone). Macromolecules 35(6):2190–2199. doi: 10.1021/ma011493a CrossRefGoogle Scholar
  33. 33.
    Muzzarelli RAA (1977) Chitin, 1st edn. Pergamon, Great BritainGoogle Scholar
  34. 34.
    Muzzarelli RAA (2011) Biomedical exploitation of chitin and chitosan via mechano-chemical disassembly, electrospinning, dissolution in imidazolium ionic liquids, and supercritical drying. Mar Drugs 9(12):1510–1533. doi: 10.3390/md9091510 CrossRefGoogle Scholar
  35. 35.
    Muzzarelli RAA, Morganti P, Morganti G, Palombo P, Palombo M, Biagini G et al (2007) Chitin nanofibrils/chitosan glycolate composites as wound medicaments. Carbohydr Polym 70(3):274–284. doi: 10.1016/j.carbpol.2007.04.008 CrossRefGoogle Scholar
  36. 36.
    Mülhaupt R (2012) Green polymer chemistry and bio-based plastics: dreams and reality. Macromol Chem Phys 214(2):159–174. doi: 10.1002/macp.201200439 CrossRefGoogle Scholar
  37. 37.
    Naseri N, Algan C, Jacobs V, John M, Oksman K, Mathew AP (2014) Electrospun chitosan-based nanocomposite mats reinforced with chitin nanocrystals for wound dressing. Carbohydr Polym 109:7–15. doi: 10.1016/j.carbpol.2014.03.031 CrossRefGoogle Scholar
  38. 38.
    Paillet M, Dufresne A (2001) Chitin wisker reinforced thermoplastic nanocomposites. Macromolecules 34:6527–6530Google Scholar
  39. 39.
    Phongying S, Aiba S-I, Chirachanchai S (2007) Direct chitosan nanoscaffold formation via chitin whiskers. Polymer 48(1):393–400. doi: 10.1016/j.polymer.2006.10.049 CrossRefGoogle Scholar
  40. 40.
    Pooyan P, Tannenbaum R, Garmestani H (2012) Mechanical behavior of a cellulose-reinforced scaffold in vascular tissue engineering. J Mech Behav Biomed Mater 7:50–59. doi: 10.1016/j.jmbbm.2011.09.009
  41. 41.
    Rodriguez IA, Sell SA, McCool JM, Saxena G, Spence AJ, Bowlin GL (2013) A preliminary evaluation of lyophilized gelatin sponges, enhanced with platelet-rich plasma, hydroxyapatite and chitin whiskers for bone regeneration. Cells 2(2):244–265. doi: 10.3390/cells2020244 CrossRefGoogle Scholar
  42. 42.
    Shervani Z (2012) Preparation of gold nanoparticles loaded chitin nanofiber composite. Adv Nanopart 1(3):71–78. doi: 10.4236/anp.2012.13010 CrossRefGoogle Scholar
  43. 43.
    Sriupayo J, Supaphol P, Blackwell J, Rujiravanit R (2005) Preparation and characterization of a-chitin whisker-reinforced poly(vinyl alcohol) nanocomposite films with or without heat treatment. Polymer 46(15):8. doi: 10.1016/j.polymer.2005.04.069 CrossRefGoogle Scholar
  44. 44.
    Thakur VK, Singha AS, Mehta IK (2010) Renewable resource-based green polymer composites: analysis and characterization. Int J Polym Anal Charact 15(3):137–146. doi: 10.1080/10236660903582233 CrossRefGoogle Scholar
  45. 45.
    Thakur VK, Singha AS, Kaur I et al (2011) Studies on analysis and characterization of phenolic composites fabricated from lignocellulosic fibres. Polym Polym Compos 19:505–511Google Scholar
  46. 46.
    Thakur VK, Singha AS, Thakur MK (2013) Ecofriendly biocomposites from natural fibers: mechanical and weathering study. Int J Polym Anal Charact 18(1):64–72. doi: 10.1080/1023666X.2013.747246 CrossRefGoogle Scholar
  47. 47.
    Thakur VK, Thakur MK, Gupta RK (2014) Review: raw natural fiber-based polymer composites. Int J Polym Anal Charact 19(3):256–271. doi: 10.1080/1023666X.2014.880016 CrossRefGoogle Scholar
  48. 48.
    Thakur VK, Thakur MK, Raghavan P, Kessler MR (2014) Progress in green polymer composites from lignin for multifunctional applications: a review. ACS Sustain Chem Eng 2(5):1072–1092. doi: 10.1021/sc500087z CrossRefGoogle Scholar
  49. 49.
    Thomas S, Visakh PM, Mathew AP (2012) Advances in Natural Polymers. SpringerGoogle Scholar
  50. 50.
    Tzoumaki MV, Moschakis T, Biliaderis CG (2010) Metastability of nematic gels made of aqueous chitin nanocrystal dispersions. Biomacromolecules 11:175–181Google Scholar
  51. 51.
    Wang C, Esker AR (2014) Nanocrystalline chitin thin films. Carbohydr Polym 102:151–158. doi: 10.1016/j.carbpol.2013.10.103 CrossRefGoogle Scholar
  52. 52.
    Watthanaphanit A, Supaphol P, Tamura H, Tokura S, Rujiravanit R (2008) Fabrication, structure, and properties of chitin whisker-reinforced alginate nanocomposite fibers. J Appl Polym Sci 110(2):890–899. doi: 10.1002/app.28634 CrossRefGoogle Scholar
  53. 53.
    Watthanaphanit A, Supaphol P, Tamura H, Tokura S, Rujiravanit R (2010) Wet-spun alginate/chitosan whiskers nanocomposite fibers: preparation, characterization and release characteristic of the whiskers. Carbohydr Polym 79(3):9. doi: 10.1016/j.carbpol.2009.09.031 CrossRefGoogle Scholar
  54. 54.
    Wise DL (2000) Biomaterials and bioengineering handbook, vol 63. Marcel Dekker New YorkGoogle Scholar
  55. 55.
    Wongpanit P, Sanchavanakit N, Pavasant P, Bunaprasert T, Tabata Y, Rujiravanit R (2007) Preparation and characterization of chitin whisker-reinforced silk fibroin nanocomposite sponges. Eur Polymer J 43(10):4123–4135. doi: 10.1016/j.eurpolymj.2007.07.004 CrossRefGoogle Scholar
  56. 56.
    Yamamoto Y, Nishimura T, Saito T, Kato T (2010) CaCO3/chitin-whisker hybrids: formation of CaCO3 crystals in chitin-based liquid-crystalline suspension. Polym J 42(7):583–586. doi: 10.1038/pj.2010.32 CrossRefGoogle Scholar
  57. 57.
    Younes I, Hajji S, Frachet V, Rinaudo M, Jellouli K, Nasri M (2014) Chitin extraction from shrimp shell using enzymatic treatment. antitumor, antioxidant and antimicrobial activities of chitosan. Int J Biol Macromol 69:489–498. doi: 10.1016/j.ijbiomac.2014.06.013 CrossRefGoogle Scholar
  58. 58.
    Yudin VE, Dobrovolskaya IP, Neelov IM, Dresvyanina EN, Popryadukhin PV, Ivan’kova EM et al (2014) Wet spinning of fibers made of chitosan and chitin nanofibrils. Carbohydr Polym 108:176–182. doi: 10.1016/j.carbpol.2014.02.090 CrossRefGoogle Scholar
  59. 59.
    Zeng J-B, He Y-S, Li S-L, Wang Y-Z (2012) Chitin whiskers: an overview. Biomacromolecules 13(1):1–11. doi: 10.1021/bm201564a CrossRefGoogle Scholar
  60. 60.
    Zhang X, Huang J, Chang PR, Li J, Chen Y, Wang D et al (2010) Structure and properties of polysaccharide nanocrystal-doped supramolecular hydrogels based on cyclodextrin inclusion. Polymer 51(19):4398–4407. doi: 10.1016/j.polymer.2010.07.025 CrossRefGoogle Scholar

Copyright information

© Springer India 2015

Authors and Affiliations

  • Carlos Filipe Cidre João
    • 1
  • Jorge Carvalho Silva
    • 1
  • João Paulo Borges
    • 1
    Email author
  1. 1.CENIMAT/I3N, Departamento de Ciência Dos Materiais, Faculdade de Ciências e Tecnologia - FCTUniversidade Nova de LisboaCaparicaPortugal

Personalised recommendations