Eco-Friendly Polymer-Layered Silicate Nanocomposite–Preparation, Chemistry, Properties, and Applications

  • Raghavan Prasanth
  • Peter Samora Owuor
  • Ravi Shankar
  • Jarin Joyner
  • Suppanat Kosolwattana
  • Sujin P. Jose
  • Pei Dong
  • Vijay Kumar Thakur
  • Jung Hwi Cho
  • Manjusha Shelke
Part of the Advanced Structured Materials book series (STRUCTMAT, volume 74)


This chapter aims at exploring the revolutionary field of nanotechnology and some of its promising aspects in polymer nanocomposites in view of preparation, characterization, materials properties, and processing of polymer layered silicate nanocomposites. These materials are attracting considerable interest in polymer science research. Polymer layered silicate nanocomposites are an important class of hybrid, organic/inorganic materials with substantially improved mechanical, thermal, and thermomechanical properties in comparison to pristine polymers. In addition, they also show superior ultraviolet (UV) as well as chemical resistance and are widely being investigated for improving gas barrier and flame retardant properties. Hectorite and montmorillonite are among the most commonly used smectite-type layered silicates for the preparation of polymer–clay nanocomposites. Smectites are a valuable mineral class for industrial applications due to their high cation exchange capacities, surface area, surface reactivity, adsorptive properties, and, in the case of hectorite, high viscosity and transparency in solution. A wide range of polymer matrices are explored for the preparation of polymer–clay nanocomposites, however, this chapter deals with special emphasis on biodegradable polymers––cellulose and natural rubber. Also, the chapter describes the common synthetic techniques in producing polymeric layered silicate nanocomposites, its properties, and applications.


Polymer Composite Layered silicates Clay modification Biopolymer Green composite Polymer–clay nancomposite Cellulose nanocomposite Natural rubber–clay nanocomposite 



Atomic force microscope


2-Acrylamido-2-methylpropane sulfonic acid


Cellulose acetate


Cellulose acetate bioplastic


Carbon black


Cation exchange capacity


Carboxylatedacrylonitrile butadiene rubber


Cloisite 30B


Cloisite 93A




Deoxyribonucleic acid


Differential scanning calorimetry






English Indian Clay


Epoxidized natural rubber


Ethylene-propylene thermoplastic rubber


Maleatedethylene-propylene thermoplastic rubber




High resolution transmission electron microscopy


Isobutylene–isoprene rubber


Layered double hydroxides clay


Layered silicate


Microfibrillated cellulose




MMT modified with dimethyl dihydrogenated tallow


MMT modified with methyl tallow bis-2-hydroxyl quaternary ammonium




Primary amine


MMT modified with octadecyltrimethylamine


Quaternary amine


Sodium montmorillonite


Nitrile butadiene rubber




Natural rubber


Organically modified layered silicate


Organically modified clay




Parts per hundred rubber


Polylactic acid






Polymer nanocomposites




Polyurethane rubber


Ribonucleic acid


Room temperature ionic liquid


Styrene butadiene-rubber


Scanning electron microscope


Synthetic natural rubber


Transmission electron microscope


Tin oxide




Unmodified clay


United States




X-ray diffraction


Zinc oxide





Degree celsius


g mol−1

Gram per mole


Giga pascal



J Kg−1

Joule per kilogram



kJ Kg−1

Kilojoule per kilogram


Mega pascal


Diffractive index



W m−1 °C−1

Watt per meter per degree Celsius


Weight percentage


  1. 1.
    Abraham E, Thomas MS, John C, La Pothen, Shoseyov O, Thomas S (2013) Green nanocomposites of natural rubber/nanocellulose: membrane transport, rheological and thermal degradation characterisations. Ind Crops Prod 51:415–424. doi: 10.1016/j.indcrop.2013.09.022 CrossRefGoogle Scholar
  2. 2.
    Alexander M, Dubois P (2000) Polymer nanocomposites: synthesis, characterization, and modeling. In: Krishnamoorti R, Vaia RA (eds) Oxford University Press, Oxford, 2001. (Mater Sci Eng 28:1–63)Google Scholar
  3. 3.
    Anwendungen RUND (2010) Synergistic effects of expanded nanoclay and carbon black on natural rubber compounds. Raw Mater Appl 7/8(August), pp 296–302Google Scholar
  4. 4.
    Arroyo M, Lopez-Manchado MA, Herrero B (2003) Organo-montmorillonite as substitute of carbon black in natural rubber compounds. Polymer 44(8): 2447–2453. doi:  10.1016/S0032-3861(03)00090-9 CrossRefGoogle Scholar
  5. 5.
    Atai M, Solhi L, Nodehi A, Mirabedini SM, Kasraei S, Akbari K, Babanzadeh S (2009) PMMA-grafted nanoclay as novel filler for dental adhesives. Dent Mater: Official Publ Acad Dent Mater 25(3):339–347. doi: 10.1016/ CrossRefGoogle Scholar
  6. 6.
    Aulin C, Salazar-Alvarez G, Lindström T (2012) High strength, flexible and transparent nanofibrillated cellulose-nanoclay biohybrid films with tunable oxygen and water vapor permeability. Nanoscale 4(20):6622–6628. doi: 10.1039/c2nr31726e CrossRefGoogle Scholar
  7. 7.
    Baillie C (2004) Green composites: Polymer composites and the environment, Elsevier, ISBN: 978-1-85573-739-6Google Scholar
  8. 8.
    Barbee RB (2000) US Patent 6,034,163, 07th March 2000Google Scholar
  9. 9.
    Bendahou A, Kaddami H, Dufresne A (2010) Investigation on the effect of cellulosic nanoparticles’ morphology on the properties of natural rubber based nanocomposites. Eur Polym J 46(4):609–620. doi: 10.1016/j.eurpolymj.2009.12.025 CrossRefGoogle Scholar
  10. 10.
    Bhowmick AK, Bhattacharya M, Mitra S (2010) Exfoliation of Nanolayer Assemblies for Improved Natural Rubber Properties: Methods and Theory. J Elastomers Plast 42:517–537. doi:  10.1177/0095244310383752 CrossRefGoogle Scholar
  11. 11.
    Bhowmick AK, Bhattacharya M, Mitra S, Dinesh Kumar K, Maji PK, Choudhury A, George JJ, Basak GC (2011) Morphology–property relationship in rubber-based nanocomposites: Some recent developments. Adv Polym Sci 239:1–83 ISBN: 978-3-642-19503-7, doi:  10.1007/12_2010_95
  12. 12.
    Bondeson D (2007) Biopolymer-based nanocomposites: processing and properties. Norwegian University of Science and Technology.
  13. 13.
    Brauer S (2004) Polymer nanocomposites.
  14. 14.
    Carli LN, Roncato CR, Zanchet A (2011) Characterization of natural rubber nanocomposites filled with organoclay as a substitute for silica obtained by the conventional two-roll mill method. Appl Clay Sci 52(1–2):56–61. doi:  10.1016/j.clay.2011.01.029 CrossRefGoogle Scholar
  15. 15.
    Carretero-gonza J, Retsos H, Verdejo R, Toki S, Hsiao BS, Giannelis EP, Lo MA (2008) Effect of nanoclay on natural rubber microstructure. Macromolecules 41(18):6763–6772. doi: 10.1021/ma800893x CrossRefGoogle Scholar
  16. 16.
    Cerruti P, Ambrogi V, Postiglione A, Rychlý J, Matisová-Rychlá L, Carfagna C (2008) Morphological and thermal properties of cellulose-montmorillonite nanocomposites. Biomacromolecules 9(11):3004–3013. doi: 10.1021/bm8002946 CrossRefGoogle Scholar
  17. 17.
    Chand N, Gautam KKS (1994) Influence of Load on Abrasion Fly-ash Glass Fiber Reinforced Composites. J Mater Sci Lett 13(4):230–233. doi:  10.1007/BF00571759 CrossRefGoogle Scholar
  18. 18.
    Cheol KB, Blumstein A, Kumar J, Samuelson LA, Kim DW (2004) Barrier properties of ordered multilayer polymer nanocomposites, dekker encyclopedia of nanoscience and nanotechnology. Taylor and Francis, Abingdon, pp 213–224Google Scholar
  19. 19.
    Das A, Costa FR, Wagenknecht U, Heinrich G (2008) Nanocomposites based on chloroprene rubber: Effect of chemical nature and organic modification of nanoclay on the vulcanizate properties. Eur Polym J 44(11):3456–3465. doi: 10.1016/j.eurpolymj.2008.08.025 CrossRefGoogle Scholar
  20. 20.
    Delhom C (2009) Development and thermal characterization of cellulose/clay nanocomposites. Louisiana State University.
  21. 21.
    Frone AN, Berlioz S, Chailan JF, Panaitescu DM (2013) Morphology and thermal properties of PLA-cellulose nanofibers composites. Carbohydr Polym 91(1):377–384. doi: 10.1016/j.carbpol.2012.08.054 CrossRefGoogle Scholar
  22. 22.
    Giannees BEP (1996) Polymer layered silicate nanocomposites. Adv Mater 8(1):29–35. doi:  10.1002/adma.19960080104 CrossRefGoogle Scholar
  23. 23.
    Gopakumar TG, Lee JA, Kontopoulou M, Parent JS (2002) Polymer 43(1):5483–5491. doi.  10.1016/S0032-3861(02)00403-2 CrossRefGoogle Scholar
  24. 24.
    Hassan-Nejad M, Ganster J, Bohn A, Pinnow M, Volkert B (2009) Bio-based nanocomposites of cellulose acetate and nano-clay with superior mechanical properties. Macromol Symp 280(1):123–129. doi: 10.1002/masy.200950614 CrossRefGoogle Scholar
  25. 25.
    Hegde RR (2009) Structure and properties of nanoclay reinforced polymer films, fibers and nonwovens. University of Tennessee.
  26. 26.
    Jacob A, Kurian P, Aprem AS (2008) Transport properties of natural rubber latex layered clay nanocomposites. J Appl Polym Sci 108:2623–2629. doi: 10.1002/app CrossRefGoogle Scholar
  27. 27.
    Jahromi SG, Andalibizade B, Vossough S (2010) Engineering properties of nanoclay modified asphalt concrete mixtures. Arabian J Sci Eng 35(1):89–103. Google Scholar
  28. 28.
    Jarvela PA, Jarvela PK (1996) Multicomponent compounding of polypropylene. J Mater Sci 31(14):3853–3860. ISSN 0022-2461, doi:  10.1007/BF00352802 CrossRefGoogle Scholar
  29. 29.
    Jia QX, Wu YP, Wang YQ, Lu M, Zhang LQ (2008) Enhanced interfacial interaction of rubber/clay nanocomposites by a novel two-step method. Compos Sci Technol 68(3–4):1050–1056. doi: 10.1016/j.compscitech.2007.07.006 CrossRefGoogle Scholar
  30. 30.
    Jin M, Zhong Q (2013) Surface-coating montmorillonite nanoclay by water-soluble proteins extracted from hominy feed. J Food Eng 119(3):687–695. doi: 10.1016/j.jfoodeng.2013.07.001 CrossRefGoogle Scholar
  31. 31.
    Joly S, Garnaud G, Ollitrault R, Bokobza L (2002) Organically modified layered silicates as reinforcing fillers for natural rubbers. Chem Mater 14:4202–4208. doi:  10.1021/cm020093e CrossRefGoogle Scholar
  32. 32.
    Jonoobi M, Harun J, Mathew AP, Oksman K (2010) Mechanical properties of cellulose nanofiber (CNF) reinforced polylactic acid (PLA) prepared by twin screw extrusion. Compos Sci Technol 70(12):1742–1747. doi: 10.1016/j.compscitech.2010.07.005 CrossRefGoogle Scholar
  33. 33.
    Kim J, Hu C, Woo R, Sham M (2005) Moisture barrier characteristics of organoclay?epoxy nanocomposites. Compos Sci Technol 65(5):805–813. doi: 10.1016/j.compscitech.2004.10.014 CrossRefGoogle Scholar
  34. 34.
    Kornmann X, Lindberg H, Berglund LA (2001) Synthesis of epoxy–clay nanocomposites: influence of the nature of the clay on structure. Polymer 42(4):1303–1310. doi: 10.1016/S0032-3861(00)00346-3 CrossRefGoogle Scholar
  35. 35.
    Kuo PY, Yan N, Sain M (2013) Influence of cellulose nanofibers on the curing behavior of epoxy/amine systems. Eur Polym J 49(12):3778–3787. doi: 10.1016/j.eurpolymj.2013.08.022 CrossRefGoogle Scholar
  36. 36.
    Li C, Liu Q, Shu S, Xie Y, Zhao Y, Chen B, Dong W (2014) Preparation and characterization of regenerated cellulose/TiO2/ZnO nanocomposites and its photocatalytic activity. Mater Lett 117:234–236. doi: 10.1016/j.matlet.2013.12.009 CrossRefGoogle Scholar
  37. 37.
    Li J, Zhou C, Wang G, Zhao D (2003) Study on rheological behavior of polypropylene/clay nanocomposites. J Appl Polym Sci 89(13):3609–3617. doi:  10.1002/app.12643 CrossRefGoogle Scholar
  38. 38.
    Liang Y, Cao W, Li Z, Wang Y, Wu Y, Zhang L (2008) A new strategy to improve the gas barrier property of isobutylene–isoprene rubber/clay nanocomposites. Polym Test 27(3):270–276. doi: 10.1016/j.polymertesting.2007.11.003 CrossRefGoogle Scholar
  39. 39.
    Liang Y, Wang Y, Wu Y, Lu Y, Zhang H, Zhang L (2005) Preparation and properties of isobutylene–isoprene rubber (IIR)/clay nanocomposites. Polym Test 24(1):12–17. doi: 10.1016/j.polymertesting.2004.08.004 CrossRefGoogle Scholar
  40. 40.
    Lo H, Chu C (2011) Influence of clay, silicate and carbon black on the environmental resistance properties of hard rubber. Chin Steel Tech Rep 16(24):40–47. Google Scholar
  41. 41.
    Lo’pez-Manchado MA, Herrero B, Arroyo M (2004) Organoclay-natural rubber nanocompositessynthesized by mechanical and solution mixing methods. Polym Int 53(11):1766–1772. doi:  10.1002/pi.1573 CrossRefGoogle Scholar
  42. 42.
    Madhusoodanan KN, Varghese S (2006) Technological and processing properties of natural rubber layered silicate-nanocomposites by melt intercalation process. J Appl Polym Sci 102(3):2537–2543. doi: 10.1002/app.24680 CrossRefGoogle Scholar
  43. 43.
    Magaraphan R, Thaijaroen W, Lim-Ochakun R (2003) Structure and properties of natural rubber andmodified montmorillonitenanocomposites. Rubber Chem Technol 76(2):406–418. doi: Scholar
  44. 44.
    Mahmoudian S, Wahit MU, Ismail AF, Yussuf AA (2012) Preparation of regenerated cellulose/montmorillonite nanocomposite films via ionic liquids. Carbohydr Polym 88(4):1251–1257. doi: 10.1016/j.carbpol.2012.01.088 CrossRefGoogle Scholar
  45. 45.
    Majeed K, Jawaid M, Hassan A, Abu Bakar A, Abdul Khalil HPS, Salema AA, Inuwa I (2013) Potential materials for food packaging from nanoclay/natural fibres filled hybrid composites. Mater Des 46(1):391–410. doi: 10.1016/j.matdes.2012.10.044 CrossRefGoogle Scholar
  46. 46.
    Mohamadpour S, Pourabbas B, Fabbri P (2011) Anti-scratch and adhesion properties of photo-curable polymer/clay nanocomposite coatings based on methacrylate monomers. Sci Iranica 18(3):765–771. doi: 10.1016/j.scient.2011.06.001 CrossRefGoogle Scholar
  47. 47.
    Mohan TP, Kanny K (2011) Water barrier properties of nanoclay filled sisal fibre reinforced epoxy composites. Compos Part A: Appl Sci Manuf 42(4):385–393. doi: 10.1016/j.compositesa.2010.12.010 CrossRefGoogle Scholar
  48. 48.
    Mohan TP, Kuriakose J, Kanny K (2011) Effect of nanoclay reinforcement on structure, thermal and mechanical properties of natural rubber–styrene butadine rubber (NR–SBR). J Ind Eng Chem 17(2):264–270. doi: 10.1016/j.jiec.2011.02.019 CrossRefGoogle Scholar
  49. 49.
    Nasri-Nasrabadi B, Mehrasa M, Rafienia M, Bonakdar S, Behzad T, Gavanji S (2014) Porous starch/cellulose nanofibers composite prepared by salt leaching technique for tissue engineering. Carbohydr Polym 108:232–238. doi: 10.1016/j.carbpol.2014.02.075 CrossRefGoogle Scholar
  50. 50.
    Nicotera I, Enotiadis A, Angjeli K, Coppola L, Gournis D (2012) Evaluation of smectite clays as nanofillers for the synthesis of nanocomposite polymer electrolytes for fuel cell applications. Int J Hydrogen Energy 37(7):6236–6245. doi: 10.1016/j.ijhydene.2011.06.041 CrossRefGoogle Scholar
  51. 51.
    Nugay N, Erman B (2001) Property optimization in nitrile rubber composites via hybrid filler systems. J Appl Polym Sci 79:366–374. doi:  10.1002/1097-4628(20010110) CrossRefGoogle Scholar
  52. 52.
    Okada A, Kawasumi M, Usuki A, Kojima Y, Kurauchi T, Kamigaito O (1990) Synthesis and properties of nylon-6/clayhybrids. In: Schaefer DW, Mark JE (eds) Polymer basedmolecular composites. MRS Symposium Proceedings, Pittsburgh, vol. 171, pp 45–50Google Scholar
  53. 53.
    Okahisa Y, Abe K, Nogi M, Nakagaito AN, Nakatani T, Yano H (2011) Effects of delignification in the production of plant-based cellulose nanofibers for optically transparent nanocomposites. Compos Sci Technol 71(10):1342–1347. doi: 10.1016/j.compscitech.2011.05.006 CrossRefGoogle Scholar
  54. 54.
    Panaitescu DM, Frone AN, Nicolae C (2013) Micro- and nano-mechanical characterization of polyamide 11 and its composites containing cellulose nanofibers. Eur Polym J 49(12):3857–3866. doi: 10.1016/j.eurpolymj.2013.09.031 CrossRefGoogle Scholar
  55. 55.
    Park HM, Liang X, Mohanty AK, Misra M, Drzal LT (2004) Effect of compatibilizer on nanostructure of the biodegradable cellulose acetate/organoclay nanocomposites. Macromolecules 37(24):9076–9082. doi: 10.1021/ma048958s CrossRefGoogle Scholar
  56. 56.
    Park HM, Misra M, Drzal LT, Mohanty AK (2004) “Green” nanocomposites from cellulose acetate bioplastic and clay: effect of eco-friendly triethyl citrate plasticizer. Biomacromolecules 5(6):2281–2288. doi: 10.1021/bm049690f CrossRefGoogle Scholar
  57. 57.
    Park HM, Mohanty AK, Drzal LT, Lee E, Mielewski DF, Misra M (2006) Effect of sequential mixing and compounding conditions on cellulose acetate/layered silicate nanocomposites. J Polym Environ 14(1):27–35. doi: 10.1007/s10924-005-8704-0 CrossRefGoogle Scholar
  58. 58.
    Pattanayak A, Jana SC (2005) Properties of bulk-polymerized thermoplastic polyurethane nanocomposites. Polymer 46:3394–3406. doi:  10.1016/j.polymer.2005.03.021 CrossRefGoogle Scholar
  59. 59.
    Peiyao L, Li W, Guojun S, Lanlan Y, Feng Q, Liangdong S (2008) Characterization of high performance exfoliated natural rubber/organoclay nanocomposites. J Appl Polym Sci 109(6):3831–3838. doi: 10.1002/app.28480 CrossRefGoogle Scholar
  60. 60.
    Pinnavia TJ, Beall G (eds) (2001) Polymer–clay nanocomposites, Wiley, New York. ISBN: 978-0-471-63700-4Google Scholar
  61. 61.
    Prasertsri S, Rattanasom N (2012) Fumed and precipitated silica reinforced natural rubber composites prepared from latex system: mechanical and dynamic properties. Polymer Testing 31(5):593–605. doi: 10.1016/j.polymertesting.2012.03.003
  62. 62.
    Praveen S, Chattopadhyay PK, Albert P, Dalvi VG, Chakraborty BC, Chattopadhyay S (2009) Synergistic effect of carbon black and nanoclay fillers in styrene butadiene rubber matrix: Development of dual structure. Compos part A: Appl Sci Manuf 40(3):309–316. doi: 10.1016/j.compositesa.2008.12.008 CrossRefGoogle Scholar
  63. 63.
    Psarras GC, Gatos KG, Karahaliou PK et al (2007) Relaxation phenomena in rubber/layered silicatenanocomposites. Express Polym Lett 1(1):837–845. doi: 10.3144/expresspolymlett.2007.116 CrossRefGoogle Scholar
  64. 64.
    Psarras GC, Gatos KG, Karger-Kocsis J (2007) Dielectric properties of layered silicate reinforcednatural and polyurethane rubber nanocomposites. J Appl Polym Sci 106(2):1405–1411. doi: 10.1002/app.26831 CrossRefGoogle Scholar
  65. 65.
    Rajasekar R, Heinrich G, Das A, Das CK (2009) Development of SBR-Nanoclay composites with epoxidized natural rubber as compatibilizer. J Nanotechnol 2009:1–5. doi: 10.1155/2009/405153 CrossRefGoogle Scholar
  66. 66.
    Rajesh JJ (2012) Effect of injection molding parameters on nanofillers dispersion in masterbatch based PP-clay nanocomposites. Express Polym Lett 6(3):237–248. doi: 10.3144/expresspolymlett.2012.26 CrossRefGoogle Scholar
  67. 67.
    Rattanasom N, Prasertsri S (2012) Mechanical properties, gas permeability and cut growth behaviour of natural rubber vulcanizates: Influence of clay types and clay/carbon black ratios. Polym Test 31(5):645–653. doi: 10.1016/j.polymertesting.2012.04.001 CrossRefGoogle Scholar
  68. 68.
    Rattanasom N, Prasertsri S, Ruangritnumchai T (2009) Comparison of the mechanical properties at similar hardness level of natural rubber filled with various reinforcing-fillers. Polym Test 28(1):8–12. doi: 10.1016/j.polymertesting.2008.08.004 CrossRefGoogle Scholar
  69. 69.
    Rattanasom N, Saowapark T, Deeprasertkul C (2007) Reinforcement of natural rubber with silica/carbon black hybrid filler. Polym Test 26(3):369–377. doi: 10.1016/j.polymertesting.2006.12.003 CrossRefGoogle Scholar
  70. 70.
    Ray SS, Okamoto M (2003) Polymer/layered silicate nanocomposites: a review from preparation to processing. Prog Polym Sci 28(11):1539–1641 doi:  10.1016/j.progpolymsci.2003.08.002
  71. 71.
    Ren J, Huang Y, Liu Y, Tang X (2005) Preparation, characterization and properties of poly (vinyl chloride)/compatibilizer/organophilic-montmorillonite nanocomposites by melt intercalation. Polym Test 24(3):316–323. doi: 10.1016/j.polymertesting.2004.11.004 CrossRefGoogle Scholar
  72. 72.
    Rezende CA, Bragança FC, Doi TR, Lee LT, Galembeck F, Boué F (2010) Natural rubber-clay nanocomposites: mechanical and structural properties. Polymer 51(16):3644–3652. doi: 10.1016/j.polymer.2010.06.026 CrossRefGoogle Scholar
  73. 73.
    Riechert P (2001) Morphological stability of poly(propylene) nanocomposites. Macromol Rapid Commun 22(7):519–523. doi: 10.1002/1521-3927(20010401) CrossRefGoogle Scholar
  74. 74.
    Ryu SH, Chang YW (2005) Factors affecting the dispersion of montmorillonite in LLDPE nanocomposite. Polym Bull 55(5):385–392. doi: 10.1007/s00289-005-0437-7 CrossRefGoogle Scholar
  75. 75.
    Saminathan K, Selvakumar P, Bhatnagar N (2008) Fracture studies of polypropylene/nanoclay composite. Part I: effect of loading rates on essential work of fracture. Polym Test 27(3):296–307. doi: 10.1016/j.polymertesting.2007.11.008 CrossRefGoogle Scholar
  76. 76.
    Sancaktar E, Kuznicki J (2011) Nanocomposite adhesives: mechanical behavior with nanoclay. Int J Adhes Adhes 31(5):286–300. doi: 10.1016/j.ijadhadh.2010.09.006 CrossRefGoogle Scholar
  77. 77.
    Sapkota J, Poikelispa M (2013) Influence of nanoclay-carbon black hybrid fillers on cure and properties of natural rubber compounds. Polym Eng Sci 53(3):615–622. doi: 10.1002/pen CrossRefGoogle Scholar
  78. 78.
    Sapkota J, Poikelispää M, Das A, Dierkes W, Vuorinen J (2012) Partial carbon black replacement by nanoclay for enhanced crosslinking. SPE Plastics Research Online pp 1–2. doi:  10.2417/spepro.004513
  79. 79.
    Sapkota J, Poikelispää M, Das A, Dierkes W, Vuorinen J (2013) Influence of nanoclaycarbon black hybrid fillers on cure and properties of natural rubber compounds. Polym Eng Sci 53(3):615-622. doi: 10.1002/pen.23297
  80. 80.
    Schadler LS (2003) Polymer-based and Polymer-filled Nanocomposites. In: Nanocomposite science and technology. Ajayan PM, Schadler LS, Braun PV (eds) Wiley VCH, New York, ISBN: 3-527-30359-6, pp. 77–144.Google Scholar
  81. 81.
    Schmidt H (1990) Polymer based molecular nanocomposites. In: Polymer based molecular momposites. Schaefer DW, Mark JE (eds) Material Research Society, Pittsburg. ISBN AD-A229 199, Vol. 171, pp. 57–63.
  82. 82.
    Sridhar R, Narasimha Murthy HN, Pattar N, Vishnu Mahesh KR, Krishna M (2012) Parametric study of twin screw extrusion for dispersing MMT in vinylester using orthogonal array technique and grey relational analysis. Compos B Eng 43(2):599–608. doi: 10.1016/j.compositesb.2011.08.025 CrossRefGoogle Scholar
  83. 83.
    Taghizadeh MT, Sabouri N (2013) Thermal degradation behavior of polyvinyl Alcohol/Starch/Carboxymethyl Cellulose/Clay Nanocomposites. Univers J Chem 1(2):21–29. doi: 10.13189/ujc.2013.010202 Google Scholar
  84. 84.
    Tavakoli M, Asghar Katbab A, Nazockdast H (2011) Effectiveness of maleic anhydride grafted EPDM rubber (EPDM-g-MAH) as compatibilizer in NR/organoclay nanocomposites prepared by melt compounding. J Macromol Sci Part B Phys 50(7):1270–1284. doi:  10.1080/00222348.2010.507439 CrossRefGoogle Scholar
  85. 85.
    Tavakoli M, Asghar Katbab A, Nazockdast H (2012) NR/SBR/organoclay nanocomposites: Effects of molecular interactions upon the clay microstructure and mechano-dynamic properties. J Appl Polym Sci 123(3):1853–1864. doi:  10.1002/app.34673
  86. 86.
    Teh PL, Ishak ZAM, Hashim AS, Karger-Kocsis J, Ishiaku US (2006) Physical properties of natural rubber/organoclay nanocomposites compatibilized with epoxidized natural rubber. J Appl Polym Sci 100(2):1083–1092. doi:  10.1002/app.23452 CrossRefGoogle Scholar
  87. 87.
    Uddin MF, Sun CT (2010) Improved dispersion and mechanical properties of hybrid nanocomposites. Compos Sci Tech 70(2):223–230 doi:  10.1016/j.compscitech.2009.09.017 CrossRefGoogle Scholar
  88. 88.
    Usuki A, Koiwai A, Kojima Y, Kawasumi M, Okada A, Kurauchi T, Kamigaito O (1995) . Interaction of nylon 6-clay surface and mechanical properties of nylon 6-clay hybrid. J Appl Polym Sci 55(1):119–123. doi:  10.1002/app.1995.070550113 CrossRefGoogle Scholar
  89. 89.
    Vaia RA, Ishii H, Giannelis EP (1993) Synthesis and properties of two-dimensional nanostructures by direct intercalation of polymer melts in layered silicates. Chem Mater 5(12):1694–1696. doi:  10.1021/cm00036a004 CrossRefGoogle Scholar
  90. 90.
    Vaia RA (2002) Polymer nanocomposites open a new dimension for plastics and composites. AMPTIAC Q -A Look Inside Nanotechnol 6(1):17–24.
  91. 91.
    Valadares LF, Leite CAP, Galembeck F (2006) Preparation of natural rubber–montmorillonite nanocomposite in aqueous medium: evidence for polymer–platelet adhesion. Polymer 47(2):672–678. doi:  10.1016/j.polymer.2005.11.062 CrossRefGoogle Scholar
  92. 92.
    Varghese S, Gatos KG, Apostolov AA, Karger-Kocsis J (2004) Morphology and mechanical propertiesof layered silicate reinforced natural and polyurethane rubber blends produced by latex compounding. J Appl Polym Sci 92(1):543–551. doi:  10.1002/app.20036 CrossRefGoogle Scholar
  93. 93.
    Varghese S, Karger-Kocsis J (2003) Natural rubber-based nanocomposites by latex compounding with layered silicates. Polymer 44(17):4921–4927. doi:  10.1016/S0032-3861(03)00480-4 CrossRefGoogle Scholar
  94. 94.
    Varghese S, Karger-Kocsis J (2004) Melt-compounded natural rubber nanocomposites with pristine and organophilic layered silicates of natural and synthetic origin. J Appl Polym Sci 91(2):813–819. doi:  10.1002/app.13173 CrossRefGoogle Scholar
  95. 95.
    Visakh PM, Thomas S, Oksman K, Mathew AP (2012) Crosslinked natural rubber nanocomposites reinforced with cellulose whiskers isolated from bamboo waste: Processing and mechanical/thermal properties. Compos Part A: Appl Sci Manuf 43(4):735–741. doi: 10.1016/j.compositesa.2011.12.015 CrossRefGoogle Scholar
  96. 96.
    Vu YT, Mark JE, Pham LH, Engelhardt M (2001) Clay nanolayer reinforcement of cis-1,4- polyisoprene and epoxidized natural rubber. J Appl Polym Sci 82(6):1391–1403. doi:  10.1002/app.1976 CrossRefGoogle Scholar
  97. 97.
    Wang M, Yu JH, Hsieh AJ, Rutledge GC (2010) Effect of tethering chemistry of cationic surfactants on clay exfoliation, electrospinning and diameter of PMMA/clay nanocomposite fibers. Polymer 51(26):6295–6302. doi: 10.1016/j.polymer.2010.10.040 CrossRefGoogle Scholar
  98. 98.
    Woo R, Zhu H, Leung C, Kim J (2008) Environmental degradation of epoxy-organoclay nanocomposites due to UV exposure: Part II residual mechanical properties. Compos Sci Technol 68(9):2149–2155. doi: 10.1016/j.compscitech.2008.03.020 CrossRefGoogle Scholar
  99. 99.
    Wu YP, Wang YQ, Zhang HF, Wang YZ, Yu DS, Zhang LQ, Yang J (2005) Rubber–pristine clay nanocomposites prepared by co-coagulating rubber latex and clay aqueous suspension. Compos Sci Technol 65(7–8):1195–1202. doi: 10.1016/j.compscitech.2004.11.016 CrossRefGoogle Scholar
  100. 100.
    Xiong J, Liu Y, Yang X, Wang X (2004) Thermal and mechanical properties of polyurethane/montmorillonite nanocomposites based on a novel reactive modifier. Polym Degrad Stab 86(3):549–555. doi:  10.1016/j.polymdegradstab.2004.07.001 CrossRefGoogle Scholar
  101. 101.
    Xu R, Manias E, Snyder AJ, Runt (2003) Low permeability biomedical polyurethane nanocomposites J Biomed Res Part A 64 A(1):114–119. doi:  10.1002/jbm.a.10377
  102. 102.
    Yahaya LE, Adebowale KO, Menon ARR, Rugmini S, Olu-Owolabi BI, Chameswary J (2010) Natural rubber/organoclay nanocomposites: effect of filler dosage on the physicomechanical properties of vulcanizatesAfrican. J Pure Appl Chem 4(9):198–205Google Scholar
  103. 103.
    Yang W, Hu Y, Tai Q, Lu H, Song L, Yuen RKK (2011) Fire and mechanical performance of nanoclay reinforced glass-fiber/PBT composites containing aluminum hypophosphite particles. Compos Part A: Appl Sci Manuf 42(7):794–800. doi: 10.1016/j.compositesa.2011.03.009 CrossRefGoogle Scholar
  104. 104.
    Yehia AA, Akelah AM, Rehab A, El-Sabbagh SH, El Nashar DE, Koriem AA (2012) Evaluation of clay hybrid nanocomposites of different chain length as reinforcing agent for natural and synthetic rubbers. Mater Des 33:11–19. doi: 10.1016/j.matdes.2011.06.066 CrossRefGoogle Scholar
  105. 105.
    Zawrah MF, Khattab RM, Saad EM, Gado RA (2014) Effect of surfactant types and their concentration on the structural characteristics of nanoclay. Spectrochim Acta Part A Mol Biomol Spectrosc 122:616–623. doi: 10.1016/j.saa.2013.11.076 CrossRefGoogle Scholar

Copyright information

© Springer India 2015

Authors and Affiliations

  • Raghavan Prasanth
    • 1
    • 2
  • Peter Samora Owuor
    • 1
  • Ravi Shankar
    • 3
  • Jarin Joyner
    • 1
  • Suppanat Kosolwattana
    • 1
  • Sujin P. Jose
    • 1
  • Pei Dong
    • 1
  • Vijay Kumar Thakur
    • 4
  • Jung Hwi Cho
    • 1
  • Manjusha Shelke
    • 1
  1. 1.Department of Materials Science and NanoEngineeringRice UniversityHoustonUSA
  2. 2.Department of Mechanical Engineering and Materials ScienceRice UniversityHoustonUSA
  3. 3.Fujifilm Imaging Colorants, IncNew CastleUSA
  4. 4.School of Mechanical and Materials EngineeringWashington State UniversityPullmanUSA

Personalised recommendations