Portfolio Selection with Possibilistic Kurtosis

  • Sheikh Ahmed HossainEmail author
  • Rupak Bhattacharyya
Part of the Springer Proceedings in Mathematics & Statistics book series (PROMS, volume 125)


This paper proposes a new approach for modeling multiple objective portfolio selection problem by applying weighted possibilistic moments of trapezoidal fuzzy numbers. The proposed model allows the decision-maker to select the suitable portfolio taking into account the impreciseness to the market scenarios. Here, the objectives are to (i) maximize the expected portfolio return, (ii) minimize the portfolio variance, (iii) maximize the portfolio skewness, and (iv) minimize the portfolio kurtosis for the risky investor. The proposed model has been solved by Zimmermann’s fuzzy goal programming technique. The model is illustrated by a numerical example using data extracted from the Bombay Stock Exchange.


Fuzzy portfolio selection Possibilistic measures Mean Variance Skewness Kurtosis Zimmerman’s fuzzy goal programming 


  1. 1.
    Samuelson, P.: The fundamental approximation theorem of portfolio analysis in terms of means, variances an higher moments. Rev. Econ. Stud. 25, 65–86 (1958)CrossRefGoogle Scholar
  2. 2.
    Bhattacharyya, R., Kar, M.B., Kar, S., Dutta Majumder, D.: Mean- entropy—skewness fuzzy portfolio selection by credibility theory approach. Chaudhury, S. et al. (Eds.) In: PReMI LNCS 5909, pp. 603–608 (2009)Google Scholar
  3. 3.
    Bhattacharyya, R., Kar, S., Dutta Majumder, D.: Fuzzy mean-variance-skewness portfolio selection models by interval analysis. Comput. Math. Appl. 61, 126–137 (2011)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Bhattacharyya, R., Kar, S.: Possibilistic mean-variance-skewness portfolio selection models. Int. J. Oper. Res. 8, 44–56 (2011)MathSciNetGoogle Scholar
  5. 5.
    Bhattacharyya, R., Kar, S.: Multi-objective fuzzy optimization for portfolio selection: an embedding theorem approach. Turk. J. Fuzzy Syst. 2, 14–35 (2011)Google Scholar
  6. 6.
    Markowitz, H.: Portfolio selection. J. Financ. 7, 77–91 (1952)Google Scholar
  7. 7.
    Davies, R., Kat, H., Lu S.: Fund of hedge funds portfolio selection: a multiple objective approach. Working Paper, ISMA Center (2004)Google Scholar
  8. 8.
    Berenyi, Z.: Performance of leveraged assets funds., Working Paper University of Mnich (2001)Google Scholar
  9. 9.
    Berenyi, Z.: Measuring hedges funds, risk with moment based variance-equivalent measures. In: Adcock- Jurczenko-Maillet (ed.) Multi Moment Asset Pricing Models and Related Topic, Springer, New York (2005)Google Scholar
  10. 10.
    Huang, X.: Mean-semivariance models for fuzzy portfolio selection. J. Comput. Appl. Math. 217(1), 1–8 (2008)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Li, X., Qin, Z., Kar, S.: Mean-variance-skewness model for portfolio selection with fuzzy returns. Eur. J. Oper. Res. 202(1), 239–247 (2010)CrossRefGoogle Scholar
  12. 12.
    Louis, A.F., Jules, S.K., Christian, D.T.: Kurtosis and Semi-kurtosis for Portfolios Selection with Fuzzy Returns. In: Int. Statistical Inst. Proceedings of the 58th World Statistical Congress, Dublin (Session CPS027) (2011)Google Scholar
  13. 13.
    Zimmermann, H.J.: Fuzzy Linear Programming with several objective functions. Fuzzy Sets Syst. 1, 46–55 (1978)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Bellman, R.E., Zadeh, L.A.: Decision-making in a fuzzy environment. Manag. Sci. 17(4), 141–164 (1970)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer India 2015

Authors and Affiliations

  1. 1.Department of MathematicsBrahmananda Keshab Chandra CollegeKolkataIndia
  2. 2.Department of MathematicsBijoy Krishna Girls’ CollegeHowrahIndia

Personalised recommendations