Meristems and Their Role in Primary and Secondary Organization of the Plant Body

  • K. V. KrishnamurthyEmail author
  • Bir Bahadur
  • S. John Adams
  • Padma Venkatasubramanian


This chapter deals with meristems and their importance in the organization of the primary and secondary plant body. The meristem concept is explained with particular reference to initials, stem cells and permanency of initials. A classification of meristems is provided, followed by the organization of SAM, RAM and vascular cambium. The genetic basis of the organization and behaviour of these three meristems is dealt with in detail along with their hormonal control. An account on intercalary meristem, metamers and modules, origin of nodes and internodes, axillary buds, apical dominance, primary and secondary thickening meristems and phellogen is also provided.


Axillary bud Genetic control of meristems Intercalary meristem Lateral roots Metamer Phellogen Quiescent centre Root apical meristem (RAM) Shoot apical meristem (SAM) Vascular cambium 


  1. Aichinger E, Kornet N, Friedrich T, Laux T (2012) Plant stem cell niches. Annu Rev Plant Biol 63:615–636PubMedGoogle Scholar
  2. Aida M, Beis D, Heidstra R, Willemsen V, Blilou I (2004) The PLETHORA genes mediate patterning of the Arabidopsis root stem cell niche. Cell 119:109–120PubMedGoogle Scholar
  3. Aloni R, Aloni E, Langhans M, Ullrich CI (2006) Role of cytokinin and auxin in differentiation, lateral root initiation, root apical dominance and root gravitropism. Ann Bot 97:883–893PubMedCentralPubMedGoogle Scholar
  4. Barlow PW (1973) Mitotic cycles in root meristems. In: Balls M, Billett FS (eds) The cell cycle in development and differentiation. Cambridge University Press, Cambridge, pp 133–165Google Scholar
  5. Barlow PW (1978) RNA metabolism in the quiescent centre and neighboring cells in the root meristem of Zea mays. Z Pflanzenphysiol 86:147–157Google Scholar
  6. Barlow PW (1994) From cell to system: repetitive units of growth in the development of roots and shoots. In: Iqbal M (ed) Growth patterns in vascular plants. Dioscorides Press Portland, Oregon, pp 19–58Google Scholar
  7. Barlow PW, Adam JS (1989) The response of the primary root meristem of Zea mays, L. to various periods of cold. J Exp Bot 40:81–88Google Scholar
  8. Barton MK (1998) Cell type specification and self-renewal in the vegetative shoot apical meristem. Curr Opin Plant Biol 1:37–42PubMedGoogle Scholar
  9. Barton MK, Poethig RS (1993) Formation of the shoot apical meristem in Arabidopsis thaliana: analysis of development in the wild type and in the shoot meristemless mutant. Development 119:823–831Google Scholar
  10. Baurle I, Laux T (2003) Apical meristems: the plant’s fountain of youth. Bioessays 25:961–970PubMedGoogle Scholar
  11. Berleth T, Jürgens G (1993) The role of the monopteros gene in organizing the basal body region. Development 118:575–587Google Scholar
  12. Bhambie S (1994) Secondary growth in pteridophytes. In: Iqbal M (ed) Growth patterns in vascular plants. Dioscorides Press Portland, Oregon, pp 185–210Google Scholar
  13. Bitonti MB, Chiappetta A (2011) Root apical meristem pattern; hormone circuitry and transcriptional networks. In: Luttage U, Beyschiag W, Budel B, Francis D (eds) Progress in botany 72. Springer, Berlin, pp 37–71Google Scholar
  14. Bolduc N, Yilmaz A, Meija-Grotewold E (2012) Unraveling the KNOTTED1 regulatory network in maize meristem. Genes Dev 26:1685–1690PubMedCentralPubMedGoogle Scholar
  15. Bower FO (1947) The botany of living plants. Macmillan & Co Ltd, LondonGoogle Scholar
  16. Bowman JL, Eshed Y (2000) Formation and maintenance of the shoot apical meristem. Trends Plant Sci 1:110–115Google Scholar
  17. Byrne ME, Barley R, Curtis M, Arroyo JM, Dunham M, Hudson A, Martienssen RA (2000) Asymmetric leaves1 mediates leaf patterning and stem cell function in Arabidopsis. Nature 408:967–971PubMedGoogle Scholar
  18. Chicharmane VS, Gordon SP, Tarr PT, Heister MG, Meyerowitz EM (2012) Cytokinin signaling as a positional cue for patterning the apical-basal axis of the growing Arabidopsis shoot meristem. Proc Natl Acad Sci U S A 109:4002–4007Google Scholar
  19. Choi DW, Song JY, Kwon YM, Kim SG (1996) Characterization of a cDNA encoding a proline-rich 14 kDA protein in developing cortical cells of the roots of bean (Phaseolus vulgaris) seedlings. Plant Mol Biol 30:973–982PubMedGoogle Scholar
  20. Cichan MA, Taylor TN (1990) Evolution of cambium in geologic times- a reappraisal. In: Iqbal M (ed) The vascular cambium. Wiley, New York, pp 213–223Google Scholar
  21. Cline MG (1991) Apical dominance. Bot Rev 57:318–358Google Scholar
  22. Clowes FAL (1961) Apical meristems. Blackwell, OxfordGoogle Scholar
  23. Clowes FAL (1978a) Origin of the quiescent centre in Zea mays. New Phytol 80:409–419Google Scholar
  24. Clowes FAL (1978b) Origin of quiescence at the root pole of pea roots. Ann Bot 42:1237–1239Google Scholar
  25. Clowes FAL (1981) The difference between open and closed meristems. Ann Bot 48:761–767Google Scholar
  26. Clowes FAL (1984) Size and activity of quiescent centres of roots. New Phytol 96:13–21Google Scholar
  27. Cook TD, Tilney MS, Tilney LG (1996) Plasmodesmal networks in apical meristems and mature structures: geometric evidence for both primary and secondary formation of plasmodesmata. In: Smallwood M, Knox JP, Bowles DJ (eds) Membranes: specialized functions in plants. BIOS Scientific, Cambridge, UK, pp 471–488Google Scholar
  28. Deitrich RA, Radice SA, Harada JJ (1992) Downstream DNA sequences are required to activate a gene expressed in the root cortex of embryos and seedlings. Plant Cell 4:1371–1382Google Scholar
  29. DeMason DA (1994) Stem thickening in monocotyledons. In: Iqbal M (ed) Growth patterns in vascular plants. Diosconides Press Portland, Oregon, pp 288–310Google Scholar
  30. Deysson G (1980) Control of cell multiplication in root meristems of higher plants. Biol Cell 38:75–80Google Scholar
  31. Diggle PK, DeMason DA (1983) The relationship between the primary thickening meristem and the secondary thickening meristem in Yucca whipplei Torr. I. Histology of the mature vegetative stem. Am J Bot 70:1195–1204Google Scholar
  32. Doebley J, Stec A, Hubbard L (1997) The evolution of apical dominance in maize. Nature 386:485–488PubMedGoogle Scholar
  33. Douin C (1923) Recherches sur le gamétophyte des Marchantiées. III.–Le thalle stérile des Marchantiées développement basilaire des feuilles et autres organs latéraux chez les Muscinées. Rev Gen Bot 23:487–508Google Scholar
  34. Du J, Mansfield SD, Groover AT (2009) The Populus homebox gene ARBORKNOX2 regulates cell differentiation during secondary growth. Plant J 60:1000–1014PubMedGoogle Scholar
  35. Esau K (1943) Origin and development of primary vascular tissues in seed plants. Bot Rev 9:125–206Google Scholar
  36. Esau K (1965) Vascular differentiation in plants. Holt Rinehart and Winston, New YorkGoogle Scholar
  37. Evans MMS, Barton MK (1997) Genetics of angiosperm shoot apical meristem development. Annu Rev Plant Physiol Plant Mol Biol 48:673–701PubMedGoogle Scholar
  38. Evert RF (2006) Esau’s plant anatomy. Wiley, New YorkGoogle Scholar
  39. Fahn A, Ben-Sasson R, Sachs T (1972) The relation between the procambium and the cambium. In: Ghouse AKM, Yunus M (eds) Research trends in plant anatomy. Tata McGraw-Hill, New Delhi, pp 161–170Google Scholar
  40. Feldman LJ, Torrey JG (1976) The isolation and culture in vitro of the quiescent centre of Zea mays. Am J Bot 63:345–355Google Scholar
  41. Fiers M, Golemiec E, Xu J, van der Geest L, Heidstra R, Stiekeme W, Liu CM (2005) The 14- amino acid CLV3, CLE19, CLE 40 peptides trigger consumption of the root meristems in Arabidopsis through CLAVATA2-dependent pathway. Plant Cell 17:2542–2553PubMedCentralPubMedGoogle Scholar
  42. Fisher JB, French JC (1978) Internodal meristems of monocotyledons: further studies and general taxonomic summary. Ann Bot 42:41–50Google Scholar
  43. Fletcher JC (2002) The vegetative meristem. In: McManus MT, Veit BE (eds) Meristematic tissues in plant growth and development. Sheffield Academic Press, Sheffield, pp 16–57Google Scholar
  44. Fletcher JC (2004) Stem cell maintenance in higher plants. In: Lanza R, Blau H, Melton D, Moore M, Thomas ED, Verfaille C, Weissman IL, West M (eds) Handbook of stem cells, vol 2, Adult and Fetal. Elsevier Academic Press, Amsterdam, pp 631–641Google Scholar
  45. Foster AS (1938) Structure and growth of the shoot apex of Ginkgo biloba. Bull Torrey Bot Club 65:531–556Google Scholar
  46. Friedman WF, Moore RC, Purugganam MD (2004) The evolution of plant development. Am J Bot 91:1726–1741PubMedGoogle Scholar
  47. Friml J, Vieten A, Sauer M, Weijers D, Schwarz H, Hamann T, Offringa R, Jürgens G (2003) Efflux-dependent auxin gradients establish the apical-basal axis of Arabidopsis. Nature 426:147–153PubMedGoogle Scholar
  48. Galinha C, Hofhuis H, Luijten M, Willemsen V, Blilou I, Heidstra R, Scheres B (2007) PLETHORA protein as dose-dependent master regulators of Arabidopsis root development. Nature 449:1053–1057PubMedGoogle Scholar
  49. Gallavotti A, Zhao Q, Kyozuka J, Meeley RB, Ritter MK, Doebley JF, Pè ME, Schmidt RJ (2004) The role of barren stalk1 in the architecture of maize. Nature 432:630–635PubMedGoogle Scholar
  50. Giulini A, Waug J, Jackson D (2004) Control of phyllotaxy by the cytokinin-inducible response regulator homologue ABPHYL1. Nature 430:1031–1034PubMedGoogle Scholar
  51. Gordon SP, Chickarmane VS, Ohno C, Meyerowitz EM (2009) Multiple feedback loops through cytokinin signaling control stem cell number within the Arabidopsis shoot meristem. Proc Natl Acad Sci U S A 106:16529–16534PubMedCentralPubMedGoogle Scholar
  52. Groover A (2005) What genes make a tree a tree? Trends Plant Sci 10:210–214PubMedGoogle Scholar
  53. Groover AT, Mansfield SD, Difazio SP, Dupper G, Fontana JR, Miller R, Wang Y (2006) The Populus homebox gene ARBORKNOX1 reveals overlapping mechanisms regulating the shoot apical meristem and the vascular cambium. Plant Mol Biol 61:917–932PubMedGoogle Scholar
  54. Ha CM, Jun JH, Fletcher JC (2010) Shoot apical meristem form and function. Curr Top Dev Biol 91:103–140PubMedGoogle Scholar
  55. Haecker G, Gross-Hardt R, Geiges B, Sarkar A, Breuninger H, Herrmann M, Laux T (2004) Expression dynamics of Wox genes mark cell fate decisions during early embryonic patterning in Arabidopsis thaliana. Development 131:657–668PubMedGoogle Scholar
  56. Hallé F, Oldeman RAA, Tomlinson PB (1978) Tropical trees and foretes – an architectural analysis. Springer, BerlinGoogle Scholar
  57. Hamann T, Mayer U, Jürgens G (1999) The auxin-insensitive bodenlos mutation affects primary root formation and apical –basal patterning in the Arabidopsis embryo. Development 126:1387–1395PubMedGoogle Scholar
  58. Hanstein J (1868) Die Scheitelzellgrupe in Vegetationspunkt der Phanerogamen. Festchr Niederrhein Ges Natur Heilkunde 1868:109–134Google Scholar
  59. Hanstein J (1870) Die Entwicklung der Keimes der Monokotylen und Dikotylen, In: Hanstein J (ed) Botanische Abhandlungen aus dem Gebiet der Morphologie und Physiologie, vol 1. pt. 1. Marcus, BonnGoogle Scholar
  60. Hariharan Y, Krishnamurthy KV (1995) A cytochemical study of cambium and its xylary derivatives on the normal and tension wood sides of the stems of Prosopis juliflora (SW.) DC. Beitr Biol Pflanzen 69:459–472Google Scholar
  61. Heimsch C, Seago JL Jr (2008) Organization of the root apical meristem in angiosperms. Am J Bot 95:1–21PubMedGoogle Scholar
  62. Hobe M, Muller R, Grunewald M, Brand U, Simon R (2003) Loss of CLE 40, a protein functionally equivalent to the stem cell restricting signal CLV3, enhances root waving in Arabidopsis. Dev Genes Evol 213:371–381PubMedGoogle Scholar
  63. Imaichi R, Hiratsuka R (2007) Evolution of shoot apical meristem structure in vascular plants with respect to plasmodesmal network. Am J Bot 94:1911–1921PubMedGoogle Scholar
  64. Iqbal M (1994) Structural and operational specializations of the vascular cambium of seed plants. In: Iqbal M (ed) Growth patterns in vascular plants. Dioscorides Press, Portland, pp 211–271Google Scholar
  65. Iqbal M, Ghouse AKM (1990) Cambial concept and organization. In: Iqbal M (ed) The vascular cambium. Research Studies Press Ltd, Somerset, pp 1–36Google Scholar
  66. Ivanov VB (1973) Growth and reproduction of cells in roots. In: Obrucheva NA (ed) Physiology of roots. Uniiti, Moscow, pp 1–40Google Scholar
  67. Jiang K, Feldman LJ (2005) Regulation of root apical meristem development. Annu Rev Cell Dev Biol 21:485–509PubMedGoogle Scholar
  68. Jothi R, Parthasarathy S, Krishnamurthy KV (2010) Computational internal sequence repeats analysis of accelerated evolution and the role of extensins under abiotic and biotic stresses. Open Access Bioinforma 2:157–168Google Scholar
  69. Kamiya N, Nagasaki H, Morikami A, Sato Y, matsuoka M (2003) Isolation and characterization of a rice WUSCHEL-type homebox gene that is specifically expressed in the central cells of a quiescent centre in the root apical meristem. Plant J 35:429–441PubMedGoogle Scholar
  70. Kenrick P, Crane PR (1997) The origin and early diversification of land plants- a cladistic study. Smithsonian Institute Press, Washington, DCGoogle Scholar
  71. Kerk NM, Feldman LJ (1994) The quiescent centre in roots of maize: initiation, maintenance and role in organization of the root apical meristem. Protoplasma 183:100–106Google Scholar
  72. Kerk NM, Feldman LJ (1995) A biochemical model for the initiation and maintenance of the quiescent centre: implications for organization of root meristems. Development 121:2825–2833Google Scholar
  73. Kerk NM, Jiang K, Feldman LJ (2000) Auxin metabolism in the root apical meristem. Plant Physiol 122:925–932PubMedCentralPubMedGoogle Scholar
  74. Ko J, Han K (2004) Arabidopsis whole-transcriptome profiling defines the features of coordinated regulations that occur during secondary growth. Plant Mol Biol 55:433–453PubMedGoogle Scholar
  75. Kornet N, Scheres B (2009) Stem-cell factors in plants: chromatin connections. Cold Spring Harb Symp Quant Biol 73:235–242Google Scholar
  76. Krishnamurthy KV (1994) The angiosperm embryo: correlative controls in development, differentiation, and maturation. In: Iqbal M (ed) Growth patterns in vascular plants. Dioscorides Press, Portland, pp 372–404Google Scholar
  77. Krishnamurthy KV (2005) Evolutionary origin of vascular cambium. In: Bahadur B et al (eds) Gleanings in botanical research current scenario. Dattsons, Nagpur, pp 413–443Google Scholar
  78. Krishnamurthy KV (2007) In pursuit of understanding the tension wood riddle. J Ind Bot Soc 86:14–26Google Scholar
  79. Krishnamurthy KV (2015) Growth and development in plants. Scientific Publishers, JodhpurGoogle Scholar
  80. Kuras M (1978) Activation of embryo during rape (Brassica napus L.) seed germination. I. Structure of embryo and organization of root apical meristem. Acta Soc Bot Pol 47:65–82Google Scholar
  81. Lafarguette F, Leple JC, Dèjardin A, Laurans F, Costa G, Lesage-Decauses MC, Pilate G (2004) Popular genes encoding fasciclin-like arabinogalactan proteins are highly expresses intension wood. New Phytol 164:107–121Google Scholar
  82. Larson PR (1994) The vascular cambium. Springer, New YorkGoogle Scholar
  83. Laufs P, Jonak C, Traas J (1998) Cells and domains: two views of the shoot apical meristem in Arabidopsis. Plant Physiol Biochem 36:33–45Google Scholar
  84. Li Y, Hagen G, Guilfoyle TJ (1992) Altered morphology in transgenic tobacco plants that overproduce cytokinins in specific tissues and organs. Dev Biol 153:386–395PubMedGoogle Scholar
  85. Liso R, Calabrese G, Bitonti MB, Arrigoni O (1984) Relationship between ascorbic acid and cell division. Exp Cell Res 150:314–320PubMedGoogle Scholar
  86. Liso R, Innocenti AM, Bitonti MB, Arrigoni O (1988) Ascorbic acid-induced progression of quiescent centre cells from G1 to S phase. New Phytol 110:469–471Google Scholar
  87. Lyndon RF (1987) Initiation and growth of internodes and stem and flower frusta in Silene coeli-rosa. In: Atherson JG (ed) The manipulation of flowering. Butterworths, London, pp 301–314Google Scholar
  88. Martinez MC, Jorgensen JE, Lawton MA, Lamb CJ, Doerner PW (1992) Spatial pattern of Cdc2 expression in relation to meristem activity and cell proliferation during plant development. Proc Natl Acad Sci U S A 89:7360–7364PubMedCentralPubMedGoogle Scholar
  89. McConnell JR, Barton MK (1998) Leaf polarity and meristem formation in Arabidopsis. Development 125:2935–2942PubMedGoogle Scholar
  90. Meyerowitz EM (1997) Genetic control of cell division patterns in developing plant. Cell 88:299–308PubMedGoogle Scholar
  91. Newman IV (1965) Pattern in the meristems of vascular plants. III. Pursuing the patterns in the apical meristem where no cell is a permanent cell. J Linn Soc (Botany) 59:185–214Google Scholar
  92. Nilsson J, Karlberg A, Antti H, Lopez-Vernaza M, Mellerowicz E, Perrot-Rechenmann C, Sandberg G, Bhalerao RP (2008) Dissecting the molecular basis of the regulation of wood formation by auxin in hybrid aspen. Plant Cell 20:843–855PubMedCentralPubMedGoogle Scholar
  93. Pautler M, Tanaka W, Hirano HY, Jackson D (2013) Grass meristems I: shoot apical meristem maintenance, axillary meristem determinancy and the floral transition. Plant Cell Physiol 54:302–312PubMedGoogle Scholar
  94. Philipson WR, Ward MJ, Butterfield BG (1971) The vascular cambium. Chapman & Hall, LondonGoogle Scholar
  95. Raghavan V (2000) Developmental biology of flowering plants. Springer, New YorkGoogle Scholar
  96. Rangarajan R, Swamy BGL (1980) Studies on the procambium in certain organs of monocotyledons. I. Anther filaments of Gloriosa superba. L. In: Periasamy K (ed) Histochemistry, developmental and structural anatomy of angiosperms: a Symposium. P&B Publications, Tiruchirapalli, pp 201–219Google Scholar
  97. Reinhardt D, Kuhleme C (2002) Plant architecture. EMBO Rep 3:846–851PubMedCentralPubMedGoogle Scholar
  98. Ridge RW (1987) Brief notes on Ginkgo biloba.
  99. Rodriguez-Rodriguez JF, Shishkova S, Napsucialy-Mendivil S, Dubrovsky JG (2003) Apical meristem organization and lack of establishment of the quiescent centre in Cactaceae roots with determinate growth. Planta 271:849–857Google Scholar
  100. Romberger JA (1963) Meristems, growth and development in woody plants. Tech. Bull. 1293. US Dept. of Agriculture, The Forest Physiology Laboratory, Plant Industry Station, Beltsville, p 214Google Scholar
  101. Rost TL (1994) Root top organization and the spatial relationships of differentiation event. In: Iqbal M (ed) Growth patterns in vascular plants. Dioscorides Press, Portland, pp 59–76Google Scholar
  102. Ruzicka K, Simaskova M, Duclercy J, Petrasek J, Zazimalova E, Simon S, Friml J, van Montagu MCE, Benkova E (2009) Cytokinin regulates root meristem activity via modulation of the polar auxin transport. Proc Natl Acad Sci U S A 106:4284–4289PubMedCentralPubMedGoogle Scholar
  103. Sachs RM, Lang L (1961) Shoot histogenesis and the subapical meristem: the action of gibberellic acid, Amo-1618, and maleic hydrazide. In: Plant growth regulation. Fourth international conference on Plant Growth Regulation proceedings. Iowa State University Press, Ames, pp 567–578Google Scholar
  104. Sachs RM, Bretz CF, Lang A (1959) Shoot histogenesis: the early effects of gibberellins upon stem elongation in two rosette plants. Am J Bot 46:376–384Google Scholar
  105. Sachs RM, Lang A, Bretz CF, Roach J (1960) Shoot histogenesis: subapical meristem activity in acaulescent plant and the action of gibberellic acid and Amo-1618. Am J Bot 47:260–266Google Scholar
  106. Scheres B (2007) Stem-cell niches: nursery rhymes across kingdoms. Nat Rev Mol Cell Biol 8:345–354PubMedGoogle Scholar
  107. Scheres B, Wolkenfelt (1998) The Arabidopsis root as a model to study plant development. Plant Physiol Biochem 36:21–32Google Scholar
  108. Schmidt A (1924) Histologische studien an Phanergamen vegetationspunkten. Bot Arch 8:345–404Google Scholar
  109. Schoof H, Lenhard M, Haecker A, Mayer KF, Jurgens G, Laux T (2000) The stem cell population of Arabidopsis shoot meristem is maintained by a regulatory loop between the CLAVATA and WUSCHEL genes. Cell 100:635–644PubMedGoogle Scholar
  110. Schrader J, Nilsson J, Mellerowicz E, Berglund A, Nilsson P, Hertzberg M, Sandberg G (2004) A high-resolution transcript profile across the wood-forming meristem of poplar identifies potential regulators of cambial stem identity. Plant Cell 16:2278–2292PubMedCentralPubMedGoogle Scholar
  111. Schüepp O (1917) Untersuchungen über Wachstum und Formwechsel von Vegetationspunkten. Jb Wiss Bot 57:17–79Google Scholar
  112. Sitbon F, Hennion S, Sundberg B, Little CHA, Olsson O, Sandberg G (1992) Transgenic tobacco plants overexpressing the Agrobacterium tumefaciens iaaM and iaaH genes display altered growth and indoleacetic acid metabolism. Plant Physiol 99:1062–1069PubMedCentralPubMedGoogle Scholar
  113. Smith RH, Murashige T (1970) In vitro development of the isolated shoot apical meristem of angiosperms. Am J Bot 57:562–568Google Scholar
  114. Snow M, Snow R (1942) The determination of axillary buds. New Phytol 41:13–22Google Scholar
  115. Soma K, Ball E (1963) Studies on the surface growth of the shoot apex of Lupinus albus. “Meristems and differentiation”. Brookhaven Symp Biol 16:13–45Google Scholar
  116. Spicer R, Groover A (2010) Tansley review. Evolution of development of vascular cambia and secondary growth. New Phytol 186:577–592PubMedGoogle Scholar
  117. Steeves TA, Sussex IM (1989) Patterns in plant development, 2nd edn. Cambridge University Press, Cambridge, UKGoogle Scholar
  118. Sterling C (1946) Growth and vascular development in the shoot apex of Sequoia sempervirens (Lamb) Endl III Cytological aspects of vascularisation. Am J Bot 23:35–45Google Scholar
  119. Sussex IM (1955) Morphologenesis in Solanum tuberosum L.: apical structure and developmental pattern of the juvenile shoot. Phytomorphology 5:253–273Google Scholar
  120. Swamy BGL, Krishnamurthy KV (1974) Studies in the developmental anatomy of Commelina benghalensis L. I. The shoot apex and the early delineation of the internode. J Indian Bot Soc 53:213–223Google Scholar
  121. Swamy BGL, Krishnamurthy KV (1975) Certain conceptual aspects of meristems. I. On hypophysis and quiescent centre. Phytomorphology 25:60–65Google Scholar
  122. Swamy BGL, Krishnamurthy KV (1977) Certain conceptual aspects of meristems. II. Epiphysis and shoot apex. Phytomorphology 27:1–8Google Scholar
  123. Swamy BGL, Krishnamurthy KV (1978) Certain conceptual aspects of meristems. III. A model. Phytomorphology 28:1–7Google Scholar
  124. Swamy BGL, Krishnamurthy KV (1979) Certain conceptual aspects of meristems. IV The internodal meristems concerned with longitudinal growth. J Madras Univ Sect B 42(2):22–28Google Scholar
  125. Swamy BGL, Krishnamurthy KV (1980) On the origin of vascular, cambium in dicotyledonous stems. Proc Indian Acad Sci (Plant Sci) 89B:1–6Google Scholar
  126. Tabuchi H, Zhang Y, Hattori S, Omae M, Shimizu-Sato S, Oikawa T (2011) LAX PANICLE2 of rice encodes a novel nuclear protein and regulates the formation of axillary meristems. Plant Cell 23:3276–3287PubMedCentralPubMedGoogle Scholar
  127. Timell TE (1973) Ultrastructure of the dormant and active cambial zones and the dormant phloem associated with formation of normal and compression woods in Picea abies (L.) Karst SUNY Coll. Envir Sci For Tech Rep 96:94Google Scholar
  128. Timell TE (1986) Compression wood in gymnosperms, vol 3. Springer, BerlinGoogle Scholar
  129. Van den Berg C, Willemsen V, Hendriks G, Weisbeek P, Scheres B (1997) Short-range control of cell differentiation in the Arabidopsis root meristem. Nature 39:287–289Google Scholar
  130. Veit B (2006) Stem cell signaling networks in plants. Plant Mol Biol 60:793–810PubMedGoogle Scholar
  131. Veit B (2009) Hormone mediated regulation of the shoot apical meristem. Plant Mol Biol 69:397–408PubMedGoogle Scholar
  132. Vernoux T, Autran D, Traas J (2000) Developmental control of cell division patterns in the shoot apex. Plant Mol Biol 43:569–581PubMedGoogle Scholar
  133. Vernoux T, Benfey PN (2005) Signal that regulate stem-cell activity during plant development. Curr Opin Genet Dev 15:388–394PubMedGoogle Scholar
  134. Vijayaraghavan U, Prasad K, Meyerowitz E (2005) Specification and maintenance of the floral meristem: interactions between positively-acting promoters of flowering and negative regulators. Curr Sci 89:1835–1844Google Scholar
  135. Von Guttenberg H (1960) Grundzüge der Histogenese höherer Pflanzen. I. Die Angiospermen. Handbuch der Pflanzenanatomie, Band 8, Teil 3. Gebrüder Borntraeger, BerlinGoogle Scholar
  136. Wardlaw CW (1957) On the organization and reactivity of the shoot apex in vascular plants. Am J Bot 44:176–185Google Scholar
  137. Wardlaw CW (1968) Morphogenesis in plants – a contemporary study. Methuen, LondonGoogle Scholar
  138. Weizman IL (2000) Stem cells: units of development, units of regeneration and units in evolution. Cell 100:157–168Google Scholar
  139. Willemsen V, Welkenfelt H, de Vrieze G, Weisbeek P, Scheres B (1998) The HOBBIT gene is required for formation of the root meristem in the Arabidopsis embryo. Development 125:521–531PubMedGoogle Scholar
  140. Zhou GK, Kubo M, Zhong R, Demura T, Ye ZH (2007) Overexpression of miR165 affects apical meristem formation, organ polarity establishment and vascular development in Arabidopsis. Plant Cell Physiol 48:391–404PubMedGoogle Scholar
  141. Zobel AM (1989a) Origin of nodes and internodes in plant shoot. I. Transverse zonation of apical parts of the shoot. Ann Bot 63:199–209Google Scholar
  142. Zobel AM (1989b) Origin of nodes and internodes in plant shoot. II. Models of node and internode origin from one layer of cells. Ann Bot 63:209–220Google Scholar

Copyright information

© Springer India 2015

Authors and Affiliations

  • K. V. Krishnamurthy
    • 1
    Email author
  • Bir Bahadur
    • 2
  • S. John Adams
    • 1
  • Padma Venkatasubramanian
    • 1
  1. 1.Center for Pharmaceutics, Pharmacognosy and Pharmacology, School of Life SciencesInstitute of Trans-Disciplinary Health Science and Technology (IHST)BangaloreIndia
  2. 2.Sri Biotech Laboratories India LimitedHyderabadIndia

Personalised recommendations