Application of Biotechnology and Bioinformatics Tools in Plant–Fungus Interactions

Abstract

Fungi have been recognized to be a major cause of disease in immunocompromised hosts: moreover, the loss of food and fodder crops through fungi has been unmatched since the last decade. Fungi colonize the plant cell and organs by modulating the host defense response. A number of different methods have been recently used to understand host–fungus interactions. With the advent of HiSeq approaches, more fungal genomes and transcriptomes are now sequenced, and their bioinformatics analyses have enriched and assisted our knowledge of the interplay between plant and fungi. The present chapter reviews the current biotechnological and bioinformatics approaches for the study of plant–fungus interactions.

Keywords

Plant–fungi interactions Host–pathogen interaction Systems biology Fungal infection 

References

  1. Albersheim P, Valent BS (1974) Plant pathogens secrete proteins which inhibit enzymes of the host capable of attacking the pathogen. Plant Physiol 53:684–687PubMedCentralPubMedGoogle Scholar
  2. Antoniw JF, Pierpoint WS (1978) Purification of a tobacco leaf protein associated with resistance to virus infection. Biochem Soc Trans 6:248–250PubMedGoogle Scholar
  3. Arntzen CJ, Haugh MF, Bobrick S (1973) Induction of stomatal closure by Helminthosporium maydis pathotoxin. Plant Physiol 52:569–574PubMedCentralPubMedGoogle Scholar
  4. Bader GD, Betel D, Hogue CW (2003) BIND: the biomolecular interaction network database. Nucl Acids Res 31(1):248–250PubMedCentralPubMedGoogle Scholar
  5. Bhadauria V, Banniza S, Wei Y, Peng YL (2009) Reverse genetics for functional genomics of phytopathogenic fungi and oomycetes. Comp Funct Genomics 2009:380719PubMedCentralGoogle Scholar
  6. Bindsley L, Oliver RP, Johansen B (2002) In situ PCR for detection and identification of fungal species. Mycol Res 106(3):277–279Google Scholar
  7. Blackwell M (2011) The fungi: 1, 2, 3 … 5.1 million species. Am J Bot 98:426–438PubMedGoogle Scholar
  8. Brechenmacher L, Weidmann S, van Tuinen D et al (2004) Expression profiling of up-regulated plant and fungal genes in early and late stages of Medicago truncatula-Glomus mosseae interactions. Mycorrhiza 14:253–262Google Scholar
  9. Brown JS, Holden DW (1998) Insertional mutagenesis of pathogenic fungi. Curr Opion Microbiol 1(4):390–394Google Scholar
  10. Capote N, Pastrana AM, Aguado A, Sánchez-Torres P (2012) Molecular tools for detection of plant pathogenic fungi and fungicide resistance. In: Cumagun CJ (ed) Plant pathology. InTech, Rijeka (Croatia), pp 150–202, Chap. 7, ISBN:978-953-51-0489-6Google Scholar
  11. Carpenter MA, Stewart A, Ridgway HJ (2005) Identification of novel Trichoderma hamatum genes expressed during mycoparasitism using subtractive hybridisation. FEMS Microbiol Lett 251:105–112PubMedGoogle Scholar
  12. Cecil A, Rikanović C, Ohlsen K, Liang C, Bernhardt J, Oelschlaeger TA et al (2011) Modeling antibiotic and cytotoxic effects of the dimeric isoquinoline IQ-143 on metabolism and its regulation in Staphylococcus aureus, Staphylococcus epidermidis and human cells. Genome Biol 12(3):R24PubMedCentralPubMedGoogle Scholar
  13. Chalupová J, Raus M, Sedlářová M, Sebela M (2014) Identification of fungal microorganisms by MALDI-TOF mass spectrometry. Biotechnol Adv 32(1):230–241PubMedGoogle Scholar
  14. Chen L, Hao L, Parry MA, Phillips AL, Hu YG (2014) Progress in TILLING as a tool for functional genomics and improvement of crops. J Integr Plant Biol. doi:10.1111/jipb.12192 Google Scholar
  15. Collas P (2010) The current state of chromatin immunoprecipitation. Mol Biotech 45(1):87–100Google Scholar
  16. Cramer RA, Lawrence CB (2004) Identification of Alternaria brassicicola genes expressed in plants during pathogenesis of Arabidopsis thaliana. Fungal Genet Biol 41:115–128PubMedGoogle Scholar
  17. Dash S, Van Hemert J, Hong L, Wise RP, Dickerson JA (2012) PLEXdb: gene expression resources for plants and plant pathogens. Nucleic Acids Res 40(Database issue):D1194–D1201PubMedCentralPubMedGoogle Scholar
  18. Diatchenko L, Lukyanov S, Lau YF, Siebert PD (1999) Suppression subtractive hybridization: a versatile method for identifying differentially expressed genes. Methods Enzymol 303:349–380PubMedGoogle Scholar
  19. Fitzgerald A, Van Kha JA, Plummer KM (2004) Simultaneous silencing of multiple genes in the apple scab fungus Venturia inaequalis, by expression of RNA with chimeric inverted repeats. Fungal Genet Biol 41:963–971PubMedGoogle Scholar
  20. Fosu-Nyarko J, Jones Michael GK, Wang Z (2010) Application of laser microdissection to study plant–fungal pathogen interactions. In: Sharon A (ed) Molecular and cell biology methods for fungi. Humana Press, New YorkGoogle Scholar
  21. Gauthier GM, Keller NP (2013) Crossover fungal pathogens: the biology and pathogenesis of fungi capable of crossing kingdoms to infect plants and humans. Fungal Genet Biol 61:146–157PubMedGoogle Scholar
  22. Geisler-Lee J, O’Toole N, Ammar R, Provart NJ, Millar AH, Geisler M (2007) A predicted interactome for Arabidopsis. Plant Physiol 145(2):317–329PubMedCentralPubMedGoogle Scholar
  23. Godovac-Zimmermann J, Brown LR (2001) Perspectives for mass spectrometry and functional proteomics. Mass Spectrom Rev 20:1–57PubMedGoogle Scholar
  24. Goldoni M, Azzalin G, Macino G, Cogoni C (2004) Efficient gene silencing by expression of double stranded RNA in Neurospora crassa. Fungal Genet Biol 41:1016–1024PubMedGoogle Scholar
  25. González-Fernández R, Prats E, Jorrín-Novo JV (2010) Proteomics of plant pathogenic fungi. J Biomed Biotechnol 2010:932527PubMedCentralPubMedGoogle Scholar
  26. Grover A, Gowthaman R (2003) Strategies for development of fungus-resistant transgenic plants. Curr Sci 8(3):330–340Google Scholar
  27. Gudimella R, Nallapeta S, Varadwaj P, Suravajhala P (2010) Fungome: annotating proteins implicated in fungal pathogenesis. Bioinformation 5(5):202–207PubMedCentralPubMedGoogle Scholar
  28. Hamada W, Spanu PD (1998) Co-suppression of the hydrophobin gene Hcf-1 is correlated with antisense RNA biosynthesis in Cladosporium fulvum. Mol Gen Genet 259:630–638PubMedGoogle Scholar
  29. Hamilton JP, Neeno-Eckwall EC, Adhikari BN, Perna NT, Tisserat N, Leach JE et al (2011) The comprehensive phytopathogen genomics resource: a web-based resource for data-mining plant pathogen genomes. Database (Oxford) 2011:bar053PubMedCentralGoogle Scholar
  30. Hammond TM, Keller NP (2005) RNA silencing in Aspergillus nidulans is independent of RNA-dependent RNA polymerase. Genetics 169:607–617PubMedCentralPubMedGoogle Scholar
  31. Hawksworth DL, Rossman AY (1997) Where are all the undescribed fungi? Phytopathology 87:888–891PubMedGoogle Scholar
  32. He F, Zhang Y, Chen H, Zhang Z, Peng YL (2008) The prediction of protein-protein interaction networks in rice blast fungus. BMC Genomics 9:519PubMedCentralPubMedGoogle Scholar
  33. Horwitz BA, Lev S (2010) Identification of differentially expressed fungal genes in planta by suppression subtraction hybridization. Methods Mol Biol 638:115–123PubMedGoogle Scholar
  34. Huggett J, Dheda K, Bustin S, Zumla A (2005) Real-time RT-PCR normalization; strategies and considerations. Genes Immun 6:279–284PubMedGoogle Scholar
  35. Inada N, Wildermuth MC (2005) Novel tissue preparation method and cell-specific marker for laser microdissection of Arabidopsis mature leaf. Planta 221:9–16PubMedGoogle Scholar
  36. Jain R, Srivastava R (2009) Metabolic investigation of host/pathogen interaction using MS2-infected Escherichia coli. BMC Syst Biol 3:121PubMedCentralPubMedGoogle Scholar
  37. Jones JD, Dangl JL (2006) The plant immune system. Nature 444(7117):323–329PubMedGoogle Scholar
  38. Kadotani N, Nakayashiki H, Tosa Y, Mayama S (2003) RNA silencing in the phytopathogenic fungus Magnaporthe oryzae. Mol Plant Microbe Interact 16(9):769–776PubMedGoogle Scholar
  39. Király Z, EI Hammady M, Pozsár BI (1967) lncreased cytokinin activity of rust-infected bean and broad-bean leaves. Phytopathology 57:93–94Google Scholar
  40. Lamour KH, Finley L, Hurtado-Gonzales O, Gobena D, Tierney M, Meijer HJG (2006) Targeted gene mutation in phytophthora spp. Mol Plant Microbe Interact 19(12):1359–1367PubMedGoogle Scholar
  41. Latijnhouwers M, Ligterink W, Vleeshouwers VGAA, West P, Govers F (2004) A Galpha subunit controls zoospore motility and virulence in the potato late blight pathogen Phytophthora infestans. Mol Microbiol 51:925–936PubMedGoogle Scholar
  42. Li P, Zang W, Li Y, Xu F, Wang J, Shi T (2011) AtPID: the overall hierarchical functional protein interaction network interface and analytic platform for Arabidopsis. Nucleic Acids Res 39(Database issue):D1130–D1133PubMedCentralPubMedGoogle Scholar
  43. Liang C, Liebeke M, Schwarz R, Zühlke D, Fuchs S, Menschner L et al (2011) Staphylococcus aureus physiological growth limitations: insights from flux calculations built on proteomics and external metabolite data. Proteomics 11(10):1915–1935PubMedGoogle Scholar
  44. Licata L, Briganti L, Peluso D, Perfetto L, Iannuccelli M, Galeota E et al (2012) MINT, the molecular interaction database: 2012 update. Nucleic Acids Res 40(Database issue):D857–D861PubMedCentralPubMedGoogle Scholar
  45. Liu Z, Wang Y, Xiao J, Zhao J, Liu M (2014) Identification of genes associated with phytoplasma resistance through suppressive subtraction hybridization in Chinese jujube. Physiol Mol Plant P 86:43–48Google Scholar
  46. Lossi L, Gambino G, Salio C, Merighi A (2011) Direct in situ rt-PCR. Methods Mol Biol 789:111–126PubMedGoogle Scholar
  47. Luderer R, Takken FL, de Wit PJ, Joosten MH (2002) Cladosporium fulvum overcomes Cf-2-mediated resistance by producing truncated AVR2 elicitor proteins. Mol Microbiol 45(3):875–884PubMedGoogle Scholar
  48. Ludwig-Müller J (2000) Hormonal balance in plants during colonization by mycorrhizal fungi. In: Yoram K, David DD (eds) Arbuscular mycorrhizas: physiology and function. Springer, Dordrecht, pp 263–285. ISBN 978-90-481-5515-6Google Scholar
  49. Lum G, Min XJ (2011) FunSecKB: the fungal secretome knowledge base. Database (Oxford) 2011:bar001Google Scholar
  50. Mann M, Hendrickson RC, Pandey A (2001) Analysis of proteins and proteomes by mass spectrometry. Annu Rev Biochem 70:437–473PubMedGoogle Scholar
  51. McCallum CM, Comai L, Greene EA, Henikoff S (2000) Targeting induced local lesions IN genomes (TILLING) for plant functional genomics. Plant Physiol 123(2):439–442PubMedCentralPubMedGoogle Scholar
  52. Mehdy MC (1994) Active oxygen species in plant defense against pathogens. Plant Physiol 105:467–472PubMedCentralPubMedGoogle Scholar
  53. Meinhardt LW, Lacerda C, Gustavo G, Thomazella DPT, Teixeira PJPL, Carazzolle MF (2014) Genome and secretome analysis of the hemibiotrophic fungal pathogen, Moniliophthora roreri, which causes frosty pod rot disease of cacao: mechanisms of the biotrophic and necrotrophic phases. BMC Genomics 15:164PubMedCentralPubMedGoogle Scholar
  54. Melissa DA, Jeff JS (2002) From sequence to phenotype: reverse genetics in Drosophila melanogaster. Nat Rev Genet 3:189–198Google Scholar
  55. Mendes-Giannini MJ, Soares CP, da Silva JL, Andreotti PF (2005) Interaction of pathogenic fungi with host cells: molecular and cellular approaches. FEMS Immunol Med Microbiol 45(3):383–394PubMedGoogle Scholar
  56. Mendgen K, Hahn M, Deising H (1996) Morphogenesis and mechanisms of penetration by plant pathogenic fungi. Annu Rev Phytopathol 34:367–386PubMedGoogle Scholar
  57. Mitchell TK, Thon MR, Jeong J-S, Brown D, Deng J, Dean RA (2003) The rice blast pathosystem as a case study for the development of new tools and raw materials for genome analysis of fungal plant pathogens. New Phytol 159:53–61Google Scholar
  58. Morissette DC, Dauch A, Beech R, Masson L, Brousseau R, Jabaji-Hare S (2008) Isolation of mycoparasitic-related transcripts by SSH during interaction of the mycoparasite Stachybotrys elegans with its host Rhizoctonia solani. Curr Genet 53:67–80PubMedGoogle Scholar
  59. Morsy M, Gouthu S, Orchard S, Thorneycroft D, Harper JF, Mittler R et al (2008) Charting plant interactomes: possibilities and challenges. Trends Plant Sci 13(4):183–191PubMedGoogle Scholar
  60. Murray F, Llewellyn D, McFadden H, Last D, Dennis E, Peacock WJ (1999) Expression of the Talaromyces flavus glucose oxidase gene in cotton and tobacco reduces fungal infection, but is also phytotoxic. Mol Breed 5:219–232Google Scholar
  61. Nakayashiki H (2005) RNA silencing in fungi: mechanisms and applications. FEBS Lett 579:5950–5970PubMedGoogle Scholar
  62. Naseem M, Dandekar T (2012) The role of auxin-cytokinin antagonism in plant-pathogen interactions. PLoS Pathog 8(11):e1003026PubMedCentralPubMedGoogle Scholar
  63. Naseem M, Philippi N, Hussain A, Wangorsch G, Ahmed N, Dandekar T (2012) Integrated systems view on networking by hormones in Arabidopsis immunity reveals multiple crosstalk for cytokinin. Plant Cell 24(5):1793–1814PubMedCentralPubMedGoogle Scholar
  64. Naseem M, Kaltdorf M, Hussain A, Dandekar T (2013) The impact of cytokinin on jasmonate-salicylate antagonism in Arabidopsis immunity against infection with Pst DC3000. Plant Signal Behav 8:e26791PubMedCentralGoogle Scholar
  65. Naseem M, Kunz M, Dandekar T (2014) Probing the unknowns in cytokinin-mediated immune defense in Arabidopsis with systems biology approaches. Bioinform Biol Insights 8:35–44PubMedCentralPubMedGoogle Scholar
  66. Nowrousian M (2014) Genomics and transcriptomics to analyze fruiting body development fungal genomics. Mycota 13:149–172Google Scholar
  67. Orchard S, Ammari M, Aranda B, Breuza L, Briganti L, Broackes-Carter F et al (2014) The MIntAct project–IntAct as a common curation platform for 11 molecular interaction databases. Nucleic Acids Res 42(Database issue):D358–D363PubMedCentralPubMedGoogle Scholar
  68. Pagani I, Liolios K, Jansson J, Chen IM, Smirnova T, Nosrat B, Markowitz VM, Kyrpides NC (2012) The Genomes OnLine Database (GOLD) v. 4: status of genomic and metagenomic projects and their associated metadata. Nucleic Acids Res 40(Database issue):D571–D579PubMedCentralPubMedGoogle Scholar
  69. Pasche JS, Mallik I (2013) Development and validation of a real-time PCR assay for the quantification of Verticillium dahliae in potato. Plant Dis 97(5):608–618Google Scholar
  70. Pritchard L, Birch P (2011) A systems biology perspective on plant–microbe interactions: biochemical and structural targets of pathogen effectors. Plant Sci 180:584–603PubMedGoogle Scholar
  71. Rautio JJ, Huuskonen A, Vuokko H, Vidgren V, Londesborough J (2007) Monitoring yeast physiology during very high gravity wort fermentations by frequent analysis of gene expression. Yeast 24:741–760PubMedGoogle Scholar
  72. Rautio JJ, Satokari R, Vehmann-Kreula P, Serkkola E, Soderlund H (2008) TRAC in high-content gene expression analysis: applications in microbial population studies, process biotechnology and biomedical research. Expert Rev Mol Diagn 8:379–385PubMedGoogle Scholar
  73. Rebrikov Denis V, Desai Sejal M, Siebert Paul D, Lukyanov Sergey A (2004) Suppression subtractive hybridization. In: Gene expression profiling. Methods Mol Biol 258:107–134Google Scholar
  74. Reski R (1998) Physcomitrella and Arabidopsis: the David and Goliath of reverse genetics. Trends Plant Sci 3(6):209–210Google Scholar
  75. Rintala E, Wiebe MG, Tamminen A, Ruohonen L, Penttila M (2008) Transcription of hexose transporters of Saccharomyces cerevisiae is affected by change in oxygen provision. BMC Microbiol 8:53PubMedCentralPubMedGoogle Scholar
  76. Robert VA, Casadevall A (2009) Vertebrate endothermy restricts most fungi as potential pathogens. J Infect Dis 200:1623–1626PubMedGoogle Scholar
  77. Salwinski L, Miller CS, Smith AJ, Pettit FK, Bowie JU, Eisenberg D (2004) The database of interacting proteins: 2004 update. Nucleic Acids Res 32(Database issue):D449–D451PubMedCentralPubMedGoogle Scholar
  78. Schauer K, Geginat G, Liang C, Goebel W, Dandekar T, Fuchs TM (2010) Deciphering the intracellular metabolism of Listeria monocytogenes by mutant screening and modeling. BMC Genomics 11:573PubMedCentralPubMedGoogle Scholar
  79. Schuster S, Fell DA, Dandekar T (2000) A general definition of metabolic pathways useful for systematic organization and analysis of complex metabolic networks. Nat Biotechnol 18(3):326–332PubMedGoogle Scholar
  80. Schuster S, Pfeiffer T, Moldenhauer F, Koch I, Dandekar T (2002) Exploring the pathway structure of metabolism: decomposition into sub-networks and application to Mycoplasma pneumoniae. Bioinformatics 18(2):351–361PubMedGoogle Scholar
  81. Seddas-Dozolme PM, Arnould C, Tollot M, Kuznetsova E, Gianinazzi-Pearson V (2010) Expression profiling of fungal genes during arbuscular mycorrhiza symbiosis establishment using direct fluorescent in situ RT-PCR. Methods Mol Biol 638:137–152PubMedGoogle Scholar
  82. Sexton AC, Howlett BJ (2006) Parallels in fungal pathogenesis on plant and animal hosts. Eukaryot Cell 5(12):1941–1949PubMedCentralPubMedGoogle Scholar
  83. Shahzad K, Loor JJ (2012) Application of top-down and bottom-up systems approaches in ruminant physiology and metabolism. Curr Genomics 13(5):379–394PubMedCentralPubMedGoogle Scholar
  84. Silva J, Chang K, Hannon GJ, Rivas FV (2004) RNA-interference-based functional genomics in mammalian cells: reverse genetics coming of age. Oncogene 23:8401–8409PubMedGoogle Scholar
  85. Slade Ann J, Fuerstenberg Susan I, Loeffler D, Steine Michael N, Facciotti D (2005) A reverse genetic, non-transgenic approach to wheat crop improvement by TILLING. Nat Biotech 23:75–81Google Scholar
  86. Soanes DM, Talbot NJ (2006) Comparative genomic analysis of phytopathogenic fungi using expressed sequence tag (EST) collections. Mol Plant Pathol 7(1):61–70PubMedGoogle Scholar
  87. Soanes DM, Skinner W, Keon J, Hargreaves J, Talbot NJ (2002) Genomics of phytopathogenic fungi and the development of bioinformatic resources. Mol Plant Microbe Interact 15(5):421–427PubMedGoogle Scholar
  88. Soderlund C (2009) Computational techniques for elucidating plant-pathogen interactions from large-scale experiments on fungi and oomycetes. Brief Bioinform 10(6):654–663PubMedGoogle Scholar
  89. Srivastava M, Akhoon BA, Gupta SK, Gupta SK (2010) Development of resistance against blackleg disease in Brassica oleracea var. botrytis through in silico methods. Fungal Genet Biol 47(10):800–808PubMedGoogle Scholar
  90. Stark C, Breitkreutz BJ, Reguly T, Boucher L, Breitkreutz A, Tyers M (2006) BioGRID: a general repository for interaction datasets. Nucleic Acids Res 34(Database issue):D535–D539PubMedCentralPubMedGoogle Scholar
  91. Strobel G, Hess WM (1974) Evidence for the presence of the toxin-binding protein on the plasma membrane of sugarcane cells. Proc Natl Acad Sci U S A 71:1413–1417PubMedCentralPubMedGoogle Scholar
  92. Talbot NJ, Kershaw MJ, Wakley GE, de Vries OMH, Wessels JGH, Hamer JE (1996) MPG1 encodes a fungal hydrophobin involved in surface interactions during infection-related development of Magnaporthe grisea. Plant Cell 8:985–999PubMedCentralPubMedGoogle Scholar
  93. Tang WH, Zhang Y, Duvick J (2012) The application of laser microdissection to profiling fungal pathogen gene expression in planta. Methods Mol Biol 835:219–236PubMedGoogle Scholar
  94. Tollot M, Hoi Joanne WS, van Tuinen D, Arnould C, Chatagnier O, Dumas B, Gianinazzi-Pearson V, Seddas Pascale MA (2009) An STE12 gene identified in the mycorrhizal fungus Glomus intraradices restores infectivity of a hemibiotrophic plant pathogen. New Phytol 181:693–707PubMedGoogle Scholar
  95. Torto TA, Li S, Styer A, Huitema E, Testa A, Gow NA, van West P, Kamoun S (2003) EST mining and functional expression assays identify extracellular effector proteins from the plant pathogen Phytophthora. Genome Res 13(7):1675–1685PubMedCentralPubMedGoogle Scholar
  96. van Driel KGA, Boekhout T, Wösten HAB, Verkleij AJ, Müller WH (2007) Laser microdissection of fungal septa as visualized by scanning electron microscopy. Fungal Genet Biol 44:466–473PubMedGoogle Scholar
  97. Van Loon LC, Pierpoint WS, Boller T, Conejero V (1994) Recommendations for naming plant pathogenesis-related proteins. Plant Mol Biol Rep 12:245–264Google Scholar
  98. Venu RC, Zhang Y, Weaver B, Carswell P, Mitchell TK, Meyers BC et al (2011) Large scale identification of genes involved in plant-fungal interactions using Illumina’s sequencing-by-synthesis technology. Methods Mol Biol 722:167–178PubMedGoogle Scholar
  99. Verberne MC, Verpoorte R, Bol JF, Mercado-Blanco J, Linthorst HJM (2000) Overproduction of salicylic acid in plants by bacterial transgenes enhances pathogen resistance. Nat Biotechnol 18:779–783PubMedGoogle Scholar
  100. Vieira A, Talhinhas P, Loureiro A, Duplessis S, Fernandez D, Silva M et al (2011) Validation of RT-qPCR reference genes for in planta expression studies in Hemileia vastatrix, the causal agent of coffee leaf rust. Fungal Biol 115(9):891–901PubMedGoogle Scholar
  101. Walters DR, McRoberts N (2006) Plants and biotrophs: a pivotal role for cytokinins? Trends Plant Sci 11(12):581–586PubMedGoogle Scholar
  102. Wang Z, Gerstein M, Snyder M (2009) RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet 10(1):57–63PubMedCentralPubMedGoogle Scholar
  103. Washburn MP (2004) Utilization of proteomics datasets generated via multidimensional protein identification technology (MudPIT). Brief Funct Genomic Proteomic 3(3):280–286PubMedGoogle Scholar
  104. Washburn MP, Wolters D, Yates IIIJR (2001) Large-scale analysis of the yeast proteome by multidimensional protein identification technology. Nat Biotechnol 19(3):242–247PubMedGoogle Scholar
  105. Webling R, Panstruga R (2012) Rapid quantification of plant-powdery mildew interactions by qPCR and conidiospore counts. Plant Methods 8:35Google Scholar
  106. Weidmann S, Sanchez L, Descombin J, Chatagnier O, Gianinazzi S, Gianinazzi-P V (2004) Fungal elicitation of signal transduction-related plant genes precedes mycorrhiza establishment and requires the dmi3 gene in Medicago truncatula. Mol Plant Microbe Interact 17(12):1385–1393PubMedGoogle Scholar
  107. Wessels GH, Sietsma JH (1981) Fungal cell walls: a survey. In: Tanner W, Loewus FA (eds) Encyclopedia of plant physiology, vol 13B, New Series. Springer, Heidelberg, pp 352–394Google Scholar
  108. West P, Kamoun S, van’tKlooster JW, Govers F (1999) Internuclear gene silencing in Phytophthora infestans. Mol Cell 3(3):339–348PubMedGoogle Scholar
  109. Whisson SC, Avrova AO, West PV, Jones JT (2005) A method for double-stranded RNA-mediated transient gene silencing in Phytophthora infestans. Mol Plant Pathol 6(2):153–163PubMedGoogle Scholar
  110. Wilhelm J, Pingoud A (2003) Real-time polymerase chain reaction. Chem Bio Chem 4(11):1120–1128PubMedGoogle Scholar
  111. Winnenburg R, Urban M, Beacham A, Baldwin TK, Holland S, Lindeberg M et al (2008) PHI-base update: additions to the pathogen host interaction database. Nucleic Acids Res 36(Database issue):D572–D576PubMedCentralPubMedGoogle Scholar
  112. Winzeler EA, Shoemaker DD, Astromoff A, Liang H, Anderson K, Andre B, Bangham R et al (1999) Functional characterization of the Saccharomyces cervisiae genome by precise deletion and parallel analysis. Science 285(5429):901–906PubMedGoogle Scholar
  113. Woolhouse M, Gaunt E (2007) Ecologic origins of novel human pathogens. Crit Rev Microbiol 33:231–242PubMedGoogle Scholar
  114. Xu JR, Peng YL, Dickman MB, Sharon A (2006) The dawn of fungal pathogen genomics. Annu Rev Phytopathol 44:337–366PubMedGoogle Scholar
  115. Yakovlev IA, Hietala AM, Steffenrem A, Solheim H, Fossdal CG (2008) Identification and analysis of differentially expressed Heterobasidion parviporum genes during natural colonization of Norway spruce stems. Fungal Genet Biol 45:498–513PubMedGoogle Scholar
  116. Yates JR III (1998) Mass spectrometry and the age of the proteome. J Mass Spectrom 33:1–19PubMedGoogle Scholar
  117. Yuan JS, Galbraith DW, Dai SY, Griffin P, Stewart CN Jr (2008) Plant systems biology comes of age. Trends Plant Sci 13(4):165–171PubMedGoogle Scholar
  118. Zhu C, Sanahuja G, Yuan D, Farré G, Arjó G, Berman J et al (2013) Biofortification of plants with altered antioxidant content and composition: genetic engineering strategies. Plant Biotechnol J 11(2):129–141PubMedGoogle Scholar
  119. Zhuang X, McPhee KE, Coram T, Peever T, Chilvers M (2012) Rapid transcriptome characterization and parsing of sequences in a non-model host-pathogen interaction pea-Sclerotinia sclerotiorum. BMC Genomics 13:668PubMedCentralPubMedGoogle Scholar

Copyright information

© Springer India 2015

Authors and Affiliations

  • Mugdha Srivastava
    • 1
  • Neha Malviya
    • 2
  • Thomas Dandekar
    • 1
  1. 1.Functional Genomics and Systems Biology Group, Department of BioinformaticsBiocenterWuerzburgGermany
  2. 2.Department of BiotechnologyDeen Dayal Upadhyay Gorakhpur UniversityGorakhpurIndia

Personalised recommendations