Skip to main content

Abstract

This chapter provides an overview of the current state of knowledge concerning global warming with special reference to contribution from livestock resources. Global warming pertains to the effect of natural greenhouse gases (GHGs) such as carbon dioxide (CO2), methane (CH4), nitrous oxide (N2O), and halogenated compounds on the environment. These GHGs are generated by humans and human-related activities. Carbon dioxide, CH4, and N2O are the principal sources of radiative forcing (Fifth IPCC Report of 2013). Interestingly, livestock contributes to climate change through emissions of CO2, CH4, and N2O into the atmosphere. Globally, the livestock sector directly and indirectly contributes 18 % (7.1 billion tonnes CO2 equivalent) of GHG emissions. While direct GHG emissions from livestock refer to emissions from enteric fermentations in livestock, urine excretion, and microbial activities in manures, indirect GHG emissions are those not directly derived from livestock activities but from manure applications on farm crops, production of fertilizer for growing crops used for animal feed production, and processing and transportation of refrigerated livestock products. Other indirect emissions include deforestation, desertification, and release of carbons from cultivated soils due to expansion of livestock husbandry. According to FAO’s Global Livestock Environmental Assessment Model (GLEAM), the GHG emission from livestock-related activities was estimated to be around 7.1 gigatonnes CO2-eq. per annum, representing 14.5 % of human-induced emissions. This clearly indicates the significant role for livestock contributions to climate change.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aguilar O, Maghirang R, Rice CW, Trabue S, Erickson LE, Razote E (2011) Nitrous oxide emissions from a commercial cattle feedlot in Kansas. American Society of Agricultural and Biological Engineers (ASABE), p 1110855, St. Joseph, MI

    Google Scholar 

  • Allen MR, Pall P, Stone DA, Stott P, Frame D, Min S-K, Nozawa T, Yukimoto S (2007) Scientific challenges in the attribution of harm to human influence on climate. Univ Pa Law Rev 155(6):1353–1400

    Google Scholar 

  • Araji AA, Abdo ZO, Joyce P (2001) Efficient use of animal manure on cropland – economic analysis. Bioresour Technol 79:179–191

    CAS  Google Scholar 

  • Asner GP, Archer S, Hughes RF, Ansley RJ, Wessman CA (2003) Net changes in regional woody vegetation cover and carbon storage in Texas Drylands 1937–1999. Glob Chang Biol 9:316–335. doi:10.1046/j.1365-2486.2003.00594.x

    Google Scholar 

  • Babklin VI, Klige RK (2004) The contemporary hydrosphere. In: Shiklomanov IA, Rodda JC (eds) World water resources at the beginning of the 21st century. International hydrology series. UNESCO, Cambridge University Press, Cambridge, pp 13–18

    Google Scholar 

  • Becker KH, Lörzer JC, Kurtenbach R, Wiesen P, Jensen TE, Wallington TJ (1999) Nitrous oxide emissions from vehicles. Environ Sci Technol 33:4134–4139

    CAS  Google Scholar 

  • Beegle DB, Kelling KA, Schmitt MA (2008) Nitrogen from animal manure. In: Schepers JS, Raun WR (eds) Nitrogen in agricultural systems. American Society of Agronomy, Madison, pp 832–881

    Google Scholar 

  • Berges MGM, Hofmann RM, Schafre D, Crutzen PJ (1993) Nitrous oxide emissions from motor vehicles in tunnels and their global extrapolation. J Geophys Res 98:18527–18531

    CAS  Google Scholar 

  • Berlin J (2002) Environmental life cycle assessment (LCA) of Swedish semi-hard cheese. Int Dairy J 12:939–953

    Google Scholar 

  • Bhend J, von Storch H (2008) Consistency of observed winter precipitation trends in northern Europe with regional climate change projections. Clim Dyn 31(1):17–28

    Google Scholar 

  • Bolle HJ, Seiler W, Bolin B (1986) Other greenhouse gases and aerosols: trace gases in the atmospheres. In: Bolin B, Döös BOR, Jäger J, Warrick RA (eds) The greenhouse effect, climatic change & ecosystems (SCOPE 29). Wiley, Chichester, pp 157–203

    Google Scholar 

  • Bonfils C, Santer BD, Pierce DW, Hidalgo HG, Bala G, Das T, Barnett TP, Dettinger M, Cayan DR, Doutriaux C, Wood AW, Mirin A, Nozawa T (2008) Detection and attribution of temperature changes in the mountainous western United States. J Clim 21:6404–6424

    Google Scholar 

  • Bouwman A (1996) Direct emissions of nitrous oxide from agricultural soils. Nutr Cycl Agroecosyst 46:53–70

    CAS  Google Scholar 

  • Breitenbeck G, Blackmer A, Bremner J (1980) Effects of different nitrogen fertilizers on nitrous oxide from soil. Geophys Res Lett 7:85–88

    CAS  Google Scholar 

  • Bremner J, Breitenbeck G, Blackmer A (1981) Effects of anhydrous ammonia fertilization on emission of nitrous oxide from soils. J Environ Qual 10:77–80

    CAS  Google Scholar 

  • Brown HA, Wagner-Riddle C, Thurtell GW (2000) Nitrous oxide flux from solid dairy manure in storage as affected by water content and redox potential. J Environ Qual 29:630–638

    CAS  Google Scholar 

  • Bruinsma J (2003) World agriculture: towards 2015/2030, an FAO perspective. Earthscan, London

    Google Scholar 

  • Bulletin of the International Dairy Federation (2010) A common carbon footprint approach for dairy. The IDF guide to standard lifecycle assessment methodology for dairy sector, 445/2010.42 pp

    Google Scholar 

  • Canadell JG, Le Quere C, Raupach MR, Field CB, Buitenhuis ET, Ciais P, Conway TJ, Gillett NP, Houghton RA, Marland G (2007) Contributions to accelerating atmospheric CO2 growth from economic activity, carbon intensity, and efficiency of natural sinks. Proc Natl Acad Sci U S A 104(47):18866–18870

    CAS  Google Scholar 

  • CAST (2004) Climate change and greenhouse gas mitigation: challenges and opportunities for agriculture. Council for Agricultural Science and Technology, Task Force Report No 141

    Google Scholar 

  • Castillo AR, Kebreab E, Beever DE, Barbi JH, Sutton JD, Kirby HC, France J (2001) The effect of energy supplementation on nitrogen utilization in lactating dairy cows fed grass silage diets. J Anim Sci 79:240–246

    CAS  Google Scholar 

  • Cavigelli MA, Parkin TB (2012) Cropland management contributions to greenhouse gas flux: central and eastern U.S. In: Franzluebbers AJ, Follett RF (eds) Managing agricultural greenhouse gases: coordinated agricultural research through GRACEnet to address our changing climate. Academic, New York

    Google Scholar 

  • Chianese DS, Rotz CA, Richard TL (2009) Whole-farm gas emissions: a review with application to a Pennsylvania dairy farm. Appl Eng Agric 25:431–442

    Google Scholar 

  • Chin M, Kahn R, Remer L, Yu H, Rind D, Feingold G, Quinn P, Streets D, DeCola P, Halthore R (2009) Atmospheric aerosol properties and climate impacts: synthesis and assessment product 2.3, Report by the U.S. Climate Change Science Program and the Subcommittee on Global Change Research, U.S. Climate Change Science Program, Washington, DC, US

    Google Scholar 

  • Christy JR, Spencer RW (2005) Correcting temperature data sets. Science 310:972

    CAS  Google Scholar 

  • Clemens J, Huschka A (2001) The effect of biological oxygen demand of cattle slurry and soil moisture on nitrous oxide emissions. Nutr Cycl Agroecosyst 59:93–198

    Google Scholar 

  • Cole NA, Todd RW (2009) Nitrogen and phosphorus balance of beef cattle feedyards. In: Jordan E (eds) Proceedings of the Texas animal manure management issues conference, Round Rock TX, September 2009, p 1724

    Google Scholar 

  • Crutzen PJ (1991) CH4’s sinks and sources. Nature 350:380–381

    Google Scholar 

  • Crutzen PJ (1995) The role of CH4 in atmospheric chemistry and climate. In: Engelhardt WV, Leonhard-Marek S, Breves G, Giesecke D (eds) Ruminant physiology: digestion, metabolism, growth and reproduction: proceedings of the eighth international symposium on ruminant physiology. Ferdinand Enke Verlag, Stuttgart, pp 291–316

    Google Scholar 

  • Crutzen PJ, Aselmann I, Seiler W (1986) CH4 production by domestic animals, wild ruminants, other herbivorous fauna, and humans. Tellus 388:271–284

    Google Scholar 

  • Davidson EA (2009) The contribution of manure and fertilizer nitrogen to atmospheric nitrous oxide since 1860. Nat Geosci 2:659–662

    CAS  Google Scholar 

  • Davis M (2002) Late Victorian holocausts: El Niño famines and the making of the third world. Verso, London

    Google Scholar 

  • de Boer IJM, Cederberg C, Eady S, Gollnow S, Kristensen T, Macleod M, Meul M, Nemecek T, Phong LT, Thoma G, van der Werf HMG, Williams AG, Zonderland-Thomassen MA (2011) Greenhouse gas mitigation in animal production: towards an integrated life cycle sustainability assessment. Curr Opin Environ Sustain 3:423–431

    Google Scholar 

  • de Klein CAM (2001) An analysis of environmental and economic implications of nil and restricted grazing systems designed to reduce nitrate leaching from New Zealand dairy farms. II. Pasture production and cost/benefit analysis. N Z J Agric Res 44:217–235

    Google Scholar 

  • Dixon RK, Brown S, Houghton RA, Solomon AM, Trexler MC, Wisniewski J (1994) Carbon pools and flux of global forest ecosystems. Science 263:185–190

    CAS  Google Scholar 

  • Dunshea FR, Leury BJ, Fahri F, DiGiacomo K, Hung A, Chauhan S, Clarke IJ, Collier R, Little S, Baumgard L, Gaughan JB (2013) Amelioration of thermal stress impacts in dairy cows. Anim Prod Sci 53(9):965–975

    Google Scholar 

  • EPA, Holtkamp J, Hayano D, Irvine A, John G, Munds-Dry O, Newland T, Snodgrass S, Williams M (2006) Inventory of U.S. greenhouse gases and sinks: 1996–2006. Environmental Protection Agency, Washington, DC. http://www.epa.gov/climatechange/emissions/downloads/08_Annex_1-7.pdf

  • European Commission (2006) Environmental impact of products (EIPRO): analysis of the life cycle environmental impacts related to the total final consumption of the EU25. European Commission Technical Report EUR 22284 EN

    Google Scholar 

  • Fagan BM (2001) The Little Ice Age: how climate made history, 1300–1850. Basic Books, New York

    Google Scholar 

  • FAO (2002) World agriculture: towards 2015/2030. Summary report. Food and Agriculture Organisation, Rome

    Google Scholar 

  • FAO (2006a) Livestock‘s long shadow. Food and Agriculture Organisation, Rome

    Google Scholar 

  • FAO (2006b) World agriculture: towards 2030/2050. Prospects for Food, Nutrition, Agriculture and Major Commodity Groups. Interim Report, Rome.

    Google Scholar 

  • FAO (2007) Adaptation to climate change in agriculture, forestry, and fisheries: perspective, framework and priorities. FAO, Rome

    Google Scholar 

  • FAO (2008) Climate-related transboundary pests and diseases including relevant aquatic species. Expert meeting, FAO

    Google Scholar 

  • FAO (2009) Carbon sequestration in grasslands: technical, economic and policy issues. Draft briefing paper. FAO, Rome

    Google Scholar 

  • FAO (2010) The global forest resources assessment 2010 – key findings. FAO, Rome

    Google Scholar 

  • FAO (2012) Balanced feeding for improving livestock productivity – Increase in milk production and nutrient use efficiency and decrease in methane emission. In: Garg MR (ed), FAO animal production and health paper no. 173. FAO, Rome. 1080/00330124.2014.921017 (2014)

    Google Scholar 

  • Frolking SE, Mosier AR, Ojima DS, Li C, Parton WJ, Potter CS, Priesack E, Stenger R, Haberbosch C, Dorsch P, Flessa H, Smith KA (1998) Comparison of N2O emissions from soils at three temperate agricultural sites: simulations of year-round measurements by four models. Nutr Cycl Agroecosyst 52:77–105

    CAS  Google Scholar 

  • Fung I, John J, Lerner J, Matthews E, Prather M, Steele LP, Fraser PJ (1991) Three dimensional model synthesis of the global CH4 cycle. J Geophys Res 96D:13033–13065

    Google Scholar 

  • Galbraith JK, Mathison GW, Hudson RJ, McAllister TA, Cheng K-J (1998) Intake, digestibility, CH4 and heat production in bison, wapiti and white-tailed deer. Can J Anim Sci 78:681–691

    Google Scholar 

  • Garnett T (2009) Livestock-related greenhouse gas emissions: impacts and options for policy makers. Environ Sci 12:491–503

    CAS  Google Scholar 

  • Geist HJ, Lambin EF (2002) Proximate causes and underlying driving forces of tropical deforestation. Bioscience 52(2):143–150

    Google Scholar 

  • Geller LS, Elkins JW, Lobert JM, Clarke AD, Hurst DF, Butler JH, Myers RC (1997) Tropospheric SF6: observed latitudinal distribution and trends, derived emissions, and interhemispheric exchange time. Geophys Res Lett 24:675–678

    CAS  Google Scholar 

  • Gerber PJ, Steinfeld H, Henderson B, Mottet A, Opio C, Dijkman J, Falcucci A, Tempio G (2013) Tackling climate change through livestock – a global assessment of emissions and mitigation opportunities. Food and Agriculture Organization of the United Nations (FAO), Rome

    Google Scholar 

  • Gregg K (1995) Engineering gut flora of ruminant livestock to reduce forage toxicity: progress and problems. Trends Biotechnol 13:418–421

    CAS  Google Scholar 

  • Harper LA, Sharpe RR, Parkin TB, de Visscher A, van Cleemput O, Byers FM (2004) Nitrogen cycling through swine production systems: ammonia, dinitrogen, and nitrous oxide emissions. J Environ Qual 33:1189–1201

    CAS  Google Scholar 

  • Hashimoto AG, Chen YR, Varel VH (1980) Theoretical aspects of CH4 production: state-of-the-art. In: Proceedings, fourth international symposium on livestock wastes. American Society of Agricultural Engineers, St. Joseph, pp 86–91

    Google Scholar 

  • Hegarty RS, Goopy JP, Herd RM, McCorkell B (2007) Cattle selected for lower residual feed intake have reduced daily CH4 production. J Anim Sci 85:1479–1486

    CAS  Google Scholar 

  • Helldén U (1991) Desertification: time for an assessment? For Environ 20:372–382

    Google Scholar 

  • Hisatomi H, Hitomi K, Hayato S (2007) Reduction in greenhouse gas emissions by no-tilling rice cultivation in Hachirogata polder, northern Japan: life-cycle inventory analysis. Soil Sci Plant Nutr 53:668–677

    Google Scholar 

  • Hoekstra AY, Chapagain AK (2007) Water footprints of nations: water use by people as a function of their consumption pattern. Water Resour Manag 21:35–48. doi:10.1007/s11269-006-9039-x

    Google Scholar 

  • Hoekstra NJ, Schulte RPO, Struik PC, Lantinga EA (2007) Pathways to improving the N efficiency of grazing bovines. Eur J Agron 26:363–374

    CAS  Google Scholar 

  • Hofmann MT, Ashwell A (2001) Nature divided: land degradation in South Africa. University of Cape Town Press, Lansdowne

    Google Scholar 

  • Holter JB, Young AJ (1992) CH4 prediction in dry and lactating Holstein cows. J Dairy Sci 75:2165–2175

    CAS  Google Scholar 

  • Houghton RA (2003) Revised estimates of the annual net flux of carbon to the atmosphere from changes on land use and land management. Tellus 55B:378–390

    CAS  Google Scholar 

  • Houghton RA, Hackler JL, Lawrence KT (1999) The U.S. carbon budget: contributions from land-use change. Science 285:574–578

    CAS  Google Scholar 

  • Hristov AN (2012) Historic, pre-European settlement, and present-day contribution of wild ruminants to enteric CH4 emissions in the United States. J Anim Sci 90:1371–1375

    CAS  Google Scholar 

  • Hristov AN, Oh J, Lee C, Meinen R, Montes F, Ott T, Firkins J, Rotz CA, Dell C, Adesogan A, Yang WZ, Tricarico J, Kebreab E, Waghorn G, Dijkstra J, Oosting S (2013) Mitigation of greenhouse gas emissions in livestock production – a review of technical options for non-CO2 emissions. In: Gerber P, Henderson B, Makkar H (eds) FAO animal production and health. FAO, Rome, p 177

    Google Scholar 

  • Ianotti EL, Kafkewitz D, Wolin MJ, Bryant MP (1973) Glucose fermentation products of Ruminococcus albus in continuous culture with Vibrio succinogenes: changes caused by interspecies transfer of H2. J Bacteriol 114:1231–1240

    Google Scholar 

  • International Assessment of Agricultural Science and Technology for Development (IAASTD) (2008) Global summary for decision makers, Johannesburg, South Africa

    Google Scholar 

  • International Nitrogen Initiative (2004) A preliminary assessment of changes in the global nitrogen cycle as a result of anthropogenic influences. http://www.initrogen.org/fileadmin/user_upload/2005_products/INI_Pre-Assessment_final.pdf

  • International Nitrogen Initiative (2006) The issues of nitrogen. http://www.initrogen.org/fileadmin/user_upload/2006_docs/INI_Brochure_12Aug06.pdf

  • International Organization for Standardization (2006) ISO 14040:2006. In: FAO (ed) http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=37456. Accessed 2 Apr 2009

  • IPCC (1997) Intergovernmental panel on climate change/organization for economic cooperation and development: guidelines for national greenhouse gas inventories. Paris. http://www.ipcc-nggip.iges.or.jp/public/mtdocs/pdfiles/rockhamp.pdf

  • IPCC (2000a) Good practice guidance and uncertainty management in national greenhouse gas inventories. Intergovernmental Panel on Climate Change (IPCC), IPCC/OECD/IEA/IGES, Hayama

    Google Scholar 

  • IPCC (2000b) Emission scenarios, summary for policy makers. Online at http://www.grida.no/climate/ipcc/spmpdf/sres-e.pdf

  • IPCC (2006) IPCC guidelines for national greenhouse gas inventories 2006. Institute for Global Environmental Strategies (IGES), Berlin

    Google Scholar 

  • IPCC (2007a) Fourth assessment report (AR4). Intergovernmental Panel on Climate Change (IPCC)

    Google Scholar 

  • IPCC (2007b) The physical science basis – summary for policymakers: contribution of WG1 to the fourth assessment report of the Intergovernmental Panel on Climate Change. http://www.ipcc.ch/ipccreports/ar4-wg1.htm

  • IPCC (2007c) Climate change 2007: the physical science basis: Working Group I contribution to the fourth assessment report. Cambridge University Press, Cambridge

    Google Scholar 

  • IPCC (2013) Impacts, adaptation and vulnerability. http://ipcc-wg2.gov/AR5/images/uploads/WGIIAR5-TS_FGDall.pdf

  • Issar AS, Zohar M (2007) Climate change: environment and civilisation in the Middle East. Springer, Berlin

    Google Scholar 

  • Jan Kramer K, Moll HC, Nonhebel S, Wilting HC (1999) Greenhouse gas emissions related to Dutch food consumption. Energ Policy 27:203–216

    Google Scholar 

  • Jarecki M, Parkin T, Chan A, Hatfield J, Jones R (2008) Greenhouse gas emissions from two soils receiving nitrogen fertilizer and swine manure slurry. J Environ Qual 37:1432–1438

    CAS  Google Scholar 

  • Jenkinson D (1991) The Rothamsted long-term experiments: are they still of use? J Agron 83:2–12

    Google Scholar 

  • Jensen BB (1996) Methanogenesis in monogastric animals. Environ Monit Assess 42:99–112

    CAS  Google Scholar 

  • Jiménez JL, McManus JB, Shorter JH, Nelson DD, Zahniser MS, Koplow M, McRae GJ, Kolb CE (2000) Cross road and mobile tunable infrared laser measurements of nitrous oxide emissions from motor vehicles. Chemosphere Global Change Sci 2:397–412

    Google Scholar 

  • Joblin KN (2005) Methanogenic archaea. In: Makkar HPS, McSweeney CS (eds) Methods in gut microbial ecology for ruminants. Springer, Dordrecht, pp 47–53

    Google Scholar 

  • Johnson KA, Johnson D (1995) CH4 emissions from cattle. J Anim Sci 73:2483–2492

    CAS  Google Scholar 

  • Johnson DE, Ward GM (1996) Estimates of animal CH4 emissions. Environ Monit Assess 42:133–141

    CAS  Google Scholar 

  • Jones AA (1997) Global hydrology: processes, resources and environmental management. Longman, Harlow

    Google Scholar 

  • Jones GS, Stott PA, Christidis N (2008) Human contribution to rapidly increasing frequency of very warm Northern Hemisphere summers. J Geophys Res 113:D02109. doi:10.1029/2007JD008914

    Google Scholar 

  • Jungbluth T, Hartung E, Brose G (2001) Greenhouse gas emissions from animal houses and manure stores. Nutr Cycl Agroecosyst 60:133–145

    CAS  Google Scholar 

  • Kaharabata SK, Schuepp PH, Desjardins RL (1998) CH4 emissions from aboveground open manure slurry tanks. Glob Biogeochem Cycles 12:545–554

    CAS  Google Scholar 

  • Karl GCHTR, Allen M, Bindoff NL, Gillett N, Karoly D, Zhang X, Zwiers FW (2006) Climate change detection and attribution: beyond mean temperature signals. J Clim 19:5058–5077

    Google Scholar 

  • Kaspar HF, Tiedje JM (1981) Dissimilatory reduction of nitrate and nitrite in the bovine rumen nitrous oxide production and effect of acetylene. Appl Environ Microbiol 41:705–709

    CAS  Google Scholar 

  • Kelliher FM, Clark H (2010) CH4 emissions from bison – an historic herd estimate for the North American Great Plains. Agric For Meteorol 150:473–477

    Google Scholar 

  • Kempton TJ, Murray RM, Leng RA (1976) CH4 production and digestibility measurements in the grey kangaroo and sheep. Aust J Biol Sci 29:209–214

    CAS  Google Scholar 

  • Kerr RA, Balter M (2007) Climate change: scientists tell policymakers we’re all warming the world. Science 315:754–757

    CAS  Google Scholar 

  • Keyzer MA, Merbis MD, Pavel IFPW, van Wesenbeeck CFA (2005) Diet shifts towards meat and the effects on cereal use: can we feed the animals in 2030? Ecol Econ 55(2):187–202

    Google Scholar 

  • Khaleel R, Reddy KR, Overcash MR (1981) Changes in soil physical properties due to organic waste applications: a review. J Environ Qual 10:133–141

    Google Scholar 

  • Khan RZ, Muller C, Sommer SG (1997) Micrometeorological mass balance technique for measuring CH4 emission from stored cattle slurry. Biol Fertil Soils 24:442–444

    CAS  Google Scholar 

  • Kirchmann H, Lundvall A (1998) Treatment of solid animal manures: identification of low NH3 emission practices. Nutr Cycl Agroecosyst 51:65–71

    Google Scholar 

  • Krumholz LR, Forsberg CW, Veira DM (1983) Association of methanogenic bacteria with rumen protozoa. Can J Microbiol 29:676–680

    CAS  Google Scholar 

  • Kumar R, Nunn PD, Field SJ, De Biran A (2006) Human responses to climate change around AD 1300: a case study of the Sigatoka Valley, Viti Levu Island, Fiji. Quat Int 151:133–143

    Google Scholar 

  • Kyoto Protocol (1997) United Nations framework convention on climate change. Kyoto Protocol, Kyoto

    Google Scholar 

  • Lal R (1999) Soil management and restoration for C sequestration to mitigate the accelerated greenhouse effect. Prog Environ Sci 1:307–326

    CAS  Google Scholar 

  • Lal R (2004) Carbon emission from farm operations. Environ Int 30:981–990

    CAS  Google Scholar 

  • Lamy F, Arz HW, Bond GC, Bahr A, Patzold J (2006) Multicentennial-scale hydrological changes in the Black Sea and northern Red Sea during the Holocene and the Arctic/North Atlantic Oscillation. Paleoceanography 21:PA1008

    Google Scholar 

  • Langmeier M, Frossard E, Kreuzer M, Mäder P, Dubois D, Oberson A, Recous S, Nicolardot B (2002) Nitrogen fertilizer value of cattle manure applied on soils originating from organic and conventional farming systems. Agronomie 22:789–800

    Google Scholar 

  • Lashof DA, Ahuja DR (1990) Relative contributions of greenhouse gas emissions to global warming. Nature 344(6266):529–531

    CAS  Google Scholar 

  • Le Quere C, Raupach MR, Canadell JG, Marland G, Bopp L, Ciais P, Conway TJ, Doney SC, Feely RA, Foster P, Friedlingstein P, Gurney K, Houghton RA, House JI, Huntingford C, Levy PE, Lomas MR, Majkut J, Metzl N, Ometto JP, Peters GP, Prentice IC, Randerson JT, Running SW, Sarmiento JL, Schuster U, Sitch S, Takahashi T, Viovy N, van der Werf GR, Woodward FI (2009) Trends in the sources and sinks of carbon dioxide. Nat Geosci 2(12):831–836

    Google Scholar 

  • Lean JL, Rind DH (2008) How natural and anthropogenic influences alter global and regional surface temperatures: 1889 to 2006. Geophys Res Lett 35:L18701

    Google Scholar 

  • Lee C, Hristov AN, Cassidy TW, Heyler K (2011) Nitrogen isotope fractionation and origin of ammonia nitrogen volatilized from cattle manure in simulated storage. Atmosphere (Toronto) 2:256–270

    CAS  Google Scholar 

  • Leytem AB, Dungan RS, Bjorneberg DL, Koehn AC (2011) Emissions of ammonia, CH4, carbon dioxide, and nitrous oxide from dairy cattle housing and manure management systems. J Environ Qual 40:1383–1394

    CAS  Google Scholar 

  • Lockwood M, Fröhlich C (2007) Recent oppositely directed trends in solar climate forcings and the global mean surface air temperature. Proc R Soc A. doi:10.1098/rspa.2007. 1880, Published online

  • Loh Z, Chen D, Bai M, Naylor T, Griffith D, Hill J, Denmead T, McGinn S, Edis R (2008) Measurement of greenhouse gas emissions from Australian feedlot beef production using open-path spectroscopy and atmospheric dispersion modeling. Aust J Exp Agric 48:244–247

    CAS  Google Scholar 

  • Lundqvist J, de Fraiture C, Molden D (2008) Saving water: from field to fork – curbing losses and wastage in the food chain. SIWI Policy Brief, SIWI, Stockholm

    Google Scholar 

  • Madsen J, Bertelsen MF (2012) CH4 production by red-necked wallabies (Macropus rufogriseus). J Anim Sci 90:1364–1370

    CAS  Google Scholar 

  • Maiss M, Brenninkmeijer CAM (1998) Atmospheric SF6: trends, sources, and prospects. Environ Sci Technol 32:3077–3086

    CAS  Google Scholar 

  • McAlpine CA, Etter A, Fearnside PM, Seabrook L, Laurance WF (2009) Increasing world consumption of beef as a driver of regional and global change: a call for policy action based on evidence from Queensland (Australia), Colombia and Brazil. Glob Environ Chang 19:21–33

    Google Scholar 

  • McSweeney CS, Denman SE, Mackie RI (2005) Rumen bacteria. In: Makkar HPS, McSweeney CS (eds) Methods in gut microbial ecology for ruminants. Springer, Dordrecht, pp 23–37

    Google Scholar 

  • Mears CA, Wentz FJ (2005) The effect of diurnal correction on satellite-derived lower tropospheric temperature. Science 310:1548–1551

    Google Scholar 

  • Melillo JM, Terese TCR, Gary WY (eds) (2014) Climate change impacts in the United States: the third national climate assessment. U.S. Global Change Research Program, 841 pp. doi:10.7930/J0Z31WJ2

  • Migeotte MJ (1948) Spectroscopic evidence of CH4 in the earth’s atmosphere. Phys Rev 73:519–520

    CAS  Google Scholar 

  • Millennium Ecosystem Assessment (2005) Ecosystems and human well-being: general synthesis. Island Press, Washington, DC

    Google Scholar 

  • Milly PCD, Dunne KA, Vecchia AV (2005) Global pattern of trends in stream flow and water availability in a changing climate. Nature 438:347–350

    CAS  Google Scholar 

  • Milton SJ, Dean WRJ, Du Plessis MA, Siegfried WR (1994) A conceptual model of arid rangeland degradation: the escalating cost of declining productivity. Bioscience 44:70–76

    Google Scholar 

  • Min S-K, Hense A (2007) A Bayesian assessment of climate change using multimodel ensembles. Part II: Regional and seasonal mean surface temperatures. J Clim 20(12):2769–2790

    Google Scholar 

  • Montes F, Meinen R, Dell C, Rotz A, Hristov AN, Oh J, Waghorn G, Gerber PJ, Henderson B, Makkar HPS, Dijkstra J (2013) Mitigation of CH4 and nitrous oxide emissions from animal operations: II. A review of manure management mitigation options. J Anim Sci 91:5070–5094. doi:10.2527/jas.2013-6584. Originally published online 17 Sept 2013

  • Mosier AR, Schimel DS, Valentine DW, Bronson KF, Parton WJ (1991) Methane and nitrous oxide fluxes in native, fertilized, and cultivated grasslands. Nature 350:330–332

    CAS  Google Scholar 

  • Mosier A, Duxbury J, Freney J, Heinemeyer O, Minami K (1996) Nitrous oxide emissions from agricultural fields: assessment, measurement and mitigation. Dev Plant Soil Sci 68:589–602

    Google Scholar 

  • Mosier A, Kroeze C, Nevison C, Oenema O, Seitzinger S, Van Cleemput O (1998a) Closing the global N2O budget: nitrous oxide emissions through the agricultural nitrogen cycle: OEDC/IPCC/IEA phase II development of IPCC guideline for national greenhouse gas methodology. Nutr Cycl Agroecosyst 52:225–248

    CAS  Google Scholar 

  • Mosier AR, Duxbury JM, Freney JR, Heinemeyer O, Minami K, Johnson D (1998b) Mitigating agricultural emissions of CH4. Clim Chang 40:39–80

    CAS  Google Scholar 

  • Mosier A, Wassmann R, Verchot L, King J, Palm C (2004) CH4 and nitrogen oxide fluxes in tropical agricultural soils: sources, sinks and mechanisms. Environ Dev Sustain 6:11–49

    Google Scholar 

  • Moss AR, Jounany JP, Neevbold J (2000) CH4 production by ruminants: its contribution to global warming. Ann Zootech 49:231–253

    CAS  Google Scholar 

  • Muñoz C, Yan T, Wills DA, Murray S, Gordon AW (2012) Comparison of the sulfur hexafluoride tracer and respiration chamber techniques for estimating CH4 emissions and correction for rectum CH4 output from dairy cows. J Dairy Sci 95:3139–3148

    Google Scholar 

  • Murray RM, Bryant AM, Leng RA (1976) Rates of production of CH4 in the rumen and large intestine of sheep. Br J Nutr 36:1–14

    CAS  Google Scholar 

  • Nachtergaele F, Petri M, Biancalani R, Van Lynden G, Van Velthuizen H (2010) Global Land Degradation Information System (GLADIS). Beta version: an information database for land degradation assessment at global level. Land degradation assessment in drylands technical report, no. 17. FAO, Rome

    Google Scholar 

  • Naylor R, Steinfeld H, Falcon W, Galloway JN, Smil V, Bradford GE, Mooney HA (2005) Losing the links between livestock and land. Science 310:1621–1622

    CAS  Google Scholar 

  • Nevison CD, Holland EA (1997) A reexamination of the impact of anthropogenically fixed nitrogen on atmospheric N2O and the stratospheric O3 layer. J Geophys Res 102:25519–25536

    CAS  Google Scholar 

  • Oenema O, Wrage N, Velthof GL, van Groeningen JW, Dolfing J, Kuikman PJ (2005) Trends in global nitrous oxide emissions from animal production systems. Nutr Cycl Agroecosyst 72:51–65

    CAS  Google Scholar 

  • Oram DE, Reeves CE, Sturges WT, Penkett SA, Fraser PJ, Langenfelds RL (1996) Recent tropospheric growth rate and distribution of HFC-134a (CF3CH2F). Geophys Res Lett 23:1949–1952

    CAS  Google Scholar 

  • Parton WJ, Hartman M, Ojima D, Schimel D (1998) DAYCENT and its land surface submodel: description and testing. Glob Planet Chang 19:35–48

    Google Scholar 

  • Petersen SO, Sommer SG (2011) Ammonia and nitrous oxide interactions: roles of manure organic matter management. Anim Feed Sci Technol 166–167:503–513

    Google Scholar 

  • Pimentel D, Pimentel M (2003) Sustainability of meat-based and plant-based diets and the environment. Am J Clin Nutr 78(suppl):660S–663S

    CAS  Google Scholar 

  • Potter JR (2002) Workshop summary. In: The potential impacts of climate change on transportation. DOT Center for Climate Change and Environmental Forecasting, Federal Research Partnership Workshop, 1–2 October 2002, pp 3–3

    Google Scholar 

  • Poulsen M, Schwab C, Jensen BB, Engberg RM, Spang A, Canibe N, Højberg O, Milinovich G, Fragner L, Schleper C, Weckwerth W, Lund P, Schramm A, Urich T (2013) Methylotrophic methanogenic Thermoplasmata implicated in reduced methane emissions from bovine rumen. Nat Commun 4:1428

    Google Scholar 

  • Rahman S, Borhan S, Swanson K (2013) Greenhouse gas emissions from beef cattle pen surfaces in North Dakota. Environ Technol 34:1239–1246

    CAS  Google Scholar 

  • Raupach MR, Canadell JG (2010) Carbon and the anthropocene. Curr Opin Environ Sustain 2:210–218

    Google Scholar 

  • Raupach MR, Canadell JG, Ciais P, Friedlingstein P, Rayner PJ, Trudinger CM (2011) The relationship between peak warming and cumulative CO2 emissions, and its use to quantify vulnerabilities in the carbon-climate-human system. Tellus B63(2):145–162

    Google Scholar 

  • Reynolds JF, Stafford Smith DM (eds) (2002) Global desertification: do humans cause deserts? Dahlem University Press, Berlin

    Google Scholar 

  • Royal Society (2010) Climate change: a summary of the science. Royal Society, London

    Google Scholar 

  • Ryan B, Tiffany DG (1998) Energy use in Minnesota agriculture. Minn Agric Econ 693, Fall 2008

    Google Scholar 

  • Sainz R (2003) Framework for calculating fossil fuel use in livestock systems. http://www.fao.org/wairdocs/lead/x6100e/x6100e00.htm#Contents

  • Samenow J (2010) It’s history: Winter 2009–2010 snowiest on record. The Washington Post, February 10. Database. Available online at http://voices.washingtonpost.com. Accessed 3 Oct 2010

  • Schellnhuber HJ, Cramer W, Nakicenovic N, Wigley T, Yohe G (eds) (2006) Avoiding dangerous climate change. Cambridge University Press, Cambridge

    Google Scholar 

  • Sebacher DI, Harriss RC, Bartlett KB (1983) CH4 flux across the air–water interface: air velocity effects. Tellus 35B:103–109

    CAS  Google Scholar 

  • Semadeni-Davies A, Hernebring C, Svensson G, Gustafsson L-G (2007) The impacts of climate change and urbanisation on drainage in Helsingborg, Sweden: combined sewer system. J Hydrol 350:100–113. doi:10.1016/j.jhydrol.2007.05.028

    Google Scholar 

  • Shiklomanov IA (2004) General conclusions: the outcome of the monograph. In: Shiklomanov IA, Rodda JC (eds) World water resources at the beginning of the 21st century. International hydrology series – UNESCO. Cambridge University Press, Cambridge, pp 414–416

    Google Scholar 

  • Simmonds PG, O’Doherty S, Huang J, Prinn R, Derwent RG, Ryall D, Nickless G, Cunnold D (1998) Calculated trends and the atmospheric abundance of 1,1,1,2-tetrafluoroethane, 1,1-dichloro-1- fluoroethane, and 1-chloro-1,1-difluoroethane using automated in-situ gas chromatography mass spectrometry measurements recorded at Mace Head, Ireland, from October 1994 to March 1997. J Geophys Res 103:16029–16037

    CAS  Google Scholar 

  • Smil V (2000) Feeding the world: a challenge for the twenty-first century. MIT Press, Cambridge, MA

    Google Scholar 

  • Smith P, Martino D, Cai ZC, Gwary D, Janzen H, Kumar P, McCarl B, Ogle S, O’Mara F, Rice C, Scholes B, Sirotenko O, Howden M, McAllister T, Pan G, Romanenkov V, Schneider U, Towpra S (2007) Policy and technological constraints to implementation of greenhouse gas mitigation options in agriculture. Agric Ecosyst Environ 118:6–28

    Google Scholar 

  • Smith TM, Reynolds RW, Peterson TC, Lawrimore J (2008) Improvements to NOAA’s historical merged land-ocean surface temperature analysis (1880–2006). J Clim 21:2283–2293

    Google Scholar 

  • Solomon S, Qin D, Manning M, Alley RB, Berntsen T, Bindoff NL, Chen Z, Chidthaisong A, Gregory JM, Hegerl GC, Heimann M, Hewitson B, Hoskins BJ, Joos F, Jouzel J, Kattsov V, Lohmann U, Matsuno T, Molina M, Nicholls N, Overpeck J, Raga G, Ramaswamy V, Ren J, Rusticucci M, Somerville R, Stocker TF, Whetton P, Wood RA, Wratt D (2007) Technical summary. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change 2007: the physical science basis: contribution of Working Group I to the fourth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge/New York

    Google Scholar 

  • Sommer SG, Petersen SO, Søgaard HT (2000) Atmospheric pollutants and trace gases: greenhouse gas emission from stored livestock slurry. J Environ Qual 29:744–751

    CAS  Google Scholar 

  • Spiehs MJ, Woodbury BL, Tarkalson DD, Wienhold BJ, Eigenberg RA (2010) Long term effects of annual additions of animal manure on soil chemical, physical, and biological properties in the Great Plains. In: Proceedings of the international symposium on Air Quality and Manure Management for Agriculture. American Society of Agricultural and Biological Engineers Publication Number 711P0510cd, Dallas, 13–16 September 2010

    Google Scholar 

  • Stanhill G (2007) A perspective on global warming, dimming, and brightening. Eos 88:58–59

    Google Scholar 

  • Steinfeld H, Gerber P, Wassenaar T, Castel V, Rosales M, de Haan C (2006) Livestock’s long shadow. Environmental issues and options. Livestock, environment, and development initiative. United Nations Food and Agriculture Organization, Rome

    Google Scholar 

  • Steudler PA, Bowden RD, Melillo JM, Aber JD (1989) Influence of nitrogen fertilisation on CH4 uptake in temperate soils. Nature 341:314–316

    Google Scholar 

  • Stott PA, Gillett NP, Hegerl GC, Karoly DJ, Stone DA, Zhang X, Zwiers F (2010) Detection and attribution of climate change: a regional perspective. Wiley Interdiscip Rev Clim Chang 1(2):192–211

    Google Scholar 

  • Stumm CK, Gitzen HJ, Vogels GD (1982) Association of methanogenic bacteria with ovine rumen ciliates. Br J Nutr 48:417–431

    Google Scholar 

  • Sturges WT, Wallington TJ, Hurley MD, Shine KP, Sihra K, Engel A, Oram DE, Penkett SA, Mulvaney R, Brenninkmeijer CAM (2000) A potent greenhouse gas identified in the atmosphere: SF5CF3. Science 289:611–613

    CAS  Google Scholar 

  • Svensmark H (2007) Cosmoclimatology: a new theory emerges. Astron Geophys 48:1.18–1.24

    CAS  Google Scholar 

  • Swanton CJ, Murphy SD, Hume DJ, Clements DR (1996) Recent improvements in the energy efficiency of agriculture: case studies from Ontario, Canada. Agric Syst 52:399–418

    Google Scholar 

  • Tett SFB, Betts R, Crowley TJ, Gregory J, Johns TC, Jones A, Osborn TJ, Öström E, Roberts DL, Woodage MJ (2007) The impact of natural and anthropogenic forcings on climate and hydrology since 1550. Clim Dyn 28(1):3–34

    Google Scholar 

  • Thompson RB, Meisinger JJ (2002) Management factors affecting ammonia volatilization from land-applied cattle slurry in the mid-Atlantic USA. J Environ Qual 31:1329–1338

    CAS  Google Scholar 

  • Tisdale SL, Nelson WL, Beaton JD, Havlin JL (1993) Soil acidity and basicity. In: Soil fertility and fertilizers, 5th edn. Macmillan Publishing, New York

    Google Scholar 

  • Trenerth KE, Moore B, Karl TR, Nobre C (2006) Monitoring and prediction of the earth’s climate: a future perspective. J Clim (CLIVAR Spec Issue) 19:5001–5008

    Google Scholar 

  • Tubiello FN, Salvatore M, Rossi S, Ferrara A, Fitton N, Smith P (2013) The FAOSTAT database of greenhouse gas emissions from agriculture. Environ Res Lett 8(1):015009

    Google Scholar 

  • U.S. Environmental Protection Agency (USEPA) (2005) Inventory of U.S. greenhouse gas emissions and sinks: 1990–2003. EPA 430-R-05-003. USEPA, Washington, DC

    Google Scholar 

  • U.S. Environmental Protection Agency (USEPA) (2006) Global anthropogenic non-CO2 greenhouse gas emissions: 1990–2020. USEPA, Washington, DC

    Google Scholar 

  • U.S. Environmental Protection Agency (USEPA) (2010) Inventory of U.S. greenhouse gas emissions and sinks: 1990–2008. USEPA, Washington, DC. www.epa.gov/climatechange/emissions/usinventoryreport.html. Accessed 27 Sept 2012

  • UNCCD (1994) Intergovernmental Negotiating Committee for a Convention to Combat Desertification. United Nations Convention to Combat Desertification. Elaboration of an International Convention to Combat Desertification in Countries Experiencing Serious Drought and/or Desertification, Particularly in Africa. U.N. Doc. A/AC.241/27, 33 I.L.M. 1328, United Nations, New York

    Google Scholar 

  • Van Caeseele R (2002) Climate change and agriculture. www.climatechangeconnection.org/pdfs_ccc/Agriculture.pdf. Accessed 14 May 2012

  • Verburg PH, Van der Gon H (2001) Spatial and temporal dynamics of CH4 emissions from agricultural sources in China. Glob Chang Biol 7:31–47

    Google Scholar 

  • Wallington TJ, Hurley MD, Nielsen OJ, Andersen MPS (2004) Atmospheric chemistry of CF3CFHCF2OCF3and CF3CFHCF2OCF2H:3CFHCF2OCF3and CF3CFHCF2OCF2H: reaction with Cl atoms and OH radicals, degradation mechanism, and global warming potentials. J Phys Chem A 108(51):11333–11338

    CAS  Google Scholar 

  • Wanner H, Beer J, Bitikofer J, Crowley TJ, Cubasch U, Flückiger J, Goosse H, Grosjean M, Joos F, Kaplan JO, Küttel M, Müller SA, Prentice IC, Solomina O, Stocker TF, Tarasov P, Wagner M, Widmann M (2008) Mid- to late holocene climate change: an overview. J Quat Sci 27(19–20):1791–1828

    Google Scholar 

  • Whalen M, Reeburg W (1990) Consumption of atmospheric CH4 by tundra soils. Nature 346:160–162

    CAS  Google Scholar 

  • Whitmarsh L (2009) What’s in a name? Commonalities and differences in public understanding of climate change and global warming. Public Underst Sci 18:401–420

    Google Scholar 

  • Wood R, Lenzen M, Dey C, Lundie S (2006) A comparative study of some environmental impacts of conventional and organic farming in Australia. Agric Syst 89:324–348

    Google Scholar 

  • World Bank (2008) Annual world development report. World Bank, New York

    Google Scholar 

  • WRI (2004) Food security: grain fed to livestock as a percent of total grain consumed 2003/4 data. World Resources Institute, http://earthtrends.wri.org/

  • Yang M, Yao T, Wang H, Gou X (2006) Climatic oscillations over the past 120 kyr recorded in the Guliya ice core, China. Quat Int 154:11–18

    Google Scholar 

  • Yoon IK, Stern MD (1995) Influence of direct-fed microbials on ruminal fermentation and performance of ruminants: a review. Asian-Australas J Anim Sci 8:533–555

    Google Scholar 

  • Zastawny A (2006) Calculation of solar and thermal radiation absorption in the atmosphere, based on the HITRAN data. Meteorol Atmos Phys 92:153–159

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Veerasamy Sejian .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer India

About this chapter

Cite this chapter

Sejian, V. et al. (2015). Global Warming: Role of Livestock. In: Sejian, V., Gaughan, J., Baumgard, L., Prasad, C. (eds) Climate Change Impact on Livestock: Adaptation and Mitigation. Springer, New Delhi. https://doi.org/10.1007/978-81-322-2265-1_10

Download citation

Publish with us

Policies and ethics