Strategies of Strain Improvement of Industrial Microbes

Classical and Recombinant DNA Technology in Improving the Characteristics of Industrially Relevant Microbes
  • Sanjai Saxena


Microbes produce a variety of products in very low concentrations which have been used as antibiotics, drugs, vitamins, enzymes, bulk organic compounds, polymers, amino acids, biofuels, etc. Prerequisite for efficient biotechnological processes at industrial scale requires the use of microbial strains which produce high titre of the desired product. However, this is not an inherent property of the selected microorganism(s); hence, modifications in their genetic material could possibly help in overcoming this limitation. Thus, industrially relevant microbes are subjected to a variety of treatments using physical, chemical or genetic tools to overproduce the desired metabolite and make the process cost efficient. This process of enhancing the biosynthetic capabilities of microbes to produce desired product in higher quantities is defined as microbial strain improvement.


Penicillium Chrysogenum Strain Improvement Genome Shuffling Industrial Microorganism Benzyl Penicillin Acylase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Selected Reading

  1. Adelberg EA (1958) Selection of bacterial mutants which excrete antagonists of anti-metabolites. J Bacteriol 76:326PubMedCentralPubMedGoogle Scholar
  2. Askenazi M, Driggers EM, Holtzmann DA, Norman TC, Iverson S, Zimmer DP, Boers ME, Blomquist PR, Martinez EJ, Monreal AW, Fiebelman TP, Mayorga MM, Maxon ME, Tobin SK, Cordero E, Salama SR, Trueheart J, Royer JC, Madden KT (2003) Integrating transcriptional and metabolite profiles to direct the engineering of lovastatin producing fungal strains. Nat Biotechnol 21:150–156CrossRefPubMedGoogle Scholar
  3. Baba S, Abe Y, Suzuki T, Ono C, Iwamoto K, Nihira T, Hosobuchi M (2009) Improvement of compactin (ML-236B) production by genetic engineering in compactin high-producing Penicillium citrinum. Appl Microbiol Biotechnol 83:697–704CrossRefPubMedGoogle Scholar
  4. Bailey RB (2005) Rewiring cellular systems to enhance biomanufacturing. Spec Chem Mag, July/August.
  5. Blumauerova M, Pokorny V, Stastna J, Hostalek Z, Vanek Z (1978) Developmental mutants of Streptomyces coeruleorubidis, a producer of anthracyclines: isolation and preliminary characterization. Folia Microbiol 23:177–182CrossRefGoogle Scholar
  6. Chandran SS, Yi J, Draths KM, von Daeniken R, Weber W, Frost JW (2003) Phosphoenol- pyruvate availability and the biosynthesis of shikimic acid. Biotechnol Prog 19:808–814CrossRefPubMedGoogle Scholar
  7. Chang LT, McGrory EL, Elander RP (1990) Penicillin production by glucose derepressed mutants of Penicillium chrysogenum. J Ind Microbiol 6:165–169CrossRefPubMedGoogle Scholar
  8. Chen T, Wang JY, Zhou SQ, Chen X, Ban R, Zhao XM (2004) Trait improvement of riboflavin producing Bacillus subtilis by genome shuffling and metabolic flux analysis. J Chem Ind Eng 55:1842–1848Google Scholar
  9. Chumpolkulwong N, Kakizono T, Nagai S, Nishio N (1997) Increased astaxanthin production by Phaffia rhodozyma mutants isolated as resistant to diphenylamine. J Ferment Bioeng 83:429–434CrossRefGoogle Scholar
  10. Clutterbuck AJ (1969) A mutational analysis of conidial development in Aspergillus nidulans. Genetics 63:317–327PubMedCentralPubMedGoogle Scholar
  11. Dai MH, Copley SD (2004) Improved production of ethanol by novel genome shuffling in Saccharomyces cerevisiae. Appl Environ Microbiol 70:2391–2397CrossRefPubMedCentralPubMedGoogle Scholar
  12. DeJong JM, Liu Y, Bollon AP, Long RM, Jennewein S, Williams D, Croteau RB (2006) Genetic engineering of taxol biosynthetic genes in Saccharomyces cerevisiae. Biotechnol Bioeng 93:212–224CrossRefPubMedGoogle Scholar
  13. Eggeling L, Oberle S, Sahm S (1998) Improved L- Lysine yield with Corynebacterium glutamicum: use of dapA resulting in increased flux combined with growth limitation. Appl Microbiol Biotechnol 49:24–30CrossRefPubMedGoogle Scholar
  14. Elander RP (1995) Genetic engineering applications in the development of selected industrial enzymes and therapeutic proteins. In: Sankaran R, Manja KS (eds) Microbes for better living. Defense Food Research Laboratory, Mysore, pp 619–628Google Scholar
  15. Elander RP (1999) Two decades of strain development in antibiotic producing microorganisms. J Ind Microbiol Biotechnol 22:241–253CrossRefGoogle Scholar
  16. Elander RP, Espenshade MA (1976) The role of microbial genetics. In: Miller BM, Litsky W (eds) Industrial microbiology. McGraw-Hill, New York, pp 192–256Google Scholar
  17. Ferron MAV, Lopez JLC, Perez JAS, Sevilla JMF, Chisti Y (2005) Rapid screening of Aspergillus terreus mutants for overproduction of lovastatin. World J Microbiol Biotechnol 21:123–125CrossRefGoogle Scholar
  18. Finogenova TV, Morgunov IG, Kamzolova SV, Chernyavskaya OG (2005) Organic acid production by the yeast Yarrowia lipolytica: a review of prospects. Appl Biochem Microbiol 41:418–425CrossRefGoogle Scholar
  19. Godfrey OW (1973) Isolation of regulatory mutants of the aspartic and pyruvic acid families and their effect on antibiotic production in Streptomyces lipmanii. Antimicrob Agents Chemother 4(2):73–79CrossRefPubMedCentralPubMedGoogle Scholar
  20. Gomi S, Ikeda D, Nakamura H, Naganawa H, Yamashita F, Hotta K, Kondo S, Okami Y, Umezawa H, Iitaka Y (1984) Isolation and structure of a new antibiotic, indolizomycin, produced by a strain SK2-52 obtained by interspecies fusion treatment. J Antibiot 37:1491–1494CrossRefPubMedGoogle Scholar
  21. Gong J, Zheng H, Wu Z, Chen T, Zhao X (2009) Genome shuffling: progress and applications for phenotype improvement. Biotechnol Adv 27:996–1005CrossRefPubMedGoogle Scholar
  22. Gouka RJ, Punt PJ, van den Hondel CAMJJ (1997) Efficient production of secreted proteins by Aspergillus: progress, limitations and prospects. Appl Microbiol Biotechnol 47:1–11CrossRefPubMedGoogle Scholar
  23. Hopwood DA (1978) Extrachromosomally determined antibiotic production. Annu Rev Microbiol 32:373–392CrossRefPubMedGoogle Scholar
  24. John RP, Gangadharan D, Madhavan Nampoothiri K (2008) Genome shuffling of Lactobacillus delbrueckii mutant and Bacillus amyloliquefaciens through protoplasmic fusion for L-lactic acid production from starchy wastes. Bioresour Technol 99(17):8008–8015CrossRefPubMedGoogle Scholar
  25. Jung W, Lee S, Hong J, Park S, Jeong S, Han A, Sohn J, Kim B, Choi C, Sherman D, Yoon Y (2006) Heterologous expression of tylosin polyketide synthase and production of a hybrid bioactive macrolide in Streptomyces venezuelae. Appl Microbiol Biotechnol 72:763–769CrossRefPubMedGoogle Scholar
  26. Kardos N, Demain AL (2011) Penicillin: the medicine with the greatest impact on therapeutic outcomes. Appl Microbiol Biotechnol 92:677–687CrossRefPubMedGoogle Scholar
  27. Kruse D, Krämer R, Eggeling L, Rieping M, Pfefferle W, Tchieu JH, Chung YJ, Saier MH Jr, Burkovski A (2002) Influence of threonine exporters on threonine production in Escherichia coli. Appl Microbiol Biotechnol 59:205–210CrossRefPubMedGoogle Scholar
  28. Kubota K, Onoda T, Kamijo H, Yoshinaga F, Okumura S (1973) Production of L-arginine by mutants of glutamic acid-producing bacteria. J Gen Appl Microbiol 19:339–352CrossRefGoogle Scholar
  29. Kumar P, Satyanarayana T (2009) Overproduction of glucoamylase by a deregulated mutant of a thermophilic mould Thermomucor indicae-seudaticae. Appl Biochem Biotechnol 158:113–125CrossRefPubMedGoogle Scholar
  30. Laffend LA, Nagarajan V, Nakamura CE (1996) Bioconversion of a fermentable carbon source to 1, 3-propanediol by a single microorganism. Patent WO 96/53.796 (E. I. DuPont de Nemours and Genencor International)Google Scholar
  31. Lale G, Jogdand VV, Gadre RV (2006) Morphological mutants of Gibberella fujikuroi for enhanced production of gibberellic acid. J Appl Microbiol 100:65–72CrossRefPubMedGoogle Scholar
  32. Lee HY, Khosla C (2007) Bioassay-guided evolution of glycosylated macrolide antibiotics in Escherichia coli. PLoS Biol 5:e45CrossRefPubMedCentralPubMedGoogle Scholar
  33. Lee J-C, Park H-R, Park D-J, Son KH, Yoon K-H, Kim Y-B, Kim C-J (2003) Production of teicoplanin by a mutant of Actinoplanes teicomyceticus. Biotechnol Lett 25:537–540CrossRefPubMedGoogle Scholar
  34. Levy-Schil S, Debussche L, Rigault S, Soubrier F, Bacchette F, Lagneaux D, Schleuniger J, Blanche F, Crouzet J, Mayaux JF (1993) Biotin biosynthetic pathway in a recombinant strain of Escherichia coli over expressing bio genes: evidence for a limiting step upstream from KAPA. Appl Microbiol Biotechnol 38:755–762CrossRefGoogle Scholar
  35. Lin J, Shi BH, Shi QQ, He YX, Wang MZ (2007) Rapid improvement in lipase production of Penicillium expansum by genome shuffling. Chin J Biotechnol 23(4):672–676CrossRefGoogle Scholar
  36. Lindahl A-L, Olsson ME, Mercke P, Tollbom O, Schelin J, Brodelius M, Brodelius PE (2006) Production of the artemisinin precursor amorpha-4,11-diene by engineered Saccharomyces cerevisiae. Biotechnol Lett 28:571–580CrossRefPubMedGoogle Scholar
  37. Liu LM, Li Y, Zhu Y, Du GC, Chen J (2007) Redistribution of carbon flux in Torulopsis glabrata by altering vitamin and calcium level. Metab Eng 9(1):21–29CrossRefPubMedGoogle Scholar
  38. Martín JF, Naharro G, Liras P, Villanueva JR (1979) Isolation of mutants deregulated in phosphate control of candicidin biosynthesis. J Antibiot 32(6):600–606CrossRefPubMedGoogle Scholar
  39. Morgunov IG, Kamzolova SV, Perevoznikova OA, Shishkanova NV, Finogenova TV (2004) Pyruvic acid production by a thiamine auxotroph of Yarrowia lipolytica. Process Biochem 39:1469–1474CrossRefGoogle Scholar
  40. Nakayama K (1985) Lysine. In: Moo-Young M, Blanch HW, Drews G, Wang DIC (eds) Comprehensive biotechnology, vol 3. Pergamon Press, Oxford, pp 607–620Google Scholar
  41. Nijland JG, Kovalchuk A, van den Berg MA, Bovenberg RAL, Driessen AJM (2008) Expression of the transporter encoded by the cefT gene of Acremonium chrysogenum increases cephalosporin production in Penicillium chrysogenum. Fungal Genet Biol 45:1415–1421CrossRefPubMedGoogle Scholar
  42. Nosaka K, Onozuka M, Konno H, Akaji K (2008) Thiamin-dependent transactivation activity of PDC2 in Saccharomyces cerevisiae. FEBS Lett 582:3991–3996CrossRefPubMedGoogle Scholar
  43. Otte B, Grunwaldt E, Mahmoud O, Jennewein S (2009) Genome shuffling in Clostridium diolis DSM 15410 for improved 1,3-propanediol production. Appl Environ Microbiol 75:7610–7616CrossRefPubMedCentralPubMedGoogle Scholar
  44. Palva I (1982) Molecular cloning of a-amylase gene from Bacillus amyloliquefaciens and its expression in Bacillus subtilis. Gene 19:81–87CrossRefPubMedGoogle Scholar
  45. Prabavathy VR, Mathivanan N, Sagadevan E, Murugesan K, Lalithakumari D (2006) Intrastrain protoplast fusion enhances carboxymethyl cellulase activity in Trichoderma reesei. Enzym Microb Technol 38:719–723CrossRefGoogle Scholar
  46. Ranadive P, Mehta A, George G (2011) Strain improvement of Sporidiobolus johnsonii –ATCC 20490 for biotechnological production of coenzyme Q10. Int J Chem Eng Appl 2(3):216–220Google Scholar
  47. Ro DK, Paradise EM, Ouellet M, Fisher KJ, Newman KL, Ndungu JM, Ho KA, Eachus RA, Ham TS, Kirby J, Chang MC, Withers ST, Shiba Y, Sarpong R, Keasling JD (2006) Production of the antimalarial drug precursor artemisinic acid in engineered yeast. Nature 440:940–943CrossRefPubMedGoogle Scholar
  48. Shi DJ, Wang CL, Wang KM (2009) Genome shuffling to improve thermotolerance, ethanol tolerance and ethanol productivity of Saccharomyces cerevisiae. J Ind Microbiol Biotechnol 36:139–147CrossRefPubMedGoogle Scholar
  49. Shibasaki T, Mori H, Chiba S, Ozaki A (1999) Microbial proline 4-hydroxylase screening and gene cloning. Appl Environ Microbiol 65(9):4028–4031PubMedCentralPubMedGoogle Scholar
  50. Shiio I, Yoshino H, Sugimoto S (1990) Isolation and properties of lysine-producing mutants with feedback-resistant aspartokinase derived from a Brevibacterium flavum strain with citrate synthase and pyruvate kinase defects and feedback resistant phosphoenol pyruvate carboxylase. Agric Biol Chem 1990(54):3275–3282Google Scholar
  51. Sugimoto T, Morimoto A, Nariyama M, Kato T, Park EY (2010) Isolation of oxalate resistant Ashbya gossypii strain and its improved riboflavin production. J Ind Microbiol Biotechnol 37:57–64CrossRefPubMedCentralPubMedGoogle Scholar
  52. Tong IT, Liao HH, Cameron DC (1991) 1, 3-propanediol production by Escherichia coli expressing genes from the Klebsiella pneumoniae dha regulon. Appl Environ Microbiol 57(12):3541–3546PubMedCentralPubMedGoogle Scholar
  53. Wang Y, Li Y, Pei X, Yu L, Feng Y (2007) Genome shuffling improved acid tolerance and L-lactic acid volumetric productivity in Lactobacillus rhamnosus. J Biotechnol 129(3):510–515CrossRefPubMedGoogle Scholar
  54. Wang T, Jia S, Tan Z, Dai Y, Song S, Wang G (2012) Mutagenesis and selective breeding of a high producing ε-poly-L-lysine strain. Front Chem Sci Eng 6(2):179–183CrossRefGoogle Scholar
  55. Xie ZP, Xu ZN, Shen WH, Cen PL (2005) Bioassay of mildiomycin and a rapid, cost-effective agar plug method for screening high-yielding mutants of mildiomycin. World J Microbiol Biotechnol 21:1433–1437CrossRefGoogle Scholar
  56. Xu B, Wang MR, Xia Y, Yang K, Zhang CY (2006) Improvement of the output of teicoplanin by genome shuffling. Chin J Antibiot 31:237–242Google Scholar
  57. Xu B, Jin Z, Wang H, Jin Q, Jin X, Cen P (2008) Evaluation of Streptomyces pristinaespiralis for resistance and production of pristinamycin by genome shuffling. Appl Microbiol Biotechnol 80:261–267CrossRefPubMedGoogle Scholar
  58. Yoon SH, Kim JE, Lee SH, Park HM, Choi MS, Kim JY, Lee SH, Shin YC, Keasling JD, Kim SW (2007) Engineering the lycopene synthetic pathway in E. coli by comparison of the carotenoid genes of Pantoea agglomerans and Pantoea ananatis. Appl Microbiol Biotechnol 74:131–139CrossRefPubMedGoogle Scholar
  59. Zambare V (2010) Strain improvement of alkaline protease from Trichoderma reesei MTCC-3929 by physical and chemical mutagen. IIOAB J 1(1):25–28Google Scholar
  60. Zhang YX, Perry K, Vinci VA, Powell K, Stemmer WPC, del Cardayre SB (2002) Genome shuffling leads to rapid phenotypic improvement in bacteria. Nature 415:644–646CrossRefPubMedGoogle Scholar
  61. Zhang DD, Liang N, Shi ZP, Liu LM, Chen J, Du GC (2009) Enhancement of alpha-ketoglutarate production in Torulopsis glabrata: redistribution of carbon flux from pyruvate to alphaketoglutarate. Biotechnol Bioproc Eng 14(2):134–139CrossRefGoogle Scholar
  62. Zhang Y, Liu JZ, Huang JS, Mao ZW (2010) Genome shuffling of Propionibacterium shermanii for improving vitamin B12 production and comparative proteome analysis. J Biotechnol 148(2–3):139–143CrossRefPubMedGoogle Scholar
  63. Zheng ZB, Zhao XM (2008) Astaxanthin-producing strain breeding by genome shuffling. J Biotechnol 136S:S310–S311Google Scholar
  64. Zhu H, Jin ZH, Cen PL (2006) Natamycin-producing strain breeding by genome shuffling. Chin J Antibiot 31(12):739–742Google Scholar

Copyright information

© Springer India 2015

Authors and Affiliations

  • Sanjai Saxena
    • 1
  1. 1.Department of BiotechnologyThapar UniversityPatialaIndia

Personalised recommendations