Bio-monitoring in Western North America: What Can Lichens Tell Us About Ecological Disturbances?



Throughout modern history, many habitats across western North America have faced continuous anthropogenic disturbances. Mining, forestry, agriculture, grazing, industrial and residential development, and air pollution have altered natural habitats to varying degrees. Lichens have been considered ‘a canary in the coalmine’ and can provide important insights into the biological impact of human-related disturbances. Here, we discuss the role of lichens as bio-monitors in the intermountain region of western North America.


Air pollution Bio-accumulation Bio-indicator Climate change Eutrophication Mining 


  1. Adachi K, Tainosho Y (2004) Characterization of heavy metal particles embedded in tire dust. Environ Int 30(8):1009–1017PubMedCrossRefGoogle Scholar
  2. Agnan Y, Séjalon-Delmas N, Probst A (2014) Origin and distribution of rare earth elements in various lichen and moss species over the last century in France. Sci Total Environ 487:1–12. doi:10.1016/j.scitotenv.2014.03.132 PubMedCrossRefGoogle Scholar
  3. Aitken SN, Yeaman S, Holliday JA, Wang TL, Curtis-McLane S (2008) Adaptation, migration or extirpation: climate change outcomes for tree populations. Evol Appl 1(1):95–111. doi:10.1111/j.1752-4571.2007.00013.x PubMedCentralCrossRefGoogle Scholar
  4. Araújo MB, Rahbek C (2006) How does climate change affect biodiversity? Science 313(5792):1396–1397. doi:10.1126/science.1131758 PubMedCrossRefGoogle Scholar
  5. Aznar JC, Richer-Laflèche M, Cluis D (2008) Metal contamination in the lichen Alectoria sarmentosa near the copper smelter of Murdochville, Québec. Environ Pollut 156(1):76–81. doi:10.1016/j.envpol.2007.12.037 PubMedCrossRefGoogle Scholar
  6. Bargagli R, Monaci F, Borghini F, Bravi F, Agnorelli C (2002) Mosses and lichens as biomonitors of trace metals. A comparison study on Hypnum cupressiforme and Parmelia caperata in a former mining district in Italy. Environ Pollut 116(2):279–287. doi:10.1016/S0269-7491(01)00125-7 PubMedCrossRefGoogle Scholar
  7. Beck PSA, Juday GP, Alix C, Barber VA, Winslow SE, Sousa EE, Heiser P, Herriges JD, Goetz SJ (2011) Changes in forest productivity across Alaska consistent with biome shift. Ecol Lett 14(4):373–379. doi:10.1111/j.1461-0248.2011.01598.x PubMedCrossRefGoogle Scholar
  8. Belnap J, Eldridge D (2003) Disturbance and recovery of biological soil crusts. In: Belnap J, Lange O (eds) Biological soil crusts: structure, function, and management, vol 150. Ecological studies. Springer, Berlin, pp 363–383. doi:10.1007/978-3-642-56475-8_27
  9. Benavides JC, Sastre-De Jesús I (2009) Digitized images provide more accuracy and efficiency to estimate bryophyte cover. Bryologist 112(1):12–18. doi:10.1639/0007-2745-112.1.12 CrossRefGoogle Scholar
  10. Bjerke JW (2011) Winter climate change: ice encapsulation at mild subfreezing temperatures kills freeze-tolerant lichens. Environ Exp Bot 72(3):404–408. doi:10.1016/j.envexpbot.2010.05.014 CrossRefGoogle Scholar
  11. Bongers T, Ferris H (1999) Nematode community structure as a bioindicator in environmental monitoring. Trends Ecol Evol 14(6):224–228. doi:10.1016/S0169-5347(98)01583-3 PubMedCrossRefGoogle Scholar
  12. Bradshaw WE, Holzapfel CM (2006) Evolutionary response to rapid climate change. Science 312(5779):1477–1478. doi:10.1126/science.1127000 PubMedCrossRefGoogle Scholar
  13. Branquinho C, Catarino F, Brown DH, Pereira MJ, Soares A (1999) Improving the use of lichens as biomonitors of atmospheric pollution. Sci Total Environ 232(1–2):67–77. doi:10.1016/S0048-9697(99)00111-4 PubMedCrossRefGoogle Scholar
  14. Chambers J, Bradley B, Brown C, D’Antonio C, Germino M, Grace J, Hardegree S, Miller R, Pyke D (2014) Resilience to stress and disturbance, and resistance to Bromustectorum L. invasion in cold desert shrublands of western North America. Ecosystems 17(2):360–375. doi:10.1007/s10021-013-9725-5 CrossRefGoogle Scholar
  15. Conti ME, Cecchetti G (2001) Biological monitoring: lichens as bioindicators of air pollution assessment—a review. Environ Pollut 114(3):471–492. doi:10.1016/s0269-7491(00)00224-4 PubMedCrossRefGoogle Scholar
  16. Conti ME, Pino A, Botrè F, Bocca B, Alimonti A (2009) Lichen Usnea barbata as biomonitor of airborne elements deposition in the Province of Tierra del Fuego (southern Patagonia, Argentina). Ecotoxicol Environ Saf 72(4):1082–1089. doi:10.1016/j.ecoenv.2008.12.004 PubMedCrossRefGoogle Scholar
  17. Cornelissen JHC, Callaghan TV, Alatalo JM, Michelsen A, Graglia E, Hartley AE, Hik DS, Hobbie SE, Press MC, Robinson CH, Henry GHR, Shaver GR, Phoneix GK, Jones DG, Jonasson S, Iii FSC, Molau U, Neill C, Lee JA, Melillo JM, Sveinbjörnsson B, Aerts R (2001) Global change and Arctic ecosystems: is lichen decline a function of increases in vascular plant biomass? J Ecol 89(6):984–994. doi:10.1111/j.1365-2745.2001.00625.x CrossRefGoogle Scholar
  18. Coulston JW, Smith GC, Smith WD (2003) Regional assessment of ozone sensitive tree species using bioindicator plants. Environ Monit Assess 83(2):113–127. doi:10.1023/A:1022578506736 PubMedCrossRefGoogle Scholar
  19. Dahdouh-Guebas F, Koedam N (2006) Empirical estimate of the reliability of the use of the point-centred quarter method (PCQM): Solutions to ambiguous field situations and description of the PCQM + protocol. For Ecol Manage 228(1–3):1–18. doi:10.1016/j.foreco.2005.10.076 CrossRefGoogle Scholar
  20. DellaSala D, Alaback P, Craighead L, Goward T, Paquet P, Spribille T (2011) Temperate and boreal rainforests of inland northwestern North America. In: Temperate and boreal rainforests of the world: ecology and conservation. Island Press/Center for Resource Economics, pp 82–110. doi:10.5822/978-1-61091-008-8_3
  21. Dillman KL (1996) Use of the lichen Rhizoplaca melanophthalma as a biomonitor in relation to phosphate refineries near Pocatello Idaho. Environ Pollut 92(1):91–96. doi:10.1016/0269-7491(95)00084-4 PubMedCrossRefGoogle Scholar
  22. Eaton S, Ellis CJ (2012) Local experimental growth rates respond to macroclimate for the lichen epiphyte Lobaria pulmonaria. Plant Ecol Divers 5(3):365–372. doi:10.1080/17550874.2012.728640 CrossRefGoogle Scholar
  23. Eldridge D (2000) Ecology and management of biological soil crusts: recent developments and future challenges. Bryologist 103(4):742–747. doi:10.1639/0007-2745(2000)103[0742:EAMOBS]2.0.CO;2 CrossRefGoogle Scholar
  24. Ellerman AD, Montero J-P (1998) The declining trend in sulfur dioxide emissions: implications for allowance prices. J Environ Econ Manage 36(1):26–45. doi:10.1006/jeem.1998.1033 CrossRefGoogle Scholar
  25. Ellis CJ, Coppins BJ, Dawson TP, Seaward MRD (2007) Response of British lichens to climate change scenarios: trends and uncertainties in the projected impact for contrasting biogeographic groups. Biol Conserv 140(3–4):217–235. doi:10.1016/j.biocon.2007.08.016 CrossRefGoogle Scholar
  26. Evju M, Bruteig IE (2013) Lichen community change over a 15-year time period: effects of climate and pollution. Lichenologist 45(1):35–50. doi:10.1017/S0024282912000539 CrossRefGoogle Scholar
  27. Fenn ME, Haeuber R, Tonnesen GS, Baron JS, Grossman-Clarke S, Hope D, Jaffe DA, Copeland S, Geiser L, Rueth HM, Sickman JO (2003) Nitrogen emissions, deposition, and monitoring in the western United States. Bioscience 53(4):391–403. doi:10.1641/0006-3568(2003)053[0391:nedami];2 CrossRefGoogle Scholar
  28. Fenn ME, Jovan S, Yuan F, Geiser L, Meixner T, Gimeno BS (2008) Empirical and simulated critical loads for nitrogen deposition in California mixed conifer forests. Environ Pollut 155(3):492–511. doi:10.1016/j.envpol.2008.03.019 PubMedCrossRefGoogle Scholar
  29. Fleischner TL (1994) Ecological costs of livestock grazing in western North America. Conserv Biol 8(3):629–644. doi:10.1046/j.1523-1739.1994.08030629.x CrossRefGoogle Scholar
  30. Fowler D, Coyle M, Skiba U, Sutton MA, Cape JN, Reis S, Sheppard LJ, Jenkins A, Grizzetti B, Galloway JN, Vitousek P, Leach A, Bouwman AF, Butterbach-Bahl K, Dentener F, Stevenson D, Amann M, Voss M (2013) The global nitrogen cycle in the twenty-first century. Philos Trans R Soc B: Biol Sci368(1621). doi:10.1098/rstb.2013.0164
  31. Frego KA (2007) Bryophytes as potential indicators of forest integrity. Forest Ecol Manage 242(1):65–75. doi:10.1016/j.foreco.2007.01.030 CrossRefGoogle Scholar
  32. Geiser LH, Neitlich PN (2007) Air pollution and climate gradients in western Oregon and Washington indicated by epiphytic macrolichens. Environ Pollut 145(1):203–218. doi:10.1016/j.envpol.2006.03.024 PubMedCrossRefGoogle Scholar
  33. Geiser LH, Jovan SE, Glavich DA, Porter MK (2010) Lichen-based critical loads for atmospheric nitrogen deposition in Western Oregon and Washington Forests. USA Environ Pollut 158(7):2412–2421. doi:10.1016/j.envpol.2010.04.001 CrossRefGoogle Scholar
  34. Glavich DA, Geiser LH (2008) Potential approaches to developing lichen-based critical loads and levels for nitrogen, sulfur and metal-containing atmospheric pollutants in North America. Bryologist 111(4):638–649. doi:10.1639/0007-2745-111.4.638 CrossRefGoogle Scholar
  35. Hansen ES (2010) Lichens from five inland and coastal localities in south-west Greenland and their present climatic preferences in Greenland as regards oceanity and continentality. Bibl Lichenologica 104:143–154Google Scholar
  36. Hansen ES (2011a) Qaanaaq og Siorapaluk—laver ognatur i et ændretklima. TidsskriftetGrønland 2011(2):136–149Google Scholar
  37. Hansen ES (2011b) Lichens from Qaanaaq and Siorapaluk, Northwest Greenland. Folia Cryptogamica Estonia 48:4–11Google Scholar
  38. Hansen ES (2012) Lichens from five localities in south-east Greenland and their exposure to climate change. Bibl Lichenologica 108:123–134Google Scholar
  39. Hawksworth DL (1971) Lichens as a litmus for air pollution: a historical review. Int J Environ Stud 1:281–296. doi:10.1080/00207237108709429 CrossRefGoogle Scholar
  40. Henderson-Sellers A, Seaward MRD (1979) Monitoring lichen reinvasion of ameliorating environments. Environ Pollut (1970) 19(3):207–213. doi:10.1016/0013-9327(79)90042-9 CrossRefGoogle Scholar
  41. Hodkinson ID, Jackson JK (2005) Terrestrial and aquatic invertebrates as bioindicators for environmental monitoring, with particular reference to mountain ecosystems. Environ Manage 35(5):649–666. doi:10.1007/s00267-004-0211-x PubMedCrossRefGoogle Scholar
  42. Howe NM, Lendemer JC (2011) The recovery of a simplified lichen community near the Palmerton Zinco Smelter after 34 years. Bibl Lichenologica 106:127–142Google Scholar
  43. Hyvärinen M, Crittenden PD (1998) Relationships between atmospheric nitrogen inputs and the vertical nitrogen and phosphorus concentration gradients in the lichen Cladonia portentosa. New Phytol 140(3):519–530. doi:10.1111/j.1469-8137.1998.00292.x CrossRefGoogle Scholar
  44. Jackson ST, Overpeck JT (2000) Responses of plant populations and communities to environmental changes of the late Quaternary. Paleobiology 26(4):194–220CrossRefGoogle Scholar
  45. Jägerbrand A, Lindblad KM, Björk R, Alatalo J, Molau U (2006) Bryophyte and lichen diversity under simulated environmental change compared with observed variation in unmanipulated alpine tundra. Biodivers Conserv 15(14):4453–4475. doi:10.1007/s10531-005-5098-1 CrossRefGoogle Scholar
  46. Jovan S (2008) Lichen bioindication of biodiversity, air quality, and climate: baseline results from monitoring in Washington, Oregon, and California. General technical report, PNW-GTY-737, US Department of Agriculture, Forest ServiceGoogle Scholar
  47. Jovan S, Carlberg T (2007) Nitrogen content of Letharia vulpina tissue from forests of the Sierra Nevada, California: geographic patterns and relationships to ammonia estimates and climate. Environ Monit Assess 129(1–3):243–251. doi:10.1007/s10661-006-9357-8 PubMedCrossRefGoogle Scholar
  48. Kunze LM (1980) Distribution patterns of terricolous lichens occuring above treeline at Deer Park, Olympic National Park. University of Washington, Seattle, WashingtonGoogle Scholar
  49. Lawrey JD, Hale ME (1981) Retrospective study of lichen lead accumulation in the northeastern United States. The Bryologist 84(4):449–456CrossRefGoogle Scholar
  50. Leavitt SD, St. Clair LL (2011) Estimating Xanthoparmelia (Parmeliaceae) population density in subalpine communities in southern Utah, U.S.A. using two distance methods, with implications for assessing community composition. Bryologist 114(3):625–636. doi:10.1639/0007-2745-114.3.625 CrossRefGoogle Scholar
  51. Leavitt SD, Esslinger TL, Hansen ES, Divakar PK, Crespo A, Loomis BF, Lumbsch HT (2014) DNA barcoding of brown Parmeliae (Parmeliaceae) species: a molecular approach for accurate specimen identification, emphasizing species in Greenland. Org Divers Evol 14(1):11–20. doi:10.1007/s13127-013-0147-1 CrossRefGoogle Scholar
  52. Lisowska M (2011) Lichen recolonisation in an urban-industrial area of southern Poland as a result of air quality improvement. Environ Monit Assess 179(1–4):177–190. doi:10.1007/s10661-010-1727-6 PubMedCrossRefGoogle Scholar
  53. Longton RE (1997) The role of bryophytes and lichens in polar ecosystems. In: Woodin SJ, Marquiss M (eds) The Arctic: environment, people, policy. Blackwell Science, Oxford, pp 69–96Google Scholar
  54. Loppi S, Pirintsos SA (2003) Epiphytic lichens as sentinels for heavy metal pollution at forest ecosystems (central Italy). Environ Pollut 121(3):327–332. doi:10.1016/s0269-7491(02)00269-5 PubMedCrossRefGoogle Scholar
  55. Loppi S, Frati L, Paoli L, Bigagli V, Rossetti C, Bruscoli C, Corsini A (2004) Biodiversity of epiphytic lichens and heavy metal contents of Flavoparmelia caperatathalli as indicators of temporal variations of air pollution in the town of MontecatiniTerme (central Italy). Sci Total Environ 326(1–3):113–122. doi:10.1016/j.scitotenv.2003.12.003 PubMedCrossRefGoogle Scholar
  56. Manel S, Joost S, Epperson BK, Holderegger R, Storfer A, Rosenberg MS, Scribner KT, Bonin A, Fortin M-J (2010) Perspectives on the use of landscape genetics to detect genetic adaptive variation in the field. Mol Ecol 19:3760–3772. doi:10.1111/j.1365-294X.2010.04717.x
  57. McCune B (2000) Lichen communities as indicators of forest health. Bryologist 103(2):353–356. doi:10.1639/0007-2745(2000)103[0353:LCAIOF]2.0.CO;2 CrossRefGoogle Scholar
  58. McCune B, Geiser L (2009) Macrolichens of the Pacific Northwest. Oregon University Press, CorvalisGoogle Scholar
  59. McMurray JA, Roberts DW, Fenn ME, Geiser LH, Jovan S (2013) Using epiphytic lichens to monitor nitrogen deposition near natural gas drilling operations in the Wind River Range, WY, USA. Water Air Soil Pollut 224(3):1–14. doi:10.1007/s11270-013-1487-3 CrossRefGoogle Scholar
  60. Miller RR, Williams JD, Williams JE (1989) Extinctions of North American fishes during the past century. Fisheries 14(6):22–38. doi:10.1577/1548-8446(1989)014<0022:EONAFD>2.0.CO;2 CrossRefGoogle Scholar
  61. Mylona S (1996) Sulphur dioxide emissions in Europe 1880–1991 and their effect on sulphur concentrations and depositions. Tellus B 48(5):662–689. doi:10.1034/j.1600-0889.1996.t01-2-00005.x CrossRefGoogle Scholar
  62. Naeth MA, Wilkinson SR (2008) Lichens as biomonitors of air quality around a diamond mine, Northwest Territories. Can J Environ Qual 37(5):1675–1684. doi:10.2134/jeq2007.0090 CrossRefGoogle Scholar
  63. Nash TH (1975) Influence of effluents from a zinc factory on lichens. Ecol Monogr 45(2):183–198CrossRefGoogle Scholar
  64. Nash TH III (2008) Lichen biology. Cambridge University, CambridgeCrossRefGoogle Scholar
  65. Nash TH, Gries C (2002) Lichens as bioindicators of sulphur dioxide. Symbiosis 33:1–21Google Scholar
  66. Nimis PL, Scheidegger C, Wolseley P (2002) Monitoring with lichens—monitoring lichens. Kluwer Academics, DordrechtCrossRefGoogle Scholar
  67. Parmesan C, Yohe G (2003) A globally coherent fingerprint of climate change impacts across natural systems. Nature 421(6918):37–42.
  68. Perlmutter GB (2010) Bioassessing air pollution effects with epiphytic lichens in Raleigh, North Carolina, U.S.A. Bryologist 113(1):39–50. doi:10.1639/0007-2745-113.1.39 CrossRefGoogle Scholar
  69. Pesch R, Schroeder W (2006) Mosses as bioindicators for metal accumulation: Statistical aggregation of measurement data to exposure indices. Ecol Ind 6(1):137–152. doi:10.1016/j.ecolind.2005.08.018 CrossRefGoogle Scholar
  70. Purvis OW, Chimonides PJ, Jones GC, Mikhailova IN, Spiro B, Weiss DJ, Williamson BJ (2004) Lichen biomonitoring near Karabash Smelter Town, Ural Mountains, Russia, one of the most polluted areas in the world. Proc R Soc Lond Ser B: Biol Sci 271(1536):221–226. doi:10.1098/rspb.2003.2616
  71. Riddell J, Jovan S, Padgett PE, Sweat K (2011) Tracking lichen community composition changes due to declining air quality over the last century: the Nash legacy in Southern California. Bibl Lichenologica 106:227–263Google Scholar
  72. Rogers PC, Ryel RJ (2008) Lichen community change in response to succession in aspen forests of the southern Rocky Mountains. Forest Ecol Manage 256(10):1760–1770. doi:10.1016/j.foreco.2008.05.043 CrossRefGoogle Scholar
  73. Root HT, Geiser LH, Fenn ME, Jovan S, Hutten MA, Ahuja S, Dillman K, Schirokauer D, Berryman S, McMurray JA (2013) A simple tool for estimating throughfall nitrogen deposition in forests of western North America using lichens. Forest Ecol Manage 306:1–8. doi:10.1016/j.foreco.2013.06.028 CrossRefGoogle Scholar
  74. Rose CI, Hawksworth DL (1981) Lichen recolonization in London’s cleaner air. Nature 289:289–292. doi:10.1038/289289a0 CrossRefGoogle Scholar
  75. Rusu AM, Jones GC, Chimonides PDJ, Purvis OW (2006) Biomonitoring using the lichen Hypogymnia physodes and bark samples near Zlatna, Romania immediately following closure of a copper ore-processing plant. Environ Pollut 143(1):81–88. doi:10.1016/j.envpol.2005.11.002 PubMedCrossRefGoogle Scholar
  76. Saeki M, Kunii K, Seki T, Sugiyama K, Suzuki T, Shishido S (1977) Metal burden of urban lichens. Environ Res 13(2):256–266. doi:10.1016/0013-9351(77)90102-5 PubMedCrossRefGoogle Scholar
  77. Seaward MRD (1993) Lichens and sulphur dioxide air pollution: field studies. Environ Rev 1:73–91CrossRefGoogle Scholar
  78. Seaward MRD, Letrouit-Galinou MA (1991) Lichen recolonization of trees in the Jardin du Luxembourg, Paris. Lichenologist 23(02):181–186. doi:10.1017/S0024282991000324 CrossRefGoogle Scholar
  79. Smith SD, Huxman TE, Zitzer SF, Charlet TN, Housman DC, Coleman JS, Fenstermaker LK, Seemann JR, Nowak RS (2000) Elevated CO2 increases productivity and invasive species success in an arid ecosystem. Nature 408(6808):79–82. doi:10.1038/35040544 PubMedCrossRefGoogle Scholar
  80. St. Clair LL (1999) A color guidebook to common rocky mountain lichens. M.L. Bean Life Science Museum of Brigham Young University Publisher, ProvoGoogle Scholar
  81. St. Clair LL, Johansen JR, Rushforth SR (1993) Lichens of soil crust communities in the Intermountain Area of the western United States. West North Am Nat 53(1):5–12Google Scholar
  82. St. Clair SB, St. Clair LL, Mangelson NF, Weber DJ (2002a) Influence of growth form on the accumulation of airborne copper by lichens. Atmos Environ 36(36–37):5637–5644. doi:10.1016/s1352-2310(02)00688-x CrossRefGoogle Scholar
  83. St. Clair SB, St. Clair LL, Weber DJ, Mangelson NF, Eggett DL (2002b) Element accumulation patterns in foliose and fruticose lichens from rock and bark substrates in Arizona. Bryologist 105(3):415–421. doi:10.1639/0007-2745(2002)105[0415:EAPIFA]2.0.CO;2 CrossRefGoogle Scholar
  84. St. Clair L, Johansen J, St. Clair S, Knight K (2007) The influence of grazing and other environmental factors on lichen community structure along an alpine tundra ridge in the Uinta Mountains, Utah, U.S.A. Arctic, Antarctic. Alp Res 39(4):603–613. doi:10.1657/1523-0430(06-071)[STCLAIR]2.0.CO;2 CrossRefGoogle Scholar
  85. St. Clair LL, Leavitt SD (2013) The lichen air quality bio-monitoring program South Unit of the Duchesne Ranger District, Ashely National Forest and detailed elemental analysis of the Cart Creek Bridge and Selected sites along US highway 191. General technical report, Ashley National Forest Supervisor’s Office, Vernal, UT, US Department of Agriculture, Forest ServiceGoogle Scholar
  86. St. Clair LL, St. Clair SB, Leavitt SD (2013) Review of the lichen air quality bio-monitoring program and baseline for selected sites in the Anaconda-Pintler, Cabinet Mountains, and Selway Bitterroot wilderness areas Montana and Idaho (originally established in July–August 1992, 1993, and 1994); and Establishment and review of lichen air quality bio-monitoring programs and baselines in the Gates of the Mountains, Mission Mountains, and Bob Marshall Wilderness Areas (originally established in 2000, 2001, 2002, and 2003); and Establishment of lichen bio-monitoring air quality programs and baselines for the Gospel Hump and Scapegoat Wilderness Areas, Idaho and Montana Region 1. General technical report, US Northern Regional Office, Missoula, MT, US Department of Agriculture, Forest ServiceGoogle Scholar
  87. Stolte KW (2001) Forest health monitoring and forest inventory analysis programs monitor climate change effects in forest ecosystems. Human Ecol Risk Assess: Int J 7(5):1297–1316. doi:10.1080/20018091095014 CrossRefGoogle Scholar
  88. Sykes MT, Prentice IC, Laarif F (1999) Quantifying the impact of global climate change on potential natural vegetation. Clim Change 41(1):37–52. doi:10.1023/A:1005435831549 CrossRefGoogle Scholar
  89. Thorpe A, Harrison RM (2008) Sources and properties of non-exhaust particulate matter from road traffic: a review. Sci Total Environ 400(1–3):270–282. doi:10.1016/j.scitotenv.2008.06.007 PubMedCrossRefGoogle Scholar
  90. Ustin SL, Valko PG, Kefauver SC, Santos MJ, Zimpfer JF, Smith SD (2009) Remote sensing of biological soil crust under simulated climate change manipulations in the Mojave Desert. Remote Sens Environ 113(2):317–328. doi:10.1016/j.rse.2008.09.013 CrossRefGoogle Scholar
  91. Will-Wolf S (2010) Analyzing lichen indicator data in the forest inventory and analysis program U.S. Department of Agriculture, Forest Service, Pacific Northwest Research Station, Portland, ORGoogle Scholar
  92. Will-Wolf S, Geiser LH, Neitlich P, Reis AH (2006) Forest lichen communities and environment—how consistent are relationships across scales? J Veg Sci 17(2):171–184. doi:10.1111/j.1654-1103.2006.tb02436.x CrossRefGoogle Scholar
  93. Zhao Y, Xu M, Belnap J (2010) Potential nitrogen fixation activity of different aged biological soil crusts from rehabilitated grasslands of the hilly Loess Plateau, China. J Arid Environ 74(10):1186–1191. doi:10.1016/j.jaridenv.2010.04.006 CrossRefGoogle Scholar
  94. Zhu X, Zhang J (2009) Quartered neighbor method: a new distance method for density estimation. Frontiers Biol Chin 4(4):574–578. doi:10.1007/s11515-009-0039-0 CrossRefGoogle Scholar

Copyright information

© Springer India 2015

Authors and Affiliations

  1. 1.Committee on Evolutionary BiologyUniversity of ChicagoChicagoUSA
  2. 2.Department of Biology and M.L. Bean Life Science MuseumBrigham Young UniversityProvoUSA

Personalised recommendations