Skip to main content

Monitoring Lichen as Indicators of Atmospheric Quality

  • Chapter
  • First Online:

Abstract

Bioindicators are living organisms that react to environmental pollution with their life functions. Lichens are reviewed for their potential to reflect air pollution. This chapter highlights the usefulness of lichens as bioindicators of air pollution and recent advances in usage of lichens in the biomonitoring studies. The attention is focused on lichens biological performance at physiological and biochemical levels, the accumulation of substances and on community level. Laboratory approaches related assessment of lichen reactions along with results from field studies point out the main potential characteristics of lichens as indications of air pollution. Discussed data on the lichen studies indicated that analysis of some physiological parameters has given clear picture about air quality of site. Recently, more studies analyse changes at biochemical level that lichens gives more reasonable clarification of induced changes in lichens by pollutants. Review on lichen monitoring contributes to our understanding of change in environmental conditions caused by air pollution.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Adamo P, Giordano S, Vingiani S, Cobianchi RC, Violante P (2003) Trace element accumulation by moss and lichen exposed in bags in the city of Naples (Italy). Environ Pollut 122:91–103. doi:10.1016/S0269-7491(02)00277-4

    CAS  PubMed  Google Scholar 

  • Adamo P, Crisafulli P, Giordano S, Minganti V, Modenesi P, Monaci F, Pittao E, Tretiach M, Bargagli R (2007) Lichen and moss bags as monitoring devices in urban areas. Part II: trace element content in living and dead biomonitors and comparison with synthetic materials. Environ Pollut 146:392–399. doi:10.1016/j.envpol.2006.03.047

    CAS  PubMed  Google Scholar 

  • Adamska E (2011) Lichen recolonization in the city of Torun. Ecol Quest 15:119–125. doi:10.2478/v10090-011-0043-2

    Google Scholar 

  • Alebic-Juretic A, Arko-Pijevac M (1989) Air pollution damage to cell membranes in lichens-results of simple biological test applied in Rijeka, Yugoslavia. Water Air Soil Pollut 47:25–33. doi:10.1007/BF00468994

    CAS  Google Scholar 

  • Alebic-Juretic A, Arko-Pijevac M (2005) Lichens as indicators of air pollution in the city of Rijeka, Croatia. Fresen Environ Bull 14:40–43

    CAS  Google Scholar 

  • Aprile GG, Di Salvatore M, Carratu G, Mingo A, Carafa AM (2010) Comparison of the suitability of two lichen species and one higher plant for monitoring airborne heavy metals. Environ Monit Assess 162:291–299. doi:10.1007/s10661-009-0796-x

    CAS  PubMed  Google Scholar 

  • Aslan A, Gurbuz H, Yazici K, Cicek A, Turan M, Ercisli S (2013) Evaluation of lichens as bio-indicators of metal pollution. J Elem 18:353–369. doi:10.5601/jelem.2013.18.3.01

    Google Scholar 

  • Asta J, Rolley F (1999) Biodiversité et bioindication lichénique: qualité de l’air dans l’agglomération Grenobloise. Bull Int Assoc Fr Lichénol 3:121–126

    Google Scholar 

  • Asta J, Erhardt W, Ferretti M, Fornasier F, Kirschbaum U, Nimis PL, Purvis O, Pirintsos S, Scheidegger C, van Haluwyn C, Wirth V (2002) Mapping lichen diversity as an indicator of environmental quality. In: Nimis PL, Scheidegger C, Wolseley P (eds) Monitoring with lichens—monitoring lichens. Kluwer Academic, Dordrecht

    Google Scholar 

  • Augusto S, Pereira MJ, Soares A, Branquinho C (2007) The contribution of environmental biomonitoring with lichens to assess human exposure to dioxins. Int J Hyg Environ Health 210:433–438. doi:10.1016/j.ijheh.2007.01.017

    CAS  PubMed  Google Scholar 

  • Augusto S, Maguas C, Branquinho C (2009a) Understanding the performance of different lichen species as biomonitors of atmospheric dioxins and furans: potential for intercalibration. Ecotoxicol 18:1036–1042. doi:10.1007/s10646-009-0360-z

    CAS  Google Scholar 

  • Augusto S, Maguas C, Matos J, Pereira MJ, Soares A, Branquinho C (2009b) Spatial modeling of PAHs in lichens for fingerprinting of multisource atmospheric pollution. Environ Sci Technol 43:7762–7769. doi:10.1021/es901024w

    CAS  PubMed  Google Scholar 

  • Augusto S, Maguas C, Matos J, Pereira MJ, Branquinho C (2010) Lichens as an integrating tool for monitoring PAH atmospheric deposition: a comparison with soil, air and pine needles. Environ Pollut 158:483–489. doi:10.1016/j.envpol.2009.08.016

    CAS  PubMed  Google Scholar 

  • Augusto S, Maguas C, Branquinho C (2013a) Guidelines for biomonitoring persistent organic pollutants (POPs), using lichens and aquatic mosses—a review. Environ Pollut 180:330–338. doi:10.1016/j.envpol.2013.05.019

    CAS  PubMed  Google Scholar 

  • Augusto S, Pereira MJ, Maguas C, Branquinho C (2013b) A step towards the use of biomonitors as estimators of atmospheric PAHs for regulatory. Chemosphere 92:626–632. doi:10.1016/j.chemosphere.2013.03.068

    CAS  PubMed  Google Scholar 

  • Backor M, Dzubaj A (2004) Short-term and chronic effects of copper, zinc and mercury on the chlorophyll content of four lichen photobionts and related alga. J Hattori Bot Lab 95:271–284

    Google Scholar 

  • Backor M, Loppi S (2009) Interactions of lichens with heavy metals. Biol Plantarum 53:214–222. doi:10.1007/s10535-009-0042-y

    CAS  Google Scholar 

  • Backor M, Fahselt D, Wu CT (2004) Free proline content is positively correlated with copper tolerance of the lichen photobiont Trebouxia erici (Chlorophyta). Plant Sci 167:151–157. doi:10.1016/j.plantsci.2004.03.012

    CAS  Google Scholar 

  • Backor M, Pawlik-Skowronska B, Tomko J, Budova J, Di Toppi LS (2006) Response to copper stress in aposymbiotically grown lichen mycobiont Cladonia cristatella: uptake, viability, ergosterol and production of non-protein thiols. Mycol Res 110:994–999. doi:10.1016/j.mycres.2006.05.007

    CAS  PubMed  Google Scholar 

  • Backor M, Vaczi P, Bartak M, Budova J, Dzubaj A (2007) Uptake, photosynthetic characteristics and membrane lipid peroxidation levels in the lichen photobiont Trebouxia erici exposed to copper and cadmium. Bryologist 110:100–107. doi:10.1639/0007-2745(2007)110[100:UPCAML]2.0.CO;2

    CAS  Google Scholar 

  • Bajpai R, Upreti DK (2012) Accumulation and toxic effect of arsenic and other heavy metals in a contaminated area of West Bengal, India, in the lichen Pyxine cocoes (Sw.) Nyl. Ecotoxicol Environ Saf 83:63–70. doi:10.1016/j.ecoenv.2012.06.001

    CAS  PubMed  Google Scholar 

  • Bajpai R, Upreti DK, Nayaka S, Kumari B (2010) Biodiversity, bioaccumulation and physiological changes in lichens growing in the vicinity of coal-based thermal power plant of Raebareli district, north India. J Hazard Mater 174:429–436. doi:10.1016/j.jhazmat.2009.09.071

    CAS  PubMed  Google Scholar 

  • Bajpai R, Karakoti N, Upreti DK (2013) Performance of a naturally growing Parmelioid lichen Remototrachyna awasthii against organic and inorganic pollutants. Environ Sci Pollut Res 20:5577–5592. doi:10.1007/s11356-013-1583-3

    CAS  Google Scholar 

  • Balaguer L, Valladares F, Ascaso C, Barnes JD, de los Rios A, Manrique E, Smith EC (1996) Potential effects of rising tropospheric concentrations of CO2 and O3 on green-algal lichens. New Phytol 132:641–652. doi:10.1111/j.1469-8137.1996.tb01882.x

    CAS  Google Scholar 

  • Bates JW (2002) Effects on bryophytes and lichens. In: Bell JNB, Threshow M (eds) Air pollution and plant life, 2nd edn. Wiley, Chrichester

    Google Scholar 

  • Bates JW, Bell JNB, Farmer AM (1990) Epiphyte recolonization of oaks along a gradient of air-pollution in south-east England, 1979–1990. Environ Pollut 68:81–99. doi:10.1016/0269-7491(90)90014-4

    CAS  PubMed  Google Scholar 

  • Bates JW, Bell JNB, Massara AC (2001) Loss of Lecanora conizaeoides and other fluctuations of epiphytes on oak in SE England over 21 years with declining SO2 concentrations. Atmos Environ 35:2557–2568. doi:10.1016/S1352-2310(00)00402-7

    CAS  Google Scholar 

  • Batic F (2002) Bioindication of sulphur dioxide pollution with lichens. In: Kranner I, Beckett RP, Varma AK (eds) Protocols in lichenology. Culturing, biochemistry, ecophysiology and use in biomonitoring. Springer, Berlin

    Google Scholar 

  • Batic F, Mayrhofer H (1996) Bioindication of air pollution by epiphytic lichens in forest decline studies in Slovenia. Phyton 36:85–90

    Google Scholar 

  • Batts JE, Calder LJ, Batts BD (2004) Utilizing stable isotope abundances of lichens to monitor environmental change. Chem Geol 204:345–368. doi:10.1016/j.chemgeo.2003.11.007

    CAS  Google Scholar 

  • Batty K, Bates JW, Bell JNB (2003) A transplant experiment on the factors preventing lichen colonization of oak bark in southeast England under declining SO2 pollution. Can J Bot 81:439–451. doi:10.1139/B03-039

    Google Scholar 

  • Beckett RP, Brown DH (1984) The control of cadmium uptake in the lichen genus Peltigera. J Exp Bot 35:1071–1082

    CAS  Google Scholar 

  • Beekley PK, Hoffman GR (1981) Effects of sulphur dioxide fumigation on photosynthesis, respiration and chlorophyll content of selected lichens. Bryologist 84:379–390

    CAS  Google Scholar 

  • Bergamaschi L, Rizzio E, Giaveri G, Loppi S, Gallorini M (2007) Comparison between the accumulation capacity of four lichen species transplanted to a urban site. Environ Pollut 148:468–476. doi:10.1016/j.envpol.2006.12.003

    CAS  PubMed  Google Scholar 

  • Bermudez GMA, Rodriguez JH, Pignata ML (2009) Comparison of the air pollution biomonitoring ability of three Tillandsia species and the lichen Ramalina celastri in Argentina. Environ Res 109:6–14. doi:10.1016/j.envres.2008.08.014

    CAS  PubMed  Google Scholar 

  • Bertuzzi S, Davies L, Power SA, Tretiach M (2013) Why lichens are bad biomonitors of ozone pollution? Ecol Ind 34:391–397. doi:10.1016/j.ecolind.2013.05.023

    CAS  Google Scholar 

  • Bjerke JW, Gwynn-Jones D, Callaghan TV (2005) Effects of enhanced UV-B radiation in the field on the concentration of phenolics and chlorophyll fluorescence in two boreal and arctic-alpine lichens. Environ Exp Bot 53:139–149. doi:10.1016/j.envexpbot.2004.03.009

    CAS  Google Scholar 

  • Blasco M, Domeno C, Nerin C (2006) Use of lichens as pollution biomonitors in remote areas: comparison of PAHs extracted from lichens and atmospheric particles sampled in and around the Somport tunnel (Pyrenees). Environ Sci Technol 40:6384–6391. doi:10.1021/es0601484

    CAS  PubMed  Google Scholar 

  • Blasco M, Domeno C, Nerin C (2008) Lichens biomonitoring as feasible methodology to assess air pollution in natural ecosystems: combined study of quantitative PAHs analyses and lichen biodiversity in the Pyrenees Mountains. Anal Bioanal Chem 391:759–771. doi:10.1007/s00216-008-1890-6

    CAS  PubMed  Google Scholar 

  • Blasco M, Domeno C, Lopez P, Nerin C (2011) Behaviour of different lichen species as biomonitors of air pollution by PAHs in natural ecosystems. J Environ Monit 13:2588–2596. doi:10.1039/c0em00681e

    CAS  PubMed  Google Scholar 

  • Bobbink R, Hicks K, Galloway J, Spranger T, Alkemade R, Ashmore M, Bustamante M, Cinderby S, Davidson E, Dentener F, Emmett B, Erisman JW, Fenn M, Gilliam F, Nordin A, Pardo L, De Vries W (2010) Global assessment of nitrogen deposition effects on terrestrial plant diversity: a synthesis. Ecol Appl 20:30–59. doi:10.1890/08-1140.1

    CAS  PubMed  Google Scholar 

  • Boltersdorf S, Werner W (2013) Source attribution of agriculture-related deposition by using total nitrogen and N-15 in epiphytic lichen tissue, bark and deposition water samples in Germany. Isot Environ Health Stud 49:197–218. doi:10.1080/10256016.2013.748051

    CAS  Google Scholar 

  • Boonpragob K, Nash TH (1990) Seasonal variation of elemental status in the lichen Ramalina menziesii Tayl from two sites in Southern California: evidence for dry deposition accumulation. Environ Exp Bot 30:415–428

    CAS  Google Scholar 

  • Boonpragob K, Nash TH (1991) Physiological responses of the lichen Ramalina-menziesii Tayl to the Los Angeles urban environment. Environ Exp Bot 31:229–238. doi:10.1016/0098-8472(91)90075-Y

    Google Scholar 

  • Boström CE, Gerde P, Hanberg A, Jernstrom B, Johansson C, Kyrklund T, Rannug A, Tornqvist M, Victorin K, Westerholm R (2002) Cancer risk assessment, indicators, and guidelines for polycyclic aromatic hydrocarbons in the ambient air. Environ Health Perspect 110:451–488

    PubMed Central  PubMed  Google Scholar 

  • Branquinho C, Brown DH, Catarino F (1997a) The cellular location of Cu in lichens and its effects on membrane integrity and chlorophyll fluorescence. Environ Exp Bot 38:165–179. doi:10.1016/S0098-8472(97)00015-4

    CAS  Google Scholar 

  • Branquinho C, Brown DH, Maguas C, Catarino F (1997b) Lead (Pb) uptake and its effects on membrane integrity and chlorophyll fluorescence in different lichen species. Environ Exp Bot 37:95–105. doi:10.1016/S0098-8472(96)01038-6

    CAS  Google Scholar 

  • Brown DH (1987) the location of mineral elements in lichens implications for metabolism. Bibl Lichenol 25:361–376

    Google Scholar 

  • Brunialti G, Giordani P (2003) Variability of lichen diversity in a climatically heterogeneous area (Liguria, NW Italy). Lichenologist 35:55–69. doi:10.1006/lich.2002.0417

    Google Scholar 

  • Bychek-Guschina IA, Kotlova ER, Heipieper H (1999) Effects of sulfur dioxide on lichen lipids and fatty acids. Biochem 64:61–65

    CAS  Google Scholar 

  • Calatayud A, Temple PJ, Barreno E (2000) Chlorophyll a fluorescence emission, xanthophyll cycle activity, and net photosynthetic rate responses to ozone in some foliose and fruticose lichen species. Photosynthetica 38:281–286. doi:10.1023/A:1007214915785

    CAS  Google Scholar 

  • Calvelo S, Liberatore S (2004) Applicability of in situ or transplanted lichens for assessment of atmospheric pollution in Patagonia, Argentina. J Atmos Chem 49:199–210. doi:10.1007/s10874-004-1225-8

    CAS  Google Scholar 

  • Calvelo S, Baccala N, Liberatore S (2009) Lichens as bioindicators of air quality in distant areas in Patagonia (Argentina). Environ Bioindic 4:123–135. doi:10.1080/15555270902963459

    CAS  Google Scholar 

  • Canas MS, Pignata ML (1998) Temporal variation of pigments and peroxidation products in the lichen Parmotrema uruguense (Kremplh.) Hale transplanted to urban and non-polluted environments. Symbiosis 24:147–161

    CAS  Google Scholar 

  • Canas MS, Orellana L, Pignata ML (1997) Chemical response of the lichens Parmotrema austrosinense and P. conferendum transplanted to urban and non-polluted environments. Ann Bot Fenn 34:27–34

    CAS  Google Scholar 

  • Carreras HA, Pignata ML (2002) Biomonitoring of heavy metals and air quality in Cordoba City, Argentina, using transplanted lichens. Environ Pollut 117:77–87. doi:10.1016/S0269-7491(01)00164-6

    CAS  PubMed  Google Scholar 

  • Carreras HA, Pignata ML (2007) Effects of the heavy metals Cu2+, Ni2+, Pb2+, and Zn2+ on some physiological parameters of the lichen Usnea amblyoclada. Ecotoxicol Environ Saf 67:59–66. doi:10.1016/j.ecoenv.2006.05.005

    CAS  PubMed  Google Scholar 

  • Carreras HA, Gudino GL, Pignata ML (1998) Comparative biomonitoring of atmospheric quality in five zones of Cordoba city (Argentina) employing the transplanted lichen Usnea sp. Environ Pollut 103:317–325. doi:10.1016/S0269-7491(98)00116-X

    CAS  Google Scholar 

  • Carreras HA, Wannaz ED, Perez CA, Pignata ML (2005) The role of urban air pollutants on the performance of heavy metal accumulation in Usnea amblyoclada. Environ Res 97:50–57. doi:10.1016/j.envres.2004.05.009

    CAS  PubMed  Google Scholar 

  • Carreras HA, Rodriguez JH, Gonzalez CM, Wannaz ED, Garcia Ferreyra F, Perez CA, Pignata ML (2009) Assessment of the relationship between total suspended particles and the response of two biological indicators transplanted to an urban area in central Argentina. Atmos Environ 43:2944–2949. doi:10.1016/j.atmosenv.2009.02.060

    CAS  Google Scholar 

  • Chettri MK, Cook CM, Vardaka E, Sawidis T, Lanaras T (1998) The effect of Cu, Zn and Pb on the chlorophyll content of the lichens Cladonia convoluta and Cladonia rangiformis. Environ Exp Bot 39:1–10

    CAS  Google Scholar 

  • Cloquet C, De Muynck D, Signoret J, Vanhaecke F (2009) Urban/Peri-Urban Aerosol Survey by Determination of the Concentration and Isotopic Composition of Pb Collected by Transplanted Lichen Hypogymnia physodes. Environ Sci Technol 43:623–629. doi:10.1021/es801739p

    CAS  PubMed  Google Scholar 

  • Conti ME, Cecchetti G (2001) Biological monitoring: lichens as bioindicators of air pollution assessment—a review. Environ Pollut 114:471–492. doi:10.1016/S0269-7491(00)00224-4

    CAS  PubMed  Google Scholar 

  • Conti ME, Pino A, Botre F, Bocca B, Alimonti A (2009) Lichen Usnea barbata as biomonitor of airborne elements deposition in the Province of Tierra del Fuego (southern Patagonia, Argentina). Ecotoxicol Environ Saf 72:1082–1089. doi:10.1016/j.ecoenv.2008.12.004

    CAS  PubMed  Google Scholar 

  • Cuny D, Van Haluwyn C, Shirali P, Zerimech F, Jerome L, Haguenoer JM (2004) Cellular impact of metal trace elements in terricolous lichen Diploschistes muscorum (Scop.) R. Sant.—Identification of oxidative stress biomarkers. Water Air Soil Pollut 152:55–69. doi:10.1023/B:WATE.0000015332.94219.ff

    CAS  Google Scholar 

  • Dahlman L, Nasholm T, Palmqvist K (2002) Growth, nitrogen uptake, and resource allocation in the two tripartite lichens Nephroma arcticum and Peltigera aphthosa during nitrogen stress. New Phytol 153:307–315. doi:10.1046/j.0028-646X.2001.00321.x

    CAS  Google Scholar 

  • Dahlman L, Persson J, Nasholm T, Palmqvist K (2003) Carbon and nitrogen distribution in the green algal lichens Hypogymnia physodes and Platismatia glauca in relation to nutrient supply. Planta 217:41–48. doi:10.1007/s00425-003-0977-8

    CAS  PubMed  Google Scholar 

  • Das P, Joshi S, Rout J, Upreti DK (2013) Lichen diversity for environmental stress study: Application of index of atmospheric purity (IAP) and mapping around a paper mill in Barak Valley, Assam, northeast India. Trop Ecol 54:355–364

    Google Scholar 

  • Davies L, Bates JW, Bell JNB, James PW, Purvis OW (2007) Diversity and sensitivity of epiphytes to oxides of nitrogen in London. Environ Pollut 146:299–310. doi:10.1016/j.envpol.2006.03.023

    CAS  PubMed  Google Scholar 

  • De Wit A (1976) Epiphytic lichens and air pollution in the Netherlands. Bibl Lichenol 5:1–115

    Google Scholar 

  • Del Hoyo A, Álvarez R, Del Campo EM, Gasulla F, Barreno E, Casano LM (2011) Oxidative stress induces distinct physiological responses in the two Trebouxia phycobionts of the lichen Ramalina farinacea. Ann Bot 107:109–118

    PubMed Central  PubMed  Google Scholar 

  • Deltoro VI, Gimeno C, Calatayud A, Barreno E (1999) Effects of SO2 fumigations on photosynthetic CO2 gas exchange, chlorophyll afluorescence emission and antioxidant enzymes in the lichen Evernia prunastri and Ramalina farinacea. Physiol Plant 105:648–654. doi:10.1034/j.1399-3054.1999.105408.x

    CAS  Google Scholar 

  • Di Toppi LS, Musetti R, Vattuone Z, Pawlik-Skowronska B, Fossati F, Bertoli L, Badiani M, Favali MA (2005) Cadmium distribution and effects on ultrastructure and chlorophyll status in photobionts and mycobionts of Xanthoria parietina. Microsc Res Tech 66:229–238. doi:10.1002/jemt.20166

    Google Scholar 

  • Egger R, Schlee D, Turk R (1994) Changes of physiological and biochemical parameters in the lichen Hypogymnia-physodes (L) Nyl due to the action of air-pollutants—a field-study. Phyton 34:229–242

    CAS  Google Scholar 

  • Erisman JW, Galloway JN, Seitzinger S, Bleeker A, Dise NB, Petrescu AMR, Leach AM, de Vries W (2013) Consequences of human modification of the global nitrogen cycle. Philos Trans R Soc 368:1–9. doi:10.1098/rstb.2013.0116

    Google Scholar 

  • European Environment Agency (2012) Emissions of acidifying substances (CSI 001)—assessment published December 2011 (www.eea.europa.eu/data-and-maps/indicators/emmisions-of-acidifying-substances-version2/assessment-1)

  • Evju M, Bruteig IE (2013) Lichen community change over a 15-year time period: effects of climate and pollution. Lichenologist 45:35–50. doi:10.1017/S0024282912000539

    Google Scholar 

  • Fenn ME, Geiser L, Bachman R, Blubaugh TJ, Bytnerowicz A (2007) Atmospheric deposition inputs and effects on lichen chemistry and indicator species in the Columbia River Gorge, USA. Environ Pollut 146:77–91

    CAS  PubMed  Google Scholar 

  • Fenn ME, Jovan S, Yuan F, Geiser L, Meixner T, Gimeno BS (2008) Empirical and simulated critical loads for nitrogen deposition in California mixed conifer forests. Environ Pollut 155:492–511. doi:10.1016/j.envpol.2008.03.019

    CAS  PubMed  Google Scholar 

  • Fernandez-Salegui AB, Calatayud A, Terron A, Barreno EM (2006a) Chlorophyll a fluorescence in transplants of Parmelia sulcata Taylor near a power station (La Robla, Leon, Spain). Lichenologist 38:457–468. doi:10.1017/S0024282906005226

    Google Scholar 

  • Fernandez-Salegui AB, Terron AA, Barreno E (2006b) Bioindicadores de la calidad del aire en La Robla (Leon, noroeste de Espana) diez anos despues. Lazaroa 27:29–41

    Google Scholar 

  • Fields RD, St Clair LI (1984) A comparison of methods for evaluating SO2 impact on selected lichen species—Parmelia chlorochroa, Collema polycarpon and Lecanora muralis. Bryologist 87:297–301. doi:10.2307/3242947

    Google Scholar 

  • Folkeson L (1979) Interspecies calibration of heavy-metal concentrations in nine mosses and lichens: applicability to deposition measurements. Water Air Soil Pollut 11:253–260

    CAS  Google Scholar 

  • Franzen-Reuter I, Frahm JP (2007) Effects of nitrogen additions on epiphytic lichen and bryophyte cover on permanent observation plots (Rhineland-Palatinate, Germany). Herzogia 20:61–75

    Google Scholar 

  • Frati L, Brunialti G, Loppi S (2005) Problems related to lichen transplants to monitor trace element deposition in repeated surveys: a case study from Central Italy. J Atmos Chem 52:221–230

    CAS  Google Scholar 

  • Frati L, Caprasecca E, Santoni S, Gaggi C, Guttova A, Gaudino S, Pati A, Rosamilia S, Pirintsos SA, Loppi S (2006) Effects of NO2 and NH3 from road traffic on epiphytic lichens. Environ Pollut 142:58–64. doi:10.1016/j.envpol.2005.09.020

    CAS  PubMed  Google Scholar 

  • Frati L, Brunialti G, Gaudino S, Pati A, Rosamilia S, Loppi S (2011) Accumulation of nitrogen and changes in assimilation pigments of lichens transplanted in an agricultural area. Environ Monit Assess 178:19–24. doi:10.1007/s10661-010-1667-1

    CAS  PubMed  Google Scholar 

  • Friedel A, Muller F (2004) Bryophytes and lichens as indicators for changes of air pollution in the Serrahn Natural Forest Reserve (Mueritz National Park). Herzogia 17:279–286

    Google Scholar 

  • Fuchs C, Garry J (1983) Elemental content in the lichen Ramalina duriaei (De Not.) Jatta at air quality biomonitoring stations. Environ Exp Bot 23:29–43

    CAS  Google Scholar 

  • Fuhrer J (2002) Ozone impacts on vegetation. Ozone Sci Eng 24:69–74. doi:10.1080/01919510208901597

    CAS  Google Scholar 

  • Gailey F, Lloyd OL (1993) Spatial and temporal patterns of airborne metal pollution—the value of low technology sampling to an environmental epidemiology study. Sci Total Environ 133:201–219. doi:10.1016/0048-9697(93)90245-2

    CAS  PubMed  Google Scholar 

  • Gaio-Oliveira G, Branquinho C, Máguas C, Martins-Loução MA (2001) The concentration of nitrogen in nitrophilous and non-nitrophilous lichen species. Symbiosis 31:187–199

    CAS  Google Scholar 

  • Gaio-Oliveira G, Dahlman L, Palmqvist K, Máguas C (2004) Ammonium uptake in the nitrophytic lichen Xanthoria parietina and its effects on vitality and balance between symbionts. Lichenologist 36:75–86

    Google Scholar 

  • Gaio-Oliveira G, Dahlman L, Palmqvist K, Máguas C (2005a) Responses of the lichen Xanthoria parietina (L.) Th. Fr. to varying thallus nitrogen concentrations. Lichenologist 37:171–179

    Google Scholar 

  • Gaio-Oliveira G, Dahlman L, Palmqvist K, Martins-Loução MA, Máguas C (2005b) Nitrogen uptake in relation to excess supply and its effects on the lichen Evernia prunastri (L.) Ach. and Xanthoria parietina (L.) Th. Fr. Planta 220:794–803

    CAS  Google Scholar 

  • Galloway JN, Dentener FJ, Capone DG, Boyer EW, Howarth RW, Seitzinger SP, Asner GP, Cleveland CC, Green PA, Holland EA, Karl DM, Michaels AF, Porter JH, Townsend AR, Vorosmarty CJ (2004) Nitrogen cycles: past, present, and future. Biogeochem 70:153–226. doi:10.1007/s10533-004-0370-0

    CAS  Google Scholar 

  • Galloway JN, Townsend AR, Erisman JW, Bekunda M, Cai Z, Freney JR, Martinelli LA, Seitzinger SP, Sutton MA (2008) Transformation of the nitrogen cycle: Recent trends, questions, and potential solutions. Science 320:889–892. doi:10.1126/science.1136674

    CAS  PubMed  Google Scholar 

  • Garty J (2001) Biomonitoring atmospheric heavy metals with lichens: theory and application. Crit Rev Plant Sci 20:309–371. doi:10.1016/S0735-2689(01)80040-X

    CAS  Google Scholar 

  • Garty J, Kardish N, Hagemeyer J, Ronen R (1988) Correlations between the concentration of adenosine triphosphate, chlorophyll degradation and the amounts of airborne heavy metals and sulphur in a transplanted lichen. Arch Environ Contam Toxicol 17:601–611

    CAS  Google Scholar 

  • Garty J, Karary Y, Harel J (1992) Effect of low pH, heavy metals and anions on chlorophyll degradation in the lichen Ramalina duriaei (De Not) Bagl. Environ Exp Bot 32:229–241. doi:10.1016/0098-8472(92)90006-N

    CAS  Google Scholar 

  • Garty J, Karary Y, Harel J (1993) The impact of air pollution on the integrity of cell membranes and chlorophyll in the lichen Ramalina duriaei (Denot) Bagl transplanted to industrial sites in Israel. Arch Environ Contam Toxicol 24:455–460

    CAS  Google Scholar 

  • Garty J, Kauppi M, Kauppi A (1996) Accumulation of airborne elements from vehicles in transplanted lichens in urban sites. J Environ Qual 25:265–272

    CAS  Google Scholar 

  • Garty J, Cohen Y, Kloog N (1998) Airborne elements, cell membranes, and chlorophyll in transplanted lichens. J Environ Qual 27:973–979

    CAS  Google Scholar 

  • Garty J, Weissman L, Tamir O, Beer S, Cohen Y, Karnieli A, Orlovsky L (2000) Comparison of five physiological parameters to assess the vitality of the lichen Ramalina lacera exposed to air pollution. Physiol Plant 109:410–418

    CAS  Google Scholar 

  • Garty J, Tamir O, Hassid I, Eshel A, Cohen Y, Karnieli A, Orlovsky L (2001) Photosynthesis, chlorophyll integrity, and spectral reflectance in lichens exposed to air pollution. J Environ Qual 30:884–893

    CAS  PubMed  Google Scholar 

  • Garty J, Tamir O, Cohen Y, Lehr H, Goren AI (2002) Changes in the potential quantum yield of photosystem II and the integrity of cell membranes relative to the elemental content of the epilithic desert lichen Ramalina maciformis. Environ Toxicol Chem 21:848–858. doi:10.1897/1551-5028(2002)021<0848:CITPQY>2.0.CO;2

    CAS  PubMed  Google Scholar 

  • Garty J, Tomer S, Levin T, Lehr H (2003) Lichens as biomonitors around a coal-fired power station in Israel. Environ Res 91:186–198. doi:10.1016/S0013-9351(02)00057-9

    CAS  PubMed  Google Scholar 

  • Gauslaa Y, Solhaug KA (2000) High-light-intensity damage to the foliose lichen Lobaria pulmonaria within a natural forest: the applicability of chlorophyll fluorescence methods. Lichenologist 32:271–289. doi:10.1006/lich.1999.0265

    Google Scholar 

  • Gibson MD, Heal MR, Li Z, Kuchta J, King GH, Hayes A, Lambert S (2013) The spatial and seasonal variation of nitrogen dioxide and sulfur dioxide in Cape Breton Highlands National Park, Canada, and the association with lichen abundance. Atmos Environ 64:303–311. doi:10.1016/j.atmosenv.2012.09.068

    CAS  Google Scholar 

  • Gilbert OL (1968) Bryophytes as indicators of air pollution in the Tyne valley. New Phytol 67:15–30

    Google Scholar 

  • Gilbert OL (1970) biological scale for the estimation of sulfur dioxide air pollution. New Phytol 69:629–634

    CAS  Google Scholar 

  • Giordani P (2007) Is the diversity of epiphytic lichens a reliable indicator of air pollution? A case study from Italy. Environ Pollut 146:317–323. doi:10.1016/j.envpol.2006.03.030

    CAS  PubMed  Google Scholar 

  • Giordani P, Brunialti G, Alleteo D (2002) Effects of atmospheric pollution on lichen biodiversity (LB) in a Mediterranean region (Liguria, northwest Italy). Environ Poll 118:53–64. doi:10.1016/S0269-7491(01)00275-5

    CAS  Google Scholar 

  • Giordano S, Sorbo S, Adamo P, Basile A, Spagnuolo V, Cobianchi RC (2004) Biodiversity and trace element content of epiphytic bryophytes in urban and extraurban sites of southern Italy. Plant Ecol 170:1–14. doi:10.1023/B:VEGE.0000019025.36121.5d

    Google Scholar 

  • Godinho RM, Freitas MC, Wolterbeek HT (2004) Assessment of lichen vitality during a transplantation experiment to a polluted site. J Atmos Chem 49:355–361. doi:10.1007/s10874-004-1251-6

    CAS  Google Scholar 

  • Gombert S, Asta J, Seaward MRD (2003) Correlation between the nitrogen concentration of two epiphytic lichens and the traffic density in an urban area. Environ Pollut 123:281–290

    CAS  PubMed  Google Scholar 

  • Gombert S, Asta J, Seaward MRD (2004) Assessment of lichen diversity by index of atmospheric purity (IAP), index of human impact (IHI) and other environmental factors in an urban area (Grenoble, southeast France). Sci Total Environ 324:183–199. doi:10.1016/j.scitotenv.2003.10.036

    CAS  PubMed  Google Scholar 

  • Gonzalez CM, Pignata ML (1994) The influence of air pollution on soluble proteins, chlorophyll degradation, MDA, sulphur and heavy metals in a transplanted lichen. Chem Ecol 9:105–113

    CAS  Google Scholar 

  • Gonzalez CM, Pignata ML (1997) Chemical response of the lichen Punctelia subrudecta (Nyl.) Krog transplanted close to a power station in an urban-industrial environment. Environ Pollut 97:195–203. doi:10.1016/S0269-7491(97)00102-4

    CAS  PubMed  Google Scholar 

  • Gonzalez CM, Pignata ML (2000) Chemical response of transplanted lichen Canomaculina pilosa to different emission sources of air pollutants. Environ Pollut 110:235–242. doi:10.1016/S0269-7491(99)00300-0

    CAS  PubMed  Google Scholar 

  • Gonzalez CM, Casanovas SS, Pignata ML (1996) Biomonitoring of air pollutants from traffic and industries employing Ramalina ecklonii (Spreng) Mey and Flot in Cordoba, Argentina. Environ Pollut 91:269–277. doi:10.1016/0269-7491(95)00076-3

    CAS  PubMed  Google Scholar 

  • Gonzalez CM, Orellana LC, Casanovas SS, Pignata ML (1998) Environmental conditions and chemical response of a transplanted lichen to an urban area. J Environ Manag 53:73–81. doi:10.1006/jema.1998.0194

    Google Scholar 

  • Gonzalez CM, Pignata ML, Orellana L (2003) Applications of redundancy analysis for the detection of chemical response patterns to air pollution in lichen. Sci Total Environ 312:245–253. doi:10.1016/S0048-9697(03)00253-5

    CAS  PubMed  Google Scholar 

  • Gonzalez MC, Lingua M, Gudino GL (2012) Estimate the air quality along a section in the suquia river (cordoba, argentina) using Usnea amblyoclada as active biomonitor. Rev Int Contam Ambient 28:311–322

    CAS  Google Scholar 

  • Grace B, Gillespie TJ, Puckett KJ (1985) Uptake of gaseous sulfur dioxide by the lichen Cladina rangiferina. Can J Bot 63:797–805

    CAS  Google Scholar 

  • Grandin U (2011) Epiphytic algae and lichen cover in boreal forests—a long-term study along a N and S deposition gradient in Sweden. Ambio 40:857–866. doi:10.1007/s13280-011-0205-x

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gries C, Sanz M-J, Nash TH III (1995) The effect of SO2 fumigation on CO2 gas exchange, chlorophyll fluorescence and chlorophyll degradation in different lichen species from western North America. Cryptogam Bot 5:239–246

    Google Scholar 

  • Grube M (2010) Die hard: lichens. In: Seckback J, Grube M (eds) Symbioses and stress. Joint ventures in biology. Springer, Dordrecht. doi:10.1007/978-90-481-9449-0

  • Guidotti M, Stella D, Owczarek M, De Marco A, De Simone C (2003) Lichens as polycyclic aromatic hydrocarbon bioaccumulators used in atmospheric pollution studies. J Chromatogr 985:185–190. doi:10.1016/S0021-9673(02)01452-8

    CAS  Google Scholar 

  • Guidotti M, Stella D, Dominici C, Blasi G, Owczarek M, Vitali M, Protano C (2009) Monitoring of traffic-related pollution in a province of central Italy with transplanted lichen Pseudovernia furfuracea. Bull Environ Contam Toxicol 83:852–858. doi:10.1007/s00128-009-9792-7

    CAS  PubMed  Google Scholar 

  • Haffner E, Lomsky B, Hynek V, Hallgren JE, Batic F, Pfanz H (2001) Air pollution and lichen physiology. Physiological responses of different lichens in a transplant experiment following an SO2 gradient. Water Air Soil Pollut 131:185–201. doi:10.1023/A:1011907530430

    CAS  Google Scholar 

  • Hällgren JE, Huss K (1975) Effects of SO2 on photosynthesis and nitrogen fixation. Physiol Plant 34:171–176. doi:10.1111/j.1399-3054.1975.tb03815.x

    Google Scholar 

  • Hauck M (2008) Susceptibility to acidic precipitation contributes to the decline of the terricolous lichens Cetraria aculeata and Cetraria islandica in central Europe. Environ Pollut 152:731–735. doi:10.1016/j.envpol.2007.06.046

    CAS  PubMed  Google Scholar 

  • Hauck M, Jürgens SR (2008) Usnic acid controls the acidity tolerance of lichens. Environ Pollut 156:115–122. doi:10.1016/j.envpol.2007.12.033

    CAS  PubMed  Google Scholar 

  • Hauck M, Paul A, Gross S, Raubuch M (2003) Manganese toxicity in epiphytic lichens: chlorophyll degradation and interaction with iron and phosphorus. Environ Exp Bot 49:181–191. doi:10.1016/S0098-8472(02)00069-2

    CAS  Google Scholar 

  • Hauck M, Boening J, Jacob M, Dittrich S, Feussner I, Leuschner C (2013a) Lichen substance concentrations in the lichen Hypogymnia physodes are correlated with heavy metal concentrations in the substratum. Environ Exp Bot 85:58–63. doi:10.1016/j.envexpbot.2012.08.011

    CAS  Google Scholar 

  • Hauck M, de Bruyn U, Leuschner C (2013b) Dramatic diversity losses in epiphytic lichens in temperate broad-leaved forests during the last 150 years. Biol Conserv 157:136–145. doi:10.1016/j.biocon.2012.06.015

    Google Scholar 

  • Hawksworth DL, Mcmanus PM (1989) Lichen recolonization in London under conditions of rapidly falling sulfur-dioxide levels, and the concept of zone skipping. Bot J Linn Soc 100:99–109. doi:10.1111/j.1095-8339.1989.tb01712.x

    Google Scholar 

  • Hawksworth DL, Rose F (1970) Qualitative scale for estimating sulphur dioxide air pollution in England and wales using epiphytic lichens. Nature 227:145–148. doi:10.1038/227145a0

    CAS  PubMed  Google Scholar 

  • Henriksson E, Pearson LC (1981) Nitrogen fixation rate and chlorophyll content of the lichen Peltigera canina exposed to sulfur dioxide. Am J Bot 68:680–684

    CAS  Google Scholar 

  • Hippeli S, Elstner EF (1996) Mechanisms of oxygen activation during plant stress: biochemical effects of air pollutants. J Plant Physiol 148:249–257

    CAS  Google Scholar 

  • Holopainen T, Kauppi M (1989) Comparison of light, fluorescence and electron-microscopic observations in assessing the SO2 injury of lichens under different moisture conditions. Lichenologist 21:119–134. doi:10.1017/S0024282989000241

    Google Scholar 

  • Hultengren S, Gralen H, Pleijel H (2004) Recovery of the epiphytic lichen flora following air quality improvement in south-west Sweden. Water Air Soil Pollut 154:203–211. doi:10.1023/B:WATE.0000022967.35036.ca

    CAS  Google Scholar 

  • Hyvarinen M, Crittenden PD (1998) Relationships between atmospheric nitrogen inputs and the vertical nitrogen and phosphorus concentration gradients in the lichen Cladonia portentosa. New Phytol 140:519–530. doi:10.1046/j.1469-8137.1998.00292.x

    Google Scholar 

  • Jensen M, Kricke R (2000) Chlorophyll fluorescence measurements in the field: assessment of the vitality of large numbers of lichen thalli. In: Nimis PL, Scheidegger C, Wolseley A (eds) Monitoring with lichens—monitoring lichens, NATO science series IV: earth and environmental sciences 7. Kluwer, Dordrecht

    Google Scholar 

  • Jeran Z, Jacimovic R, Batic F, Mavsar R (2002) Lichens as integrating air pollution monitors. Environ Pollut 120:107–113. doi:10.1016/S0269-7491(02)00133-1

    CAS  PubMed  Google Scholar 

  • Johansson O, Nordin A, Olofsson J, Palmqvist K (2010) Responses of epiphytic lichens to an experimental whole-tree nitrogen-deposition gradient. New Phytol 188:1075–1084. doi:10.1111/j.1469-8137.2010.03426.x

    CAS  PubMed  Google Scholar 

  • Johansson O, Olofsson J, Giesler R, Palmqvist K (2011) Lichen responses to nitrogen and phosphorus additions can be explained by the different symbiont responses. New Phytol 191:795–805. doi:10.1111/j.1469-8137.2011.03739.x

    CAS  PubMed  Google Scholar 

  • Johansson O, Palmqvist K, Olofsson J (2012) Nitrogen deposition drives lichen community changes through differential species responses. Glob Change Biol 18:2626–2635. doi:10.1111/j.1365-2486.2012.02723.x

    Google Scholar 

  • Kaeffer MI, de Azevedo Martins S M, Alves C, Pereira VC, Fachel J, Ferrao Vargas VM (2011) Corticolous lichens as environmental indicators in urban areas in southern Brazil. Ecol Indic 11:1319–1332. doi:10.1016/j.ecolind.2011.02.006

    CAS  Google Scholar 

  • Karakas SY, Tuncel SG (2004) Comparison of accumulation capacities of two lichen species analyzed by instrumental neutron activation analysis. J Radioanal Nucl Chem 259:113–118

    Google Scholar 

  • Karakoti N, Bajpai R, Upreti DK, Mishra GK, Srivastava A, Nayaka S (2014) Effect of metal content on chlorophyll fluorescence and chlorophyll degradation in lichen Pyxine cocoes (Sw.) Nyl.: a case study from Uttar Pradesh. India. Environ Earth Sci 71:2177–2183. doi:10.1007/s12665-013-2623-5

    CAS  Google Scholar 

  • Khalil K, Asta J (1998) Les lichens, bioindicateurs de pollution atmosphérique dans la Région Lyonnaise. Ecologie 29:467–472

    Google Scholar 

  • Kong FX, Hu W, Chao SY, Sang WL, Wang LS (1999) Physiological responses of the lichen Xanthoparmelia mexicana to oxidative stress of SO2. Environ Exp Bot 42:201–209. doi:10.1016/S0098-8472(99)00034-9

    CAS  Google Scholar 

  • Kricke R, Loppi S (2002) Bioindication: the I.A.P approach. In: Nimis PL, Scheidegger C, Wolseley A (eds) Monitoring with lichens—monitoring lichens, NATO science series IV: earth and environmental sciences 7. Kluwer, Dordrecht

    Google Scholar 

  • Kularatne KIA, de Freitas CR (2013) Epiphytic lichens as biomonitors of airborne heavy metal pollution. Environ Exp Bot 88:24–32. doi:10.1016/j.envexpbot.2012.02.010

    CAS  Google Scholar 

  • Kylin H, Bouwman H (2012) Hydration state of the moss Hylocomium splendens and the lichen Cladina stellaris governs uptake and revolatilization of airborne alpha- and gamma-hexachlorocyclohexane. Environ Sci Technol 46:10982–10989. doi:10.1021/es302363g

    CAS  PubMed  Google Scholar 

  • Larsen RS, Bell JNB, James PW, Chimonides PJ, Rumsey FJ, Tremper A, Purvis OW (2007) Lichen and bryophyte distribution on oak in London in relation to air pollution and bark acidity. Environ Pollut 146:332–340. doi:10.1016/j.envpol.2006.03.033

    CAS  PubMed  Google Scholar 

  • LeBlanc F, De Sloover J (1970) Relation between industrialization and the distribution and growth of epiphytic lichens and mosses in Montreal. Can J Bot 48:1485–1496

    Google Scholar 

  • LeBlanc F, Rao DN (1973) Effects of sulfur dioxide on lichen and moss transplants. Ecology 54:612–617. doi:10.2307/1935347

    CAS  Google Scholar 

  • LeBlanc F, Rao D, Comeau G (1972) The epiphytic vegetation of Populus balsamifera and its significance as an air pollution indicator in Sudbury, Ontario. Can J Bot 50:519–528

    Google Scholar 

  • LeBlanc F, Robitaille G, Rao DN (1974) Biological responses of lichens and bryophytes to environmental pollution in the Murdochville copper mine area, Quebec. J Hattori Bot Lab 38:405–433

    CAS  Google Scholar 

  • LeGalley E, Widom E, Krekeler MPS, Kuentz DC (2013) Chemical and lead isotope constraints on sources of metal pollution in street sediment and lichens in southwest Ohio. Appl Geochem 32:195–203. doi:10.1016/j.apgeochem.2012.10.020

    CAS  Google Scholar 

  • Letrouitgalinou MA, Seaward MRD, Deruelle S (1992) On the return of epiphytic lichens to the Jardin-du-Luxembourg (Paris). Bull Soc Bot Fr 139:115–126

    Google Scholar 

  • Levin AG, Pignata ML (1995) Ramalina ecklonii as a bioindicator of atmospheric-pollution in argentina. Can J Bot 73:1196–1202

    Google Scholar 

  • Liska J, Herben T (2008) Long-term changes of epiphytic lichen species composition over landscape gradients: an 18 year time series. Lichenologist 40:437–448. doi:10.1017/S0024282908006610

    Google Scholar 

  • Lisowska M (2011) Lichen recolonisation in an urban-industrial area of southern Poland as a result of air quality improvement. Environ Monit Assess 179:177–190. doi:10.1007/s10661-010-1727-6

    CAS  PubMed  Google Scholar 

  • Loppi S (1996) Lichens as bioindicators of geothermal air pollution in central Italy. Bryologist 99:41–48. doi:10.2307/3244436

    Google Scholar 

  • Loppi S (2004) Mapping the effects of air pollution, nitrogen deposition, agriculture and dust by the diversity of epiphytic lichens in central Italy. In: Lambley P, Wolseley P (eds) Lichens in a changing pollution environment. English Nature Research Reports, London

    Google Scholar 

  • Loppi S, Corsini A (2003) Diversity of epiphytic lichens and metal contents of Parmelia caperata thalli as monitors of air pollution in the town of Pistoia (C Italy). Environ Monit Assess 86:289–301. doi:10.1023/A:1024017118462

    CAS  PubMed  Google Scholar 

  • Loppi S, DeDominicis V (1996) Effects of agriculture on epiphytic lichen vegetation in Central Italy. Isr J Plant Sci 44:297–307

    Google Scholar 

  • Loppi S, Frati L (2006) Lichen diversity and lichen transplants as monitors of air pollution in a rural area of central Italy. Environ Monit Assess 114:361–375. doi:10.1007/s10661-006-4937-1

    CAS  PubMed  Google Scholar 

  • Loppi S, Nascimbene J (1998) Lichen bioindication of air quality in the Mt. Amiata geothermal area (Tuscany, Italy). Geotherm 27:295–304. doi:10.1016/S0375-6505(98)00003-0

    Google Scholar 

  • Loppi S, Putorti E, De Dominicis V, Barbaro A (1995) Lichens as bioindicators of air quality near a municipal solid waste incinerator (Central Italy). Allionia 33:121–129

    Google Scholar 

  • Loppi S, Bosi A, Signorini C, De Dominicis V (2003) Lichen recolonization of Tilia trees in Arezzo (Tuscany, central Italy) under conditions of decreasing air pollution. Cryptogam Mycol 24:175–185

    Google Scholar 

  • Majumder S, Mishra D, Ram SS, Jana NK, Santra S, Sudarshan M, Chakraborty A (2013) Physiological and chemical response of the lichen, Flavoparmelia caperata (L.) Hale, to the urban environment of Kolkata. India. Environ Sci Pollut Res 20:3077–3085. doi:10.1007/s11356-012-1224-2

    CAS  Google Scholar 

  • Malhotra SS, Hocking D (1976) Biochemical and cytological effects of sulphur dioxide on plant metabolism. New Phytol 76:227–237

    CAS  Google Scholar 

  • Marques AP, Freitas MC, Wolterbeek HT, Steinebach OM, Verburg T, De Goeij JJM (2005) Cell-membrane damage and element leaching in transplanted Parmelia sulcata lichen related to ambient SO2, temperature, and precipitation. Environ Sci Technol 39:2624–2630. doi:10.1021/es0498888

    CAS  PubMed  Google Scholar 

  • Massara AC, Bates JW, Bell JNB (2009) Exploring causes of the decline of the lichen Lecanora conizaeoides in Britain: effects of experimental N and S applications. Lichenologist 41:673–681. doi:10.1017/S0024282909990119

    Google Scholar 

  • Mayer AL, Vihermaa L, Nieminen N, Luomi A, Posch M (2009) Epiphytic macrolichen community correlates with modeled air pollutants and forest conditions. Ecol Ind 9:992–1000. doi:10.1016/j.ecolind.2008.11.010

    CAS  Google Scholar 

  • Mayer W, Pfefferkorn-Dellali V, Tuerk R, Dullinger S, Mirtl M, Dirnboeck T (2013) Significant decrease in epiphytic lichen diversity in a remote area in the European Alps, Austria. Basic Appl Ecol 14:396–403. doi:10.1016/j.baae.2013.05.006

    Google Scholar 

  • McMurray JA, Roberts DW, Fenn ME, Geiser LH, Jovan S (2013) Using epiphytic lichens to monitor nitrogen deposition near natural gas drilling operations in the Wind River Range, WY. USA. Water Air Soil Pollut 224:1487. doi:10.1007/s11270-013-1487-3

    Google Scholar 

  • Meysurova AF, Khizhnyak SD, Pakhomov PM (2011) Toxic effect of nitrogen and sulfur dioxides on the chemical composition of Hypogymnia physodes (L.) Nyl.: IR spectroscopic analysis. Contemp Probl Ecol 4:186–194. doi:10.1134/S199542551102010X

    Google Scholar 

  • Migaszewski ZM, Galuszka A, Paslawski P (2002) Polynuclear aromatic hydrocarbons, phenols, and trace metals in selected soil profiles and plant bioindicators in the Holy Cross Mountains, South-Central Poland. Environ Int 28:303–313. doi:10.1016/S0160-4120(02)00039-9

    CAS  PubMed  Google Scholar 

  • Mikhailova I (2002) Transplanted lichens for bioaccumulation studies. In: Nimis PL, Scheidegger C, Wolseley A (eds) Monitoring with lichens—monitoring lichens, NATO science series IV: earth and environmental sciences 7. Kluwer, Dordrecht

    Google Scholar 

  • Mikhailova IN, Sharunova IP (2008) Dynamics of heavy metal accumulation in thalli of the epiphytic lichen Hypogymnia physodes. Russ J Ecol 39:346–352. doi:10.1134/S1067413608050068

    CAS  Google Scholar 

  • Monaci F, Bargagli R, Gasparo D (1997) Air pollution monitoring by lichens in a small medieval town of central Italy. Acta Bot Neerl 46:403–412

    CAS  Google Scholar 

  • Monnet F, Bordas F, Deluchat V, Chatenet P, Botineau M, Baudu M (2005) Use of the aquatic lichen Dermatocarpon luridum as bioindicator of copper pollution: accumulation and cellular distribution tests. Environ Pollut 138:455–461. doi:10.1016/j.envpol.2005.04.019

    CAS  PubMed  Google Scholar 

  • Monnet F, Bordas F, Deluchat V, Baudu M (2006) Toxicity of copper excess on the lichen Dermatocarpon luridum: Antioxidant enzyme activities. Chemosphere 65:1806–1813. doi:10.1016/j.chemosphere.2006.04.022

    CAS  PubMed  Google Scholar 

  • Munzi S, Pirintsos SA, Loppi S (2009) Chlorophyll degradation and inhibition of polyamine biosynthesis in the lichen Xanthoria parietina under nitrogen stress. Ecotoxicol Environ Saf 72:281–285. doi:10.1016/j.ecoenv.2008.04.013

    CAS  PubMed  Google Scholar 

  • Munzi S, Pisani T, Paoli L, Loppi S (2010) Time- and dose-dependency of the effects of nitrogen pollution on lichens. Ecotoxicol Environ Saf 73:1785–1788. doi:10.1016/j.ecoenv.2010.07.042

    CAS  PubMed  Google Scholar 

  • Munzi S, Loppi S, Cruz C, Branquinho C (2011) Do lichens have “memory” of their native nitrogen environment? Planta 233:333–342. doi:10.1007/s00425-010-1300-0

    CAS  PubMed  Google Scholar 

  • Munzi S, Paoli L, Fiorini E, Loppi S (2012) Physiological response of the epiphytic lichen Evernia prunastri (L.) Ach. to ecologically relevant nitrogen concentrations. Environ Pollut 171:25–29. doi:10.1016/j.envpol.2012.07.001

    CAS  PubMed  Google Scholar 

  • Munzi S, Cruz C, Branquinho C, Pinho P, Leith ID, Sheppard LJ (2014) Can ammonia tolerance amongst lichen functional groups be explained by physiological responses? Environ Pollut 187:206–209. doi:10.1016/j.envpol.2014.01.009

    CAS  PubMed  Google Scholar 

  • Nakajima H, Yamamoto Y, Yoshitani A, Itoh K (2013) Effect of metal stress on photosynthetic pigments in the Cu-hyperaccumulating lichens Cladonia humilis and Stereocaulon japonicum growing in Cu-polluted sites in Japan. Ecotoxicol Environ Saf 97:154–159. doi:10.1016/j.ecoenv.2013.07.026

    CAS  PubMed  Google Scholar 

  • Nascimbene J, Tretiach M, Corana F, Lo Schiavo F, Kodnik D, Dainese M, Mannucci B (2014) Patterns of traffic polycyclic aromatic hydrocarbon pollution in mountain areas can be revealed by-lichen biomonitoring: a case study in the Dolomites (Eastern Italian Alps). Sci Total Environ 475:90–96. doi:10.1016/j.scitotenv.2013.12.090

    CAS  PubMed  Google Scholar 

  • Nash TH III (1976) Sensitivity of lichens to nitrogen dioxide fumigations. Bryologist 79:103–106

    CAS  Google Scholar 

  • Nash TH III (2010) Lichen sensitivity to air pollution. In: Nash TH III (ed) Lichen Biology, 2nd edn. Cambridge University Press, Cambridge

    Google Scholar 

  • Nash TH, Gries C (2002) Lichens as bioindicators of sulfur dioxide. Symbiosis 33:1–21

    CAS  Google Scholar 

  • Nash TH III, Sigal LL (1998) Epiphytic lichens in the San Bernardino mountains in relation to oxidant gradients. In: Miller PR, McBride JR (eds) Oxidant air pollution impacts in the Montane Forests of Southern California: a case study of the San Bernardino Mountains. Springer, New York

    Google Scholar 

  • Nimis PL (2003) Checklist of Italian lichens 3.0. University of Trieste, Department of Biology, IN3.0/2. http://dbiodbs.univ.trieste.it. Accessed 16 April 2014

  • Nimis PL, Castello M, Perotti M (1990) Lichens as biomonitors of sulfur dioxide pollution in La Spezia (Northern Italy). Lichenologist 22:333–344. doi:10.1017/S0024282990000378

    Google Scholar 

  • Nimis PL, Scheidegger C, Wolseley PA (2002) Monitoring with lichens–monitoring lichens. An introduction. In: Nimis PL, Scheidegger C, Wolseley A (eds) Monitoring with lichens—monitoring lichens, NATO science series IV: earth and environmental sciences 7. Kluwer, Dordrecht

    Google Scholar 

  • Ochoa-Hueso R, Manrique E (2011) Effects of nitrogen deposition and soil fertility on cover and physiology of Cladonia foliacea (Huds.) Willd. a lichen of biological soil crusts from Mediterranean Spain. Environ Pollut 159:449–457. doi:10.1016/j.envpol.2010.10.021

    CAS  PubMed  Google Scholar 

  • Ockenden WA, Steinnes E, Parker C, Jones KC (1998) Observations on persistent organic pollutants in plants: implications for their use as passive air samplers and for POP cycling. Environ Sci Technol 32:2721–2726. doi:10.1021/es980150y

    CAS  Google Scholar 

  • Olsen HB, Berthelsen K, Andersen HV, Søchting U (2010) Xanthoria parietina as a monitor of ground-level ambient ammonia concentrations. Environ Pollut 158:455–461. doi:10.1016/j.envpol.2009.08.025

    CAS  PubMed  Google Scholar 

  • Osyczka P, Rola K (2013) Response of the lichen Cladonia rei Schaer. to strong heavy metal contamination of the substrate. Environ Sci Pollut Res 20:5076–5084. doi:10.1007/s11356-013-1645-6

    CAS  Google Scholar 

  • Owczarek M, Spadoni M, De Marco A, De Simone C (1999) Lichens as indicators of air pollution in urban and rural sites of Rieti (Central Italy). Fresen Environ Bull 8:288–295

    CAS  Google Scholar 

  • Oztetik E, Cicek A (2011) Effects of urban air pollutants on elemental accumulation and identification of oxidative stress biomarkers in the transplanted lichen Pseudovernia furfuracea. Environ Toxicol Chem 30:1629–1636. doi:10.1002/etc.541

    CAS  PubMed  Google Scholar 

  • Pakarinen P (1981) Regional variation of sulphur concentration in Sphagnum mosses and Cladonia lichens in Finnish bogs. Ann Bot Fennici 18:275–279

    CAS  Google Scholar 

  • Palmqvist K, Dahlman L (2006) Responses of the green algal foliose lichen Platismatia glauca to increased nitrogen supply. New Phytol 171:343–356. doi:10.1111/j.1469-8137.2006.01754.x

    CAS  PubMed  Google Scholar 

  • Palmqvist K, Dahlman L, Valladares F, Tehler A, Sancho LG, Mattsson JE (2002) CO2 exchange and thallus nitrogen across 75 contrasting lichen associations from different climate zones. Oecologia 133:295–306. doi:10.1007/s00442-002-1019-0

    Google Scholar 

  • Paoli L, Pirintsos SA, Kotzabasis K, Pisani T, Navakoudis E, Loppi S (2010) Effects of ammonia from livestock farming on lichen photosynthesis. Environ Pollut 158:2258–2265. doi:10.1016/j.envpol.2010.02.008

    CAS  PubMed  Google Scholar 

  • Paoli L, Pisani T, Guttova A, Sardella G, Loppi S (2011) Physiological and chemical response of lichens transplanted in and around an industrial area of south Italy: relationship with the lichen diversity. Ecotoxicol Environ Saf 74:650–657. doi:10.1016/j.ecoenv.2010.10.011

    CAS  PubMed  Google Scholar 

  • Pawlik-Skowronska B, Purvis OW, Pirszel J, Skowronski T (2006) Cellular mechanisms of Cu-tolerance in the epilithic lichen Lecanora polytropa growing at a copper mine. Lichenologist 38:267–275. doi:10.1017/S0024282906005330

    Google Scholar 

  • Pawlik-Skowronska B, Wojciak H, Skowronski T (2008) Heavy metal accumulation, resistance and physiological status of some epigeic and epiphytic lichens inhabiting Zn and Pb polluted areas. Pol J Ecol 56:195–207

    CAS  Google Scholar 

  • Pearson LC, Henriksson E (1981) Air pollution damage to cell membranes in lichens. 2. Laboratory experiments. Bryologist 84:515–520. doi:10.2307/3242559

    CAS  Google Scholar 

  • Pearson LC, Rodgers GA (1982) Air pollution damage to cell membranes in lichens. III. Field experiments. Phyton 22:329–337

    CAS  Google Scholar 

  • Piccotto M, Bidussi M, Tretiach M (2011) Effects of the urban environmental conditions on the chlorophyll a fluorescence emission in transplants of three ecologically distinct lichens. Environ Exp Bot 73:102–107. doi:10.1016/j.envexpbot.2010.09.010

    CAS  Google Scholar 

  • Pignata ML, Gonzalez CM, Wannaz ED, Carreras HA, Gudino GL, Martinez MS (2004) Biomonitoring of air quality employing in situ Ramalina celastri in Argentina. Int J Environ Pollut 22:409–429. doi:10.1504/IJEP.2004.005678

    CAS  Google Scholar 

  • Pignata ML, Pla RR, Jasan RC, Martinez MS, Rodriguez JH, Wannaz ED, Gudino GL, Carreras HA, Gonzalez CM (2007) Distribution of atmospheric trace elements and assesment of air quality in Argentina employing the lichen, Ramalina celastri, as a passive biomonitor: detection of air pollution emission sources. Int J Environ Health 1:29–46. doi:10.1504/IJENVH.2007.012223

    CAS  Google Scholar 

  • Pilkington MG, Caporn SJM, Carroll JA, Cresswell N, Lee JA, Emmett BA, Bagchi R (2007) Phosphorus supply influences heathland responses to atmospheric nitrogen deposition. Environ Pollut 148:191–200. doi:10.1016/j.envpol.2006.10.034

    CAS  PubMed  Google Scholar 

  • Pinho P, Augusto S, Martins-Loucao MA, Pereira MJ, Soares A, Maguas C, Branquinho C (2008) Causes of change in nitrophytic and oligotrophic lichen species in a Mediterranean climate: Impact of land cover and atmospheric pollutants. Environ Pollut 154:380–389. doi:10.1016/j.envpol.2007.11.028

    CAS  PubMed  Google Scholar 

  • Pirintsos SA, Munzi S, Loppi S, Kotzabasis K (2009) Do polyamines alter the sensitivity of lichens to nitrogen stress? Ecotoxicol Environ Saf 72:1331–1336. doi:10.1016/j.ecoenv.2009.03.001

    CAS  PubMed  Google Scholar 

  • Plakunova OV, Plakunova VG (1987) Ultrastructure of components of the lichen Cladina stellaris in health and disease during SO2 environmental pollution. Biol Bull Acad Sci USSR 14:223–230

    Google Scholar 

  • Protano C, Guidotti M, Owczarek M, Fantozzi L, Blasi G, Vitali M (2014) Polycyclic aromatic hydrocarbons and metals in transplanted lichen (Pseudovernia furfuracea) at sites adjacent to a solid waste landfill in central Italy. Arch Environ Contam Toxicol 66:471–481. doi:10.1007/s00244-013-9965-6

    CAS  PubMed  Google Scholar 

  • Puckett KJ, Tomassini FD, Nieboer E, Richardson DHS (1977) Potassium efflux of lichen thalli following exposure to aqueous sulphur dioxide. New Phytol 179:135–145

    Google Scholar 

  • Pyatt FB (1973) Plant sulphur content as air pollution gauge in the vicinity of a steelworks. Environ Pollut 5:103–115

    CAS  Google Scholar 

  • Ra HSY, Geiser LH, Crang RFE (2005) Effects of season and low-level air pollution on physiology and element content of lichens from the US Pacific Northwest. Sci Total Environ 343:155–167. doi:10.1016/j.scitotenv.2004.10.003

    CAS  PubMed  Google Scholar 

  • Ranta P (2001) Changes in urban lichen diversity after a fall in sulphur dioxide levels in the city of Tampere, SW Finland. Ann Bot Fennici 38:295–304

    CAS  Google Scholar 

  • Reinecke J, Klemm G, Heinken T (2014) Vegetation change and homogenization of species composition in temperate nutrient deficient Scots pine forests after 45 yr. J Veg Sci 25:113–121. doi:10.1111/jvs.12069

    Google Scholar 

  • Riddell J, Padgett PE, Nash TH III (2010) Responses of the lichen Ramalina menziesii Tayl. to ozone fumigations. In: Nash TH, Geiser L, McCune B, Triebel D, Tomescu AMF, Sanders WB (eds) Biology of lichens—symbiosis, ecology, environmental monitoring, systematics and cyber applications. Bibl Lichenol 105:113–123

    Google Scholar 

  • Riddell J, Padgett PE, Nash TH III (2012) Physiological responses of lichens to factorial fumigations with nitric acid and ozone. Environ Pollut 170:202–210. doi:10.1016/j.envpol.2012.06.014

    CAS  PubMed  Google Scholar 

  • Rodriguez JH, Carreras HA, Pignata ML, Gonzalez CM (2007) Nickel exposure enhances the susceptibility of lichens Usnea amblyoclada and Ramalina celastri to urban atmospheric pollutants. Arch Environ Contam Toxicol 53:533–540. doi:10.1007/s00244-006-0034-2

    CAS  PubMed  Google Scholar 

  • Rogers PC, Moore KD, Ryel RJ (2009) Aspen succession and nitrogen loading: a case for epiphytic lichens as bioindicators in the Rocky Mountains, USA. J Veg Sci 20:498–510. doi:10.1111/j.1654-1103.2009.01064.x

    Google Scholar 

  • Romeralo C, Diez JJ, Santiago NF (2012) Presence of fungi in Scots pine needles found to correlate with air quality as measured by bioindicators in northern Spain. Forest Pathol 42:443–453. doi:10.1111/efp.12002

    Google Scholar 

  • Root HT, Geiser LH, Fenn ME, Jovan S, Hutten MA, Ahuja S, Dillman K, Schirokauer D, Berryman S, McMurray JA (2013) A simple tool for estimating throughfall nitrogen deposition in forests of western North America using lichens. Forest Ecol Manage 306:1–8. doi:10.1016/j.foreco.2013.06.028

    Google Scholar 

  • Rose CI, Hawksworth DI (1981) Lichen recolonization in London’s cleaner air. Nature 289:289–292. doi:10.1038/289289a0

    Google Scholar 

  • Ross LJ, Nash TH III (1983) Effects of ozone on gross photosynthesis of lichens. Environ Exp Bot 23:71–77

    CAS  Google Scholar 

  • Ruoss E (1999) How agriculture affects lichen vegetation in central Switzerland. Lichenologist 31:63–73

    Google Scholar 

  • Ruoss E, Vonarburg C (1995) Lichen diversity and ozone impact in rural areas of Central Switzerland. Cryptogam Bot 5:252–263

    Google Scholar 

  • Sanchez-Hoyos MA, Manrique E (1995) Effect of nitrate and ammonium ions on the pigment content (xanthophylls, carotenes and chlorophylls) of Ramalina capitata. Lichenologist 27:155–160. doi: 10.1017/S0024282995000168

  • Sanz MJ, Gries C, Nash TH III (1992) Dose-response relationship for SO2 fumigations in the lichen Evernia prunastri (L.) Ach. New Phytol 122:313–319

    CAS  Google Scholar 

  • Sarret G, Manceau A, Cuny D, Van Haluwyn C, Deruelle S, Hazemann JL, Soldo Y, Eybert-Berard L, Menthonnex JJ (1998) Mechanisms of lichen resistance to metallic pollution. Environ Sci Technol 32:3325–3330. doi:10.1021/es970718n

    CAS  Google Scholar 

  • Satya, Upreti DK (2009) Correlation among carbon, nitrogen, sulphur and physiological parameters of Rinodina sophodes found at Kanpur city, India. J Hazard Mater 169:1088–1092. doi:10.1016/j.jhazmat.2009.04.063

    CAS  PubMed  Google Scholar 

  • Saunders PJW (1970) Air pollution in relation to lichens and fungi. Lichenologist 4:337–349. doi:10.1017/S0024282970000439

    Google Scholar 

  • Scheidegger C, Schroeter B (1995) Effects of ozone fumigation on epiphytic macrolichens—ultrastructure, CO2 gas-exchange and chlorophyll fluorescence. Environ Pollut 88:345–354. doi:10.1016/0269-7491(95)93449-A

    CAS  PubMed  Google Scholar 

  • Schrlau JE, Geiser L, Hageman KJ, Landers DH, Simonich SM (2011) Comparison of lichen, conifer needles, passive air sampling devices, and snowpack as passive sampling media to measure semi-volatile organic compounds in remote atmospheres. Environ Sci Technol 45:10354–10361. doi:10.1021/es202418f

    CAS  PubMed Central  PubMed  Google Scholar 

  • Seaward MRD (2004) The use of lichens for environmental impact assessment. Symbiosis 37:293–305

    Google Scholar 

  • Showman RE, Long RP (1992) Lichen studies along wet sulfate deposition gradient. Bryologist 95:166–170

    CAS  Google Scholar 

  • Shukla V, Upreti DK (2007) Physiological response of the lichen Phaeophyscia hispidula (Ach.) Essl. to the urban environment of Pauri and Srinagar (Garhwal), Himalayas. India. Environ Pollut 150:295–299. doi:10.1016/j.envpol.2007.02.010

    CAS  Google Scholar 

  • Shukla V, Upreti DK (2008) Effect of metallic pollutants on the physiology of lichen, Pyxine subcinerea Stirton in Garhwal Himalayas. Environ Monit Assess 141:237–243. doi:10.1007/s10661-007-9891-z

    CAS  PubMed  Google Scholar 

  • Shukla V, Upreti DK (2009) Polycyclic aromatic hydrocarbon (PAH) accumulation in lichen, Phaeophyscia hispidula of DehraDun City, Garhwal Himalayas. Environ Monit Assess 149:1–7. doi:10.1007/s10661-008-0225-6

    CAS  PubMed  Google Scholar 

  • Shukla V, Upreti DK, Patel DK, Ranu T (2010) Accumulation of polycyclic aromatic hydrocarbons in some lichens of Garhwal Himalayas, India. Int J Environ Waste Manage 5:104–113. doi:10.1504/IJEWM.2010.029695

    CAS  Google Scholar 

  • Shukla V, Upreti DK, Patel DK, Yunus M (2013) Lichens reveal air PAH fractionation in the Himalaya. Environ Chem Lett 11:19–23. doi:10.1007/s10311-012-0372-4

    CAS  Google Scholar 

  • Sigal LL, Nash TH III (1983) Lichen communities on conifers in southern California mountains—an ecological survey relative to oxidant air pollution. Ecology 64:1343–1354. doi:10.2307/1937489

    Google Scholar 

  • Silberstein L, Siegel BZ, Siegel SM, Mukhtar A, Galun M (1996a) Comparative studies on Xanthoria parietina, a pollution-resistant lichen, and Ramalina duriaei, a sensitive species. I. Effects of air pollution on physiological processes. Lichenologist 28:355–365

    Google Scholar 

  • Silberstein L, Siegel BZ, Siegel SM, Mukhtar A, Galun M (1996b) Comparative studies on Xanthoria parietina, a pollution-resistant lichen, and Ramalina duriaei, a sensitive species. II. Effects of possible air pollution-protection mechanisms. Lichenologist 28:367–383

    Google Scholar 

  • Sim-Sim M, Carvalho P, Sergio C (2000) Cryptogamic epiphytes as indicators of air quality around an industrial complex in the Tagus valley, Portugal. Factor analysis and environmental variables. Cryptogam Bryol 21:153–170. doi:10.1016/S1290-0796(00)00110-3

    Google Scholar 

  • Slaby A, Lisowska M (2012) Epiphytic lichen recolonization in the centre of Cracow (southern Poland) as a result of air quality improvement. Pol J Ecol 60:225–240

    CAS  Google Scholar 

  • Sloof JE (1993) Environmental lichenology: biomonitoring trace element air pollution. PhD thesis, Delft University of Technology, Delft

    Google Scholar 

  • Søchting U (1995) Lichens as monitors of nitrogen deposition. Cryptogam Bot 5:264–269

    Google Scholar 

  • Sondergaard J (2013) Accumulation dynamics and cellular locations of Pb, Zn and Cd in resident and transplanted Flavocetraria nivalis lichens near a former Pb-Zn mine. Environ Monit Assess 185:10167–10176. doi:10.1007/s10661-013-3321-1

    PubMed  Google Scholar 

  • Spagnuolo V, Zampella M, Giordano S, Adamo P (2011) Cytological stress and element uptake in moss and lichen exposed in bags in urban area. Ecotoxicol Environ Saf 74:1434–1443. doi:10.1016/j.ecoenv.2011.02.011

    CAS  PubMed  Google Scholar 

  • Sparrius LB, Kooijman AM, Sevink J (2013) Response of inland dune vegetation to increased nitrogen and phosphorus levels. Appl Veg Sci 16:40–50. doi:10.1111/j.1654-109X.2012.01206.x

    Google Scholar 

  • St Clair SB, St Clair LL, Weber DJ, Mangelson NF, Eggett DL (2002) Element accumulation patterns in foliose and fruticose lichens from rock and bark substrates in Arizona. Bryologist 105:415–421. doi:10.1639/0007-2745(2002)105[0415:EAPIFA]2.0.CO;2

    CAS  Google Scholar 

  • Stamenkovic S, Cvijan M (2010) Determination of air pollution zones in Knjazevac (south eastern Serbia) by using epiphytic lichens. Biotechnol Biotechnol Equip 24:278–283

    Google Scholar 

  • Stamenkovic S, Cvijan M, Arandjelovic M (2010) Lichens as bioindicators of air quality in Dimitrovgrad (south-eastern Serbia). Arch Biol Sci 62:643–648. doi:10.2298/ABS1003643S

    Google Scholar 

  • Stamenkovic SM, Ristic SS, Dekic TL, Mitrovic TU, Baosic RM (2013) Air quality indication in Blace (southeastern Serbia) using lichens as bioindicators. Arch Biol Sci 65:893–897. doi:10.2298/ABS1303893S

    Google Scholar 

  • Stevens C, Manning P, van den Berg LJL, de Graaf MCC, Wamelink GWW, Boxman AW, Bleeker A, Vergeer P, Arroniz-Crespo M, Limpens J, Lamers LPM, Bobbink R, Dorland E (2011) Ecosystem responses to reduced and oxidised nitrogen inputs in European terrestrial habitats. Environ Pollut 159:665–676. doi:10.1016/j.envpol.2010.12.008

    CAS  PubMed  Google Scholar 

  • Sujetoviene G (2010) Road traffic pollution effects on epiphytic lichens. Ekologija 56:64–71. doi:10.2478/v10055-010-0009-5

    CAS  Google Scholar 

  • Sujetoviene G, Sliumpaite I (2013) Response of Evernia prunastri transplanted to an urban area in central Lithuania. Atmos Pollut Res 4:222–228

    CAS  Google Scholar 

  • Svoboda D (2007) Evaluation of the European method for mapping lichen diversity (LDV) as an indicator of environmental stress in the Czech Republic. Biologia 62:424–431. doi:10.2478/s11756-007-0085-5

    Google Scholar 

  • Szczepaniak K, Biziuk M (2003) Aspects of the biomonitoring studies using mosses and lichens as indicators of metal pollution. Environ Res 93:221–230

    CAS  PubMed  Google Scholar 

  • Takala K, Olkkonen H, Ikonen J, Jääskeläinen J, Puumalainen P (1985) Total sulphur contents of epiphytic and terricolous lichens in Finland. Ann Bot Fennici 22:91–100

    CAS  Google Scholar 

  • Tarhanen S, Holopainen T, Poikolainen J, Oksanen J (1996) Effect of industrial emissions on membrane permeability of epiphytic lichens in northern Finland and the Kola Peninsula industrial areas. Water Air Soil Pollut 88:189–201

    CAS  Google Scholar 

  • Trass H (1973) Lichen sensitivity to air pollution and index of poleotolerance (I.P.). Folia Cryptog Estonica 3:19–22

    Google Scholar 

  • Tretiach M, Baruffo L (2001) Effects of H2S on CO2 gas exchanges and growth rates of the epiphytic lichen Parmelia sulcata Taylor. Symbiosis 31:35–46

    CAS  Google Scholar 

  • Tretiach M, Ganis P (1999) Hydrogen sulphide and epiphytic lichen vegetation: a case study on Mt. Amiata (Central Italy). Lichenologist 31:163–181. doi:10.1006/lich.1998.0173

    Google Scholar 

  • Tretiach M, Adamo P, Bargagli R, Baruffo L, Carletti L, Crisafulli P, Giordano S, Modenesi P, Orlando S, Pittao E (2007a) Lichen and moss bags as monitoring devices in urban areas. Part I: influence of exposure on sample vitality. Environ Pollut 146:380–391. doi:10.1016/j.envpol.2006.03.046

    CAS  PubMed  Google Scholar 

  • Tretiach M, Piccotto M, Baruffo L (2007b) Effects of ambient NOx on chlorophyll a fluorescence in transplanted Flavoparmelia caperata (lichen). Environ Sci Technol 41:2978–2984

    CAS  PubMed  Google Scholar 

  • Unal D, Isik NO, Sukatar A (2010) Effects of chromium VI stress on photosynthesis, chlorophyll integrity, cell viability, and proline accumulation in lichen Ramalina farinacea. Russ J Plant Physiol 57:664–669. doi:10.1134/S1021443710050092

    CAS  Google Scholar 

  • Upreti DK, Nayaka S, Bajpai A (2005) Do lichens still grow in Kolkata city? Curr Sci 88:338–339

    Google Scholar 

  • van Dobben HF, De Bakker AJ (1996) Re-mapping epiphytic lichen biodiversity in The Netherlands: effects of decreasing SO2 and increasing NH3. Acta Bot Neerl 45:55–71

    Google Scholar 

  • van Dobben HF, ter Braak CJF (1998) Effects of atmospheric NH3 on epiphytic lichens in the Netherlands: the pitfalls of biological monitoring. Atmos Environ 32:551–557. doi:10.1016/S1352-2310(96)00350-0

    Google Scholar 

  • van Dobben HF, Wolterbeek HT, Wamelink GWW, Ter Braak CJF (2001) Relationship between epiphytic lichens, trace elements and gaseous atmospheric pollutants. Environ Pollut 112:163–169. doi:10.1016/S0269-7491(00)00121-4

    PubMed  Google Scholar 

  • van Herk CM (1999) Mapping of ammonia pollution with epiphytic lichens in the Netherlands. Lichenologist 31:9–20

    Google Scholar 

  • Vantova I, Backor M, Klejdus B, Backorova M, Kovacik J (2013) Copper uptake and copper-induced physiological changes in the epiphytic lichen Evernia prunastri. Plant Growth Regul 69:1–9. doi:10.1007/s10725-012-9741-z

    CAS  Google Scholar 

  • VDI (1995) Richtlinie 3799, blatt 1: Ermittlung und Beurteilung phytotoxischer Wirkungen von Immissionen mit Flechten: Flechtenkartierung. VDI, Dusseldorf

    Google Scholar 

  • Vernon A (1993) The lichen symbiosis. Wiley, New York

    Google Scholar 

  • Vingiani S, Adamo P, Giordano S (2004) Sulphur, nitrogen and carbon content of Sphagnum capillifolium and Pseudevernia furfuracea exposed in bags in the Naples urban area. Environ Pollut 129:145–158. doi:10.1016/j.envpol.2003.09.016

    CAS  PubMed  Google Scholar 

  • Vokou D, Pirintsos SA, Loppi S (1999) Lichens as bioindicators of temporal variations in air quality around Thessaloniki, northern Greece. Ecol Res 14:89–96. doi:10.1046/j.1440-1703.1999.00294.x

    Google Scholar 

  • von Arb C, Brunold C (1990) Lichen physiology and air pollution i. Physiological responses of in-situ Parmelia sulcata among air pollution zones within Biel Switzerland. Can J Bot 68:35–55

    Google Scholar 

  • von Arb C, Mueller C, Ammann K, Brunold C (1990) Lichen physiology and air pollution II. Statistical analysis of the correlation between SO2, NO2, NO and O3, and chlorophyll content, net photosynthesis, sulphate uptake and protein synthesis of Parmelia sulcata Taylor. New Phytol 115:431–437

    Google Scholar 

  • Washburn SJ, Culley TM (2006) Epiphytic macrolichens of the greater Cincinnati metropolitan area—part II: distribution, diversity and urban ecology. Bryologist 109:516–526. doi:10.1639/0007-2745(2006)109[516:EMOTGC]2.0.CO;2

    Google Scholar 

  • Weissman L, Fraiberg M, Shine L, Garty J, Hochman A (2006) Responses of antioxidants in the lichen Ramalina lacera may serve as an early-warning bioindicator system for the detection of air pollution stress. FEMS Microbiol Ecol 58:41–53. doi:10.1111/j.1574-6941.2006.00138.x

    CAS  PubMed  Google Scholar 

  • Whelpdale DM, Summers PW, Sanhueza E (1997) A global overview of atmospheric acid deposition fluxes. Environ Monit Assess 48:217–247. doi:10.1023/A:1005708821454

    CAS  Google Scholar 

  • Wirth V (1991) Zeigerwerte von Flechten. Scr Geobot 18:215–237

    Google Scholar 

  • Wiseman RD, Wadleigh MA (2002) Lichen response to changes in atmospheric sulphur: isotopic evidence. Environ Pollut 116:235–241. doi:10.1016/S0269-7491(01)00133-6

    CAS  PubMed  Google Scholar 

  • Wolterbeek B (2002) Biomonitoring of trace element air pollution: principles, possibilities and perspectives. Environ Pollut 120:11–21

    CAS  PubMed  Google Scholar 

  • Wolterbeek HT, Garty J, Reis MA, Freitas MC (2003) Biomonitors in use: lichens and metal air pollution. In: Markert BA, Breure AM, Zechmeister HG (eds) Trace metals and other contaminants in the environment, vol 6: Bioindicators and Biomonitors. Elsevier, Amsterdam

    Google Scholar 

  • Yule FA, Lloyd OLL (1984) An index of atmospheric-pollution survey in Armadale, central Scotland. Water Air Soil Pollut 22:27–45. doi:10.1007/BF00587462

    CAS  Google Scholar 

  • Zambrano A, Nash TH (2000) Lichen responses to short-term transplantation in Desierto de los Leones, Mexico City. Environ Pollut 107:407–412. doi:10.1016/S0269-7491(99)00169-4

    CAS  Google Scholar 

  • Zambrano A, Nash TH, Gries C (1999) Physiological effects of the Mexico city atmosphere on lichen transplants on oaks. J Environ Qual 28:1548–1555

    CAS  Google Scholar 

  • Zechmeister HG, Hohenwallner D (2006) A comparison of biomonitoring methods for the estimation of atmospheric pollutants in an industrial town in Austria. Environ Monit Assess 117:245–259. doi:10.1007/s10661-006-0991-y

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gintarė Sujetovienė .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer India

About this chapter

Cite this chapter

Sujetovienė, G. (2015). Monitoring Lichen as Indicators of Atmospheric Quality. In: Upreti, D., Divakar, P., Shukla, V., Bajpai, R. (eds) Recent Advances in Lichenology. Springer, New Delhi. https://doi.org/10.1007/978-81-322-2181-4_4

Download citation

Publish with us

Policies and ethics