Exploration of the Effect of Demographic and Clinical Confounding Variables on Results of Voxel-Based Morphometric Analysis in Schizophrenia

  • Anupa A. VijayakumariEmail author
  • Priyadarshini Thirunavukkarasu
  • Ammu Lukose
  • Vikram Arunachalam
  • Jitender Saini
  • Sanjeev Jain
  • Bindu M. Kutty
  • John P. John
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 324)


Brain morphometric abnormalities have been extensively reported in schizophrenia. In this research report, we used a voxel-based morphometry (VBM) approach to identify the effect of various confounding factors on gray matter (GM) volume changes in patients with schizophrenia in comparison to healthy control subjects. Our findings highlight the importance of accounting for all possible confounding factors during study design and analyses, as well as setting appropriate statistical significance thresholds while reporting results in brain morphometric studies of schizophrenia.


Voxel-based morphometry Computerized tomography Structural magnetic resonance imaging GLM ANCOVA analysis using VBM 



This study was supported by the Cognitive Science Research Initiative (CSI), Department of Science and Technology (DST), Government of India (Grant No. SR/CSI/79/2010).


  1. 1.
    M.E. Shenton, T.J. Whitford, M. Kubicki, Structural neuroimaging in schizophrenia: from methods to insights to treatments. Dialogues Clin. Neurosci. 12, 317–332 (2010)Google Scholar
  2. 2.
    L. Burke, C. Androutsos, J. Jogia, P. Byrne, S. Frangou, The Maudsley early onset schizophrenia study: the effect of age of onset and illness duration on fronto-parietal gray matter. Eur. Psychiatry. 23, 233–236 (2008)CrossRefGoogle Scholar
  3. 3.
    S.B. Schwarzkopf, S.C. Olson, J.A. Coffman, H.A. Nasrallah, Third and lateral ventricular volumes in schizophrenia: support for progressive enlargement of both structures. Psychopharmacol. Bull. 26, 385–391 (1990)Google Scholar
  4. 4.
    M.S. Keshavan, W.W. Bagwell, G.L. Haas, J.A. Sweeney, N.R. Schooler, J.W. Pettegrew, Changes in caudate volume with neuroleptic treatment. Lancet 344, 1434 (1994)CrossRefGoogle Scholar
  5. 5.
    J. Borne, R. Riascos, H. Cuellar, D. Vargas, R. Rojas, Neuroimaging in drug and substance abuse part II: opioids and solvents. Top. Magn. Reson. Imaging 16, 239–245 (2005)CrossRefGoogle Scholar
  6. 6.
    J. Barnes, G.R. Ridgway, J. Bartlett, S.M. Henley, M. Lehmann, N. Hobbs, M.J. Clarkson, D.G. MacManus, S. Ourselin, N.C. Fox, Head size, age and gender adjustment in MRI studies: a necessary nuisance. Neuroimage 53, 1244–1255 (2010)CrossRefGoogle Scholar
  7. 7.
    C.D. Good, I. Johnsrude, J. Ashburner, R.N. Henson, K.J. Friston, R.S. Frackowiak, Cerebral asymmetry and the effects of sex and handedness on brain structure: a voxel-based morphometric analysis of 465 normal adult human brains. Neuroimage 14, 685–700 (2001)CrossRefGoogle Scholar
  8. 8.
    J.L. Whitwell, Voxel-based morphometry: an automated technique for assessing structural changes in the brain. J. Neurosci. 29, 9661–9664 (2009)CrossRefGoogle Scholar
  9. 9.
    R.A. Honea, A. Meyer-Lindenberg, K.B. Hobbs, L. Pezawas, V.S. Mattay, M.F. Egan, B. Verchinski, R.E. Passingham, D.R. Weinberger, H. Callicott, Is gray matter volume an intermediate phenotype for schizophrenia. A voxel-based morphometry study of patients with schizophrenia and their healthy siblings. Biol. Psychiatry 63, 465–474 (2008)CrossRefGoogle Scholar
  10. 10.
    E.M. Meisenzahl, N. Koutsouleris, R. Bottlender, J. Scheuerecker, M. Jäger, S.J. Teipel, S. Holzinger, T. Frodl, U. Preuss, G. Schmitt, B. Burgermeister, M. Reiser, C. Born, H.J. Möller, Structural brain alterations at different stages of schizophrenia: a voxel-based morphometric study. Schizophr. Res. 104, 44–60 (2008)CrossRefGoogle Scholar
  11. 11.
    V. Molina, G. Galindo, B. Cortés, A.G. de Herrera, A. Ledo, J. Sanz, C. Montes, J.A. Hernández-Tamames, Different gray matter patterns in chronic schizophrenia and chronic bipolar disorder patients identified using voxel-based morphometry. Eur. Arch. Psychiatry Clin. Neurosci. 261, 313–322 (2011)CrossRefGoogle Scholar
  12. 12.
    D.R. Watson, J.M. Anderson, F. Bai, S.L. Barrett, T.M. McGinnity, C.C. Mulholland, T.M. Rushe, S.J. Cooper, A voxel based morphometry study investigating brain structural changes in first episode psychosis. Behav. Brain Res. 227, 91–99 (2012)CrossRefGoogle Scholar
  13. 13.
    S.W. Woods, Chlorpromazine equivalent doses for the newer atypical antipsychotics. J. Clin. Psychiatry 64, 663–667 (2003)CrossRefGoogle Scholar
  14. 14.
    R.A. Kroken, E. Johnsen, T. Ruud, T. Wentzel-Larsen, H.A. Jorgensen, Treatment of schizophrenia with antipsychotics in Norwegian emergency wards, a cross-sectional national study. BMC Psychiatry 9, 24 (2009)CrossRefGoogle Scholar
  15. 15.
    J. Ashburner, K.J. Friston, Voxel-based morphometry-the methods. Neuroimage 11, 805–821 (2000)CrossRefGoogle Scholar
  16. 16.
    I. Harvey, M.A. Ron, G. Du Boulay, D. Wicks, S.W. Lewis, R.M. Murray, Reduction of cortical volume in schizophrenia on magnetic resonance imaging. Psychol. Med. 23, 591–604 (1993)CrossRefGoogle Scholar
  17. 17.
    K.O. Lim, W. Tew, M. Kushner, K. Chow, B. Matsumoto, L.E. DeLisi, Cortical gray matter volume deficit in patients with first-episode schizophrenia. Am. J. Psychiatry 153, 1548–1553 (1996)Google Scholar
  18. 18.
    T. Ohtani, J.J. Levitt, P.G. Nestor, T. Kawashima, T. Asami, M.E. Shenton, M. Niznikiewicz, R.W. McCarley, Prefrontal cortex volume deficit in schizophrenia: A new look using 3T MRI with manual parcellation. Schizophr. Res. 152, 184–190 (2014)CrossRefGoogle Scholar
  19. 19.
    U.S. Torres, E. Portela-Oliveira, S. Borgwardt, G.F. Busatto, Structural brain changes associated with antipsychotic treatment in schizophrenia as revealed by voxel-based morphometric MRI: an activation likelihood estimation meta-analysis. BMC Psychiatry 13, 342 (2013)CrossRefGoogle Scholar
  20. 20.
    A. Szöke, F. Schürhoff, F. Mathieu, A. Meary, S. Ionescu, M. Leboyer, Tests of executive functions in executive functions in first degree relatives of schizophrenia patients: a meta-analysis. Psychol. Med. 35, 771–782 (2005)CrossRefGoogle Scholar
  21. 21.
    C.M. Bennett, G.L. Wolford, M.B. Miller, The principled control of false positives in neuroimaging. Soc Cogn Affect Neurosci. 4, 417–422 (2009)CrossRefGoogle Scholar
  22. 22.
    J.P. Ioannidis, Excess significance bias in the literature on brain volume abnormalities. Arch. Gen. Psychiatry 68, 773–780 (2011)CrossRefGoogle Scholar

Copyright information

© Springer India 2015

Authors and Affiliations

  • Anupa A. Vijayakumari
    • 1
    Email author
  • Priyadarshini Thirunavukkarasu
    • 1
  • Ammu Lukose
    • 1
  • Vikram Arunachalam
    • 1
  • Jitender Saini
    • 2
  • Sanjeev Jain
    • 3
  • Bindu M. Kutty
    • 4
  • John P. John
    • 5
  1. 1.Multimodal Brain Image Analysis Laboratory (MBIAL), Department of PsychiatryNational Institute of Mental Health and Neurosciences (NIMHANS)BangaloreIndia
  2. 2.Department of Neuroimaging and Interventional RadiologyNational Institute of Mental Health and Neurosciences (NIMHANS)BangaloreIndia
  3. 3.Department of PsychiatryNational Institute of Mental Health and Neurosciences (NIMHANS)BangaloreIndia
  4. 4.Department of NeurophysiologyNational Institute of Mental Health and Neurosciences (NIMHANS)BangaloreIndia
  5. 5.Multimodal Brain Image Analysis Laboratory (MBIAL), Department of Psychiatry and Department of Clinical NeuroscienceNational Institute of Mental Health and Neurosciences (NIMHANS)BangaloreIndia

Personalised recommendations