Peanut Bioinformatics: Tools and Applications for Developing More Effective Immunotherapies for Peanut Allergy and Improving Food Safety

  • Venkatesh Kandula
  • Virginia A. Gottschalk
  • Ramesh Katam
  • Roja Rani Anupalli
Chapter

Abstract

Advanced tools of bioinformatics have been employed to assess the features critically required for allergenicity and cross-reactivity. A tremendous accumulation of data on plant proteins in recent years has made it possible to classify allergens in different protein families, with most food allergens grouped into four protein families. These families can be grouped together into superfamilies by comparing sequences and related structures. This information makes it possible to identify a wide range of related proteins that may result in the development of multiple food allergies that initiate the development of cross-reactive antibodies in susceptible individuals. Since peanut allergies are responsible for most episodes of food-induced anaphylaxis, a detailed immunological and molecular characterization of these allergenic components is essential to develop suitable immunotherapies. This would also allow us to screen transgenic plants for the possible development of allergens similar to those allergenic components in peanuts. Homology modeling in combination with residue-wise solvent accessibility of monomers and biological assemblies of allergens certainly gives valuable information about antigenic determinants on protein allergens. Through this review, we discuss the applications of bioinformatics tools toward the mitigation of peanut allergy.

Keywords

Peanut Allergens Allergen database Ara h and transgene allergenicity 

Abbreviations

BLAST

Basic Local Alignment Search Tool

DNA

Deoxyribonucleic acid

FARRP

Food Allergy Research and Resource Program

FASTA

Fast alignment

GM crops

Genetically modified crops

IgE

Immunoglobulin E

IUIS

International Union of Immunological Societies

kDa

Kilodalton

MW

Molecular weight

ORF

Open reading frames

PR

Pathogenesis-related genes

SDAP

Structural Database of Allergenic Proteins

URL

Uniform resource locator

Notes

Acknowledgment

Venkatesh K acknowledges CSIR, New Delhi, for the financial assistance.

References

  1. Aalberse RC (2000) Structural biology of allergens. J Allergy Clin Immunol 106:228–238PubMedCrossRefGoogle Scholar
  2. Barre A, Sordet C, Culerrier R, Rance F, Didier A, Rouge P (2008) Vicilin allergens of peanut and tree nuts (walnut, hazelnut and cashew nut) share structurally related IgE-binding epitopes. Mol Immunol 45(5):1231–1240PubMedCrossRefGoogle Scholar
  3. Berger B, Wilson DB, Wolf E, Tonchev T, Milla M, Kim PS (1995) Predicting coiled coils by use of pairwise residue correlations. Proc Natl Acad Sci U S A 92(18):8259–8263PubMedCentralPubMedCrossRefGoogle Scholar
  4. Bock SA, Muñoz-Furlong A, Sampson HA (2001) Fatalities due to anaphylactic reactions to foods. J Allergy Clin Immunol 107(1):191–193PubMedCrossRefGoogle Scholar
  5. Boldt A, Fortunato D, Conti A, Petersen A, Ballmer-Weber B, Lepp U, Reese G, Becker WM (2005) Analysis of the composition of an immunoglobulin E reactive high molecular weight protein complex of peanut extract containing Ara h1 and Ara h3/4. Proteomics 5(3):675–686PubMedCrossRefGoogle Scholar
  6. Bruinsma J (2009) The resource outlook to 2050: by how much do land, water, and crop yields need to increase by 2050? FAO expert meeting on ‘How to feed the world in 2050’. FAO, Rome, pp 24–26Google Scholar
  7. Brusic V, Petrovsky N, Gendel SM, Millot M, Gigonzac O, Stelman SJ (2003) Computational tools for the study of allergens. Allergy 58(11):1083–1092PubMedCrossRefGoogle Scholar
  8. Burks W (2003) Peanut allergy: a growing phenomenon. J Clin Invest 111(7):950–952. doi:10.1172/JCI18233 PubMedCentralPubMedCrossRefGoogle Scholar
  9. Burks AW, Cockrell G, Stanley JS, Helm RM, Bannon GA (1995a) Recombinant peanut allergen Ara h I expression and IgE binding in patients with peanut hypersensitivity. J Clin Invest 96(4):1715–1721PubMedCentralPubMedCrossRefGoogle Scholar
  10. Burks AW, Cockrell G, Stanley JS, Helm RM, Bannon GA (1995b) Recombinant peanut allergen Ara h I expression and IgE binding in patients with peanut hypersensitivity. J Clin Invest 96(4):1715–1721. doi:10.1172/JCI118216 PubMedCentralPubMedCrossRefGoogle Scholar
  11. Burks AW, Sampson HA, Bannon GA (1998) Peanut allergens. Allergy 53(8):725–730. doi:10.1111/j.1398-9995.1998.tb03967.x PubMedCrossRefGoogle Scholar
  12. Buschmann L, Petersen A, Schlaak M, Becker WM (1996) Reinvestigation of the major peanut allergen Ara h 1 on molecular level. Monogr Allergy 32:92–98PubMedGoogle Scholar
  13. Chandra RK (2003) Food hypersensitivity and allergic disease: a new threat in India. Indian Pediatr 40(2):99–101PubMedGoogle Scholar
  14. Chatel JM, Bernard H, Orson FM (2003) Isolation and characterization of two complete Ara h 2 isoforms cDNA. Int Arch Allergy Immunol 131(1):14–18PubMedCrossRefGoogle Scholar
  15. Christensen LH, Riise E, Bang L, Zhang C, Lund K (2010) Isoallergen variations contribute to the overall complexity of effector cell degranulation: effect mediated through differentiated IgE affinity. J Immunol 184(9):4966–4972. doi:10.4049/jimmunol.0904038 PubMedCrossRefGoogle Scholar
  16. Cuff JA, Barton GJ (2000) Application of multiple sequence alignment profiles to improve protein secondary structure prediction. Proteins 40(3):502–511PubMedCrossRefGoogle Scholar
  17. Ferreira F, Hawranek T, Gruber P, Wopfner N, Mari A (2004) Allergic cross-reactivity: from gene to the clinic. Allergy 59(3):243–267. doi:10.1046/j.1398-9995.2003.00407.x PubMedCrossRefGoogle Scholar
  18. Gregory PJ, George TS (2011) Feeding nine billion: the challenge to sustainable crop production. J Exp Bot 62(15):5233–5239PubMedCrossRefGoogle Scholar
  19. Grundy J, Matthews S, Bateman B, Dean T, Arshad SH (2002) Rising prevalence of allergy to peanut in children: data from 2 sequential cohorts. J Allergy Clin Immunol 110(5):784–789PubMedCrossRefGoogle Scholar
  20. Hales BJ, Bosco A, Mills KL, Hazell LA, Loh R, Holt PG, Thomas WR (2004) Isoforms of the major peanut allergen ara h 2: IgE binding in children with peanut allergy. Int Arch Allergy Immunol 135(2):101–107PubMedCrossRefGoogle Scholar
  21. Helm RM, Burks AW (2000) Mechanisms of food allergy. Curr Opin Immunol 12(6):647–653PubMedCrossRefGoogle Scholar
  22. Hileman RE, Silvanovich A, Goodman RE, Rice EA, Holleschak G, Astwood JD, Hefle SL (2002) Bioinformatic methods for allergenicity assessment using a comprehensive allergen database. Int Arch Allergy Immunol 128(4):280–291. doi:10.1159/000063861 PubMedCrossRefGoogle Scholar
  23. Hoffman M, Arnoldi C, Chuang I (2005) The clinical bioinformatics ontology: a curated semantic network utilizing RefSeq information. Pac Symp Biocomput:139–150Google Scholar
  24. Ivanciuc O, Mathura V, Midoro-Horiuti T, Braun W, Goldblum RM, Schein CH (2003) Detecting potential IgE-reactive sites on food proteins using a sequence and structure database, SDAP-food. J Agric Food Chem 51(16):4830–4837PubMedCrossRefGoogle Scholar
  25. Ivanciuc O, Gendel SM, Power TD, Schein CH, Braun W (2011) AllerML: markup language for allergens. Regul Toxicol Pharmacol 60(1):151–160. doi:10.1016/j.yrtph.2011.03.006 PubMedCentralPubMedCrossRefGoogle Scholar
  26. Kleber-Janke T, Crameri R, Appenzeller U, Schlaak M, Becker WM (1999) Selective cloning of peanut allergens, including profilin and 2S albumins, by phage display technology. Int Arch Allergy Immunol 119(4):265–274PubMedCrossRefGoogle Scholar
  27. Koh LYJ, Brusic V, Krishnan SPT, Seah SH, Tan PTJ, Khan AM, Li ML (2004) BioWare: a framework for bioinformatics data retrieval, annotation, and publishing. In: Proceedings of the symposium model analysis and simulation of computer and telecommunication systems. The University of Sheffield, Sheffield, 25–29 July 2004Google Scholar
  28. Koppelman SJ, Vlooswijk RA, Knippels LM, Hessing M, Knol EF, van Reijsen FC, Bruijnzeel-Koomen CA (2001) Quantification of major peanut allergens Ara h 1 and Ara h 2 in the peanut varieties Runner, Spanish, Virginia and Valencia, bred in different parts of the world. Allergy 56(2):132–137PubMedCrossRefGoogle Scholar
  29. Koppelman SJ, Knol EF, Vlooswijk RA, Wensing M, Knulst AC, Hefle SL, Gruppen H, Piersma S (2003) Peanut allergens Ara h 3: isolation from peanut and biochemical characterisation. Allergy 58(11):1144–1151PubMedCrossRefGoogle Scholar
  30. Krause S, Reese G, Randow S, Zennaro D, Quaratino D, Palazzo P, Ciardiello MA, Petersen A, Becker WM, Mari A (2009) Lipid transfer protein (Ara h 9) as a new peanut allergen relevant for a Mediterranean allergic population. J Allergy Clin Immunol 124(4):771–778PubMedCrossRefGoogle Scholar
  31. Lupas A (1996) Prediction and the analysis of coiled-coil structures. Methods Enzymol 266:513–525PubMedCrossRefGoogle Scholar
  32. Matsuda T, Nakamura R (1993) Molecular structure and immunological properties of food allergens. Trends Food Sci Technol 4(9):289–293. doi:10.1016/0924-2244(93)90072-I CrossRefGoogle Scholar
  33. Midoro-Horiuti T, Goldblum RM, Brooks EG (2001) Identification of mutations in the genes for the pollen allergens of eastern red cedar (Juniperus virginiana). Clin Exp Allergy 31(5):771–778PubMedCrossRefGoogle Scholar
  34. Mills EN, Jenkins J, Marigheto N, Belton PS, Gunning AP, Morris VJ (2002) Allergens of the cupin superfamily. Biochem Soc Trans 30(Pt 6):925–929PubMedGoogle Scholar
  35. Mills EN, Jenkins JA, Alcocer MJ, Shewry PR (2004) Structural, biological, and evolutionary relationships of plant food allergens sensitizing via the gastrointestinal tract. Crit Rev Food Sci Nutr 44(5):379–407PubMedCrossRefGoogle Scholar
  36. Mishra A, Gaur S, Singh BP, Arora N (2012) In silico assessment of the potential allergenicity of transgenes used for the development of GM food crops. Food Chem Toxicol 50(5):1334–1339PubMedCrossRefGoogle Scholar
  37. Mittag D, Akkerdaas J, Ballmer-Weber BK, Vogel L, Wensing M, Becker WM, Koppelman SJ, Knulst AC, Helbling A, Hefle SL, Van Ree R, Vieths S (2004) Ara h 8, a Bet v 1-homologous allergen from peanut, is a major allergen in patients with combined birch pollen and peanut allergy. J Allergy Clin Immunol 114(6):1410–1417PubMedCrossRefGoogle Scholar
  38. Oezguen N, Zhou B, Negi SS, Ivanciuc O, Schein CH, Labesse G, Braun W (2008) Comprehensive 3D-modeling of allergenic proteins and amino acid composition of potential conformational IgE epitopes. Mol Immunol 45(14):3740–3747. doi:10.1016/j.molimm.2008.05.026 PubMedCentralPubMedCrossRefGoogle Scholar
  39. Ortolani C, Ispano M, Scibilia J, Pastorello EA (2001) Introducing chemists to food allergy. Allergy 56(67):5–8PubMedCrossRefGoogle Scholar
  40. Piersma SR, Gaspari M, Hefle SL, Koppelman SJ (2005) Proteolytic processing of the peanut allergen Ara h 3. Mol Nutr Food Res 49(8):744–755PubMedCrossRefGoogle Scholar
  41. Pons L, Olszewski A, Gueant JL (1998) Characterization of the oligomeric behavior of a 16.5 kDa peanut oleosin by chromatography and electrophoresis of the iodinated form. J Chromatogr B Biomed Sci Appl 706(1):131–140PubMedCrossRefGoogle Scholar
  42. Pons L, Chery C, Romano A, Namour F, Artesan MC, Guéant JL (2002) The 18 kDa peanut oleosin is a candidate allergen for IgE-mediated reactions to peanuts. Allergy 57(Suppl 72):88–93PubMedCrossRefGoogle Scholar
  43. Power TD, Ivanciuc O, Schein CH, Braun W (2013) Assessment of 3D models for allergen research. Proteins 81(4):545–554. doi:10.1002/prot.24239 PubMedCentralPubMedCrossRefGoogle Scholar
  44. Rabjohn P, Helm EM, Stanle JS, West CM, Sampson HA, Burks AW, Bannon GA (1999) Molecular cloning and epitope analysis of the peanut allergen Ara h 3. J Clin Invest 103(4):535–542PubMedCentralPubMedCrossRefGoogle Scholar
  45. Restani P, Ballabio C, Corsini E, Fiocchi A, Isoardi P, Magni C, Poiesi C, Terracciano L, Duranti M (2005) Identification of the basic subunit of Ara h 3 as the major allergen in a group of children allergic to peanuts. Ann Allergy Asthma Immunol 94(2):262–266PubMedCrossRefGoogle Scholar
  46. Riaz T, Hor HL, Krishnan A, Tang F, Li KB (2005) WebAllergen: a web server for predicting allergenic proteins. Bioinformatics. 21(10):2570–2571Google Scholar
  47. Sampson HA (2004) Update on food allergy. J Allergy Clin Immunol 113(5):805–819PubMedCrossRefGoogle Scholar
  48. Schein CH, Ivanciuc O, Braun W (2007) Bioinformatics approaches to classifying allergens and predicting cross-reactivity. Immunol Allergy Clin North Am 27(1):1–27PubMedCentralPubMedCrossRefGoogle Scholar
  49. Scheurer S, Son DY, Boehm M, Karamloo F, Franke S, Hoffmann A, Haustein D, Vieths S (1999) Cross-reactivity and epitope analysis of Pru a 1, the major cherry allergen. Mol Immunol 36(3):155–167PubMedCrossRefGoogle Scholar
  50. Sharma P, Singh AK, Singh BP, Gaur SN, Arora N (2011) Allergenicity assessment of osmotin, a pathogenesis-related protein, used for transgenic crops. J Agric Food Chem 59(18):9990–9995. doi:10.1021/jf202265d PubMedCrossRefGoogle Scholar
  51. Shin DS, Compadre CM, Maleki SJ, Kopper RA, Sampson H, Huang SK, Burks AW, Bannon GA (1998) Biochemical and structural analysis of the IgE binding sites on ara h1, an abundant and highly allergenic peanut protein. J Biol Chem 273(22):13753–13759PubMedCrossRefGoogle Scholar
  52. Sicherer SH, Munoz-Furlong A, Sampson HA (2003) Prevalence of peanut and tree nut allergy in the United States determined by means of a random digit dial telephone survey: a 5-year follow up study. J Allergy Clin Immunol 112(6):1203–1207PubMedCrossRefGoogle Scholar
  53. Silvanovich A, Bannon G, McClain S (2009) The use of E-scores to determine the quality of protein alignments. Regul Toxicol Pharmacol 54(3l):S26–S31. doi:10.1016/j.yrtph.2009.02.004 PubMedCrossRefGoogle Scholar
  54. Simons FER (2008) Emergency treatment of anaphylaxis. BMJ 336:1141–1142. doi:10.1136/bmj.39547.452153.80 PubMedCentralPubMedCrossRefGoogle Scholar
  55. Singh H, Raghava GP (2001) ProPred: prediction of HLA-DR binding sites. Bioinformatics 17(12):1236–1237PubMedCrossRefGoogle Scholar
  56. Singh AK, Mehta AK, Sridhara S, Gaur SN, Singh BP, Sarma PU, Arora N (2006) Allergenicity assessment of transgenic mustard (Brassica juncea) expressing bacterial codA gene. Allergy 61(4):491–497PubMedCrossRefGoogle Scholar
  57. Sonika R, Anil J (2013) Molecular modelling: a new scaffold for drug design. Int J Pharm Pharm Sci 5(1):5–8Google Scholar
  58. Stadler MB, Stadler B (2003) Allergenicity prediction by protein sequence. FASEB J 17(9):1141–1143PubMedGoogle Scholar
  59. Viquez OM, Konan KN, Dodo HW (2003) Structure and organization of the genomic clone of a major peanut allergen gene. Ara h 1. Mol Immunol 40(9):565–571PubMedCrossRefGoogle Scholar
  60. Vrtala S (2008) From allergen genes to new forms of allergy diagnosis and treatment. Allergy 63(3):299–309. doi:10.1111/j.1398-9995.2007.01609.x PubMedCrossRefGoogle Scholar
  61. Wichers HJ, De Beijer T, Savelkoul HF, Van Amerongen A (2004) The major peanut allergen Ara h 1 and its cleaved-off N-terminal peptide; possible implications for peanut allergen detection. J Agric Food Chem 52(15):4903–4907PubMedCrossRefGoogle Scholar
  62. Woods RK, Stoney RM, Raven J, Walters EH, Abramson M, Thien FC (2002) Reported adverse food reactions overestimate true food allergy in the community. Eur J Clin Nutr 56(1):31–36PubMedCrossRefGoogle Scholar
  63. Yang CY, Wu JD, Wu CH (2000) Sequence analysis of the first complete cDNA clone encoding an American cockroach Per a 1 allergen. Biochim Biophys Acta 1517(1):153–158PubMedCrossRefGoogle Scholar
  64. Zhang ZH, Koh JL, Zhang GL, Choo KH, Tammi MT, Tong JC (2007) AllerTool: a web server for predicting allergenicity and allergic cross-reactivity in proteins. Bioinformatics. 23(4):504–506Google Scholar
  65. Zhang ZH, Tan SC, Koh JL, Falus A, Brusic V (2006) ALLERDB database and integrated bioinformatic tools for assessment of allergenicity and allergic cross-reactivity. Cell Immunol 244(2):90–96PubMedCrossRefGoogle Scholar

Copyright information

© Springer India 2014

Authors and Affiliations

  • Venkatesh Kandula
    • 1
  • Virginia A. Gottschalk
    • 2
  • Ramesh Katam
    • 2
  • Roja Rani Anupalli
    • 1
  1. 1.Department of Genetics and BiotechnologyOsmania UniversityHyderabadIndia
  2. 2.Department of Biological Sciences, College of Science and TechnologyFlorida A&M UniversityTallahasseeUSA

Personalised recommendations