A Comparative Analysis of Emotion Recognition from Stimulated EEG Signals

  • Garima Singh
  • Arindam Jati
  • Anwesha Khasnobish
  • Saugat Bhattacharyya
  • Amit Konar
  • D. N Tibarewala
  • R Janarthanan
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 236)

Abstract

This paper proposes a scheme to utilize the unaltered direct outcome of brain’s activity viz. EEG signals for emotion detection that is a prerequisite for the development of an emotionally intelligent system. The aim of this work is to classify the emotional states experimentally elicited in different subjects, by extracting their features for the alpha, beta, and theta frequency bands of the acquired EEG data using PSD, EMD, wavelet transforms, statistical parameters, and Hjorth parameters and then classifying the same using LSVM, LDA, and kNN as classifiers for the purpose of categorizing the elicited emotions into the emotional states of neutral, happy, sad, and disgust. The experimental results being a comparative analysis of the different classifier performances equip us with the best accurate means of emotion recognition from the EEG signals. For all the eight subjects, neutral emotional state is classified with an average classification accuracy of 81.65 %, highest among the other three emotions. The negative emotions including sad and disgust have better average classification accuracy of 76.20 and 74.96 % as opposed to the positive emotion i.e., happy emotional state, the average classification accuracy of which turns out to be 73.42 %.

Keywords

Emotion recognition Electroencephalogram (EEG) Power spectral density (PSD) Wavelet transform (WT) Empirical mode decomposition (EMD) Statistical parameters (STAT) Hjorth parameters Linear discriminant analysis (LDA) Linear support vector machine (LSVM) K-nearest neighbor (kNN) 

References

  1. 1.
    Chakraborty, A., Konar, A.: Emotional intelligence: a cybernetic approach, studies in computational intelligence. 1st (edn.), Springer, Hiedelberg (2009)Google Scholar
  2. 2.
    Cornelius, R.R.: Theoretical approaches to emotion. In: Proceedings of the ISCA Workshop on Speech and Emotion, Belfast (2000)Google Scholar
  3. 3.
    Pantic, M., Rothkrantz, L.J.M.: Toward an affect-sensitive multimodal human-computer interaction. In: Proceedings of the IEEE Invited Speaker, vol. 91, no. 9, September (2003)Google Scholar
  4. 4.
    Chanel, G., Kronegg, J., Grandjean, D., Pun, T.: Emotion assessment: arousal evaluation using EEG’s and peripheral physiologicalsignals. Lect. Notes Comput. Sci. vol. 4105, pp. 530 (2006)Google Scholar
  5. 5.
    Picard, R.W., Vyzas, E., Healey, J.: Toward machine emotional intelligence: analysis of affective physiological state. IEEE Trans. Pattern Anal. Mach. Intell. 23(10), 1175–1191 (2001)CrossRefGoogle Scholar
  6. 6.
    Jung, T.: Removing electroencephalographic artifacts by blind source separation. J. Psychophysiol. 37, 163–178 (2000)CrossRefGoogle Scholar
  7. 7.
    Gott, P.S., Hughes, E.C., Whipple, K.: Voluntary control of two lateralized conscious states: validation by electrical and behavioral studies. Neuropsychologia 22, 65–72 (1984)CrossRefGoogle Scholar
  8. 8.
    Murugappan, M., Rizon, M., Nagarajan, R., Yaacob, S., Zunaidi, I., Hazry, D.: EEG feature extraction for classifying emotions using FCM and FKM. J. Comput. Commun. 1, 21–25 (2007)Google Scholar
  9. 9.
    Das S., Halder A., Bhowmik P., Chakraborty A., Konar A., Janarthan R.: A support vector machine classifier of emotion from voice and facial expression data. In: Proceedings of the IEEE 2009 World Congress on Nature and Biologically Inspired Computing (NaBIC 2009), Coimbatore, pp. 1010–1015 (2009)Google Scholar
  10. 10.
    Srinivasa, K.G., Venugopal, K.R., Patnaik, K.R.: Feature extraction using fuzzy C-means clustering for data mining systems. Int. J. Comput. Scie. Netw. Secur. 6, 230–236 (2006)Google Scholar
  11. 11.
    Michael, S., Chambers J.A.: Brain computer interfacing. In: Proceedings of the EEG Signal Processing, pp. 239–265, Wiley, NJ (2007)Google Scholar
  12. 12.
    Lotte, F. et al.: A review of classification algorithms for EEG-based Brain-computer interfaces. J. Neural. Eng. 4(2), (2007)Google Scholar
  13. 13.
    Rezaei, S., Tavakolian, K., Nasrabadi, A.M., Setarehdan, S.K.: Different classification techniques considering brain computer interface applications. J. Neural. Eng. 3(2), 139–144 (Jun 2006)Google Scholar
  14. 14.
    Xu, W., Guan, C., Siong, C.E., Ranganatha, S., Thulasidas, M., Wu, J.: High accuracy classification of EEG signal. In: Proceedings of the 17th International Conference on Pattern Recognition (ICPR), vol. 2, 2004, pp. 391–394. Cambridge (2004)Google Scholar
  15. 15.
    Ledoux, J.: Brain mechanisms of emotion and emotional learning. Curr. Opin. Neurobiol. 2, 191–197 (1992)CrossRefMathSciNetGoogle Scholar
  16. 16.
    Davidson, R.I., Jackson, D.C., Kahn, N.H.: Emotion, plasticity, context, and regulation: perspectives from affective neuroscience. Psychol. Bull. 126(6), 89–909 (2000)CrossRefGoogle Scholar
  17. 17.
    Niemic, C.P.: Studies of emotion: a theoretical and empirical review of psychophysiological studies of emotion. J. Undergrad. Res. pp. 15–18 (2002)Google Scholar
  18. 18.
    Sanei, S., Chambers J.A.: Brain computer interfacing. In: Proceedings of the EEG Signal Processing, pp. 239–265, Wiley, NJ (2007)Google Scholar
  19. 19.
    Stoica, P., Moses, R.: Introduction to spectral analysis. Prentice Hall, NJ, USA (1997)Google Scholar
  20. 20.
    Proakis, J.G., Malonakis, D.G.: Digital signal processing: principles. algorithm and applications, 3rd (edn.), Prentice Hall, NJ, USA (1996)Google Scholar
  21. 21.
    Oppenheim, A., Schafer, R.: Digital signal processing. Prentice Hall, NJ, USA (1975)Google Scholar
  22. 22.
    Alpaydin, E.: Introduction to achine earning. MIT Press, Cambridge (2004)Google Scholar
  23. 23.
    Webb, A.R.: Statistical pattern recognition, 2nd edn. Wiley, Reprint (2004)Google Scholar

Copyright information

© Springer India 2014

Authors and Affiliations

  • Garima Singh
    • 1
  • Arindam Jati
    • 1
  • Anwesha Khasnobish
    • 2
  • Saugat Bhattacharyya
    • 1
  • Amit Konar
    • 1
  • D. N Tibarewala
    • 2
  • R Janarthanan
    • 1
  1. 1.Department of Electronics and Telecommunication EngineeringJadavpur UniversityKolkataIndia
  2. 2.School of Bioscience and EngineeringJadavpur UniversityKolkataIndia

Personalised recommendations