Biogenesis and Function Mechanisms of Micro-RNAs and Their Role as Oncogenes and Tumor Suppressors

  • Soken Tsuchiya
  • Kazuya Terasawa
  • Ryo Kunimoto
  • Yasushi Okuno
  • Fumiaki Sato
  • Kazuharu Shimizu
  • Gozoh Tsujimoto
Conference paper

Micro-RNAs (miRNAs) are evolutionarily conserved small noncoding RNAs (20– 23 nucleotides). MiRNAs regulate various physiological pathways such as differentiation, proliferation, and apoptosis by negative regulation of the gene expressions at the posttranscriptional level [1–3]. Currently, more than 800 human miRNAs have been identified and registered in the miRNA database miRBase [4]. Strikingly, 30% of protein-coding transcripts in humans is predicted to be regulated by miR-NAs [5,6]. Recently, miRNAs have been reported to work as oncogenes or tumor suppressor genes and be directly involved in the initiation, progression, and metastasis of various cancers [7–9]. Therefore, we focus on the role that miRNAs play in cancer and the use of miRNAs in drug discovery. Collection of evidence suggests that miRNAs can be potentially useful for understanding tumorigenesis and finding novel strategies for cancer diagnosis and therapy.


Chronic Lymphocytic Leukemia Connective Tissue Growth Factor miRNA Expression Profile microRNA Target MicroRNA Gene 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116:281–297PubMedCrossRefGoogle Scholar
  2. 2.
    Tsuchiya S, Okuno Y, Tsujimoto G (2006) MicroRNA: biogenetic and functional mechanisms and involvements in cell differentiation and cancer. J Pharmacol Sci 101:267–270PubMedCrossRefGoogle Scholar
  3. 3.
    Pasquinelli AE, Reinhart BJ, Slack F et al (2000) Conservation of the sequence and temporal expression of let-7 heterochronic regulatory RNA. Nature (Lond) 408:86–89CrossRefGoogle Scholar
  4. 4.
    Griffiths-Jones S, Grocock RJ, van Dongen S et al (2006) miRBase: microRNA sequences, targets and gene nomenclature. Nucleic Acids Res 34:D140–D144PubMedCrossRefGoogle Scholar
  5. 5.
    Lewis BP, Burge CB, Bartel DP (2005) Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 120:15–20PubMedCrossRefGoogle Scholar
  6. 6.
    Xie X, Lu J, Kulbokas EJ et al (2005) Systematic discovery of regulatory motifs in human promoters and 3′ UTRs by comparison of several mammals. Nature (Lond) 434:338–345CrossRefGoogle Scholar
  7. 7.
    Esquela-Kerscher A, Slack FJ (2006) Oncomirs: microRNAs with a role in cancer. Nat Rev Cancer 6:259–269PubMedCrossRefGoogle Scholar
  8. 8.
    Calin GA, Croce CM (2006) MicroRNA–cancer connection: the beginning of a new tale. Cancer Res 66:7390–7394PubMedCrossRefGoogle Scholar
  9. 9.
    Calin GA, Croce CM (2006) MicroRNA signatures in human cancers. Nat Rev Cancer 6:857–866PubMedCrossRefGoogle Scholar
  10. 10.
    Lee Y, Jeon K, Lee JT et al (2002) MicroRNA maturation: stepwise processing and subcel-lular localization. EMBO J 21:4663–4670PubMedCrossRefGoogle Scholar
  11. 11.
    Cai X, Hagedorn CH, Cullen BR (2004) Human microRNAs are processed from capped, polyadenylated transcripts that can also function as mRNAs. RNA 10:1957–1966PubMedCrossRefGoogle Scholar
  12. 12.
    Lee Y, Kim M, Han J et al (2004) MicroRNA genes are transcribed by RNA polymerase II. EMBO J 23:4051–4060PubMedCrossRefGoogle Scholar
  13. 13.
    Lee Y, Ahn C, Han J et al (2003) The nuclear RNase III Drosha initiates microRNA processing. Nature (Lond) 425:415–419CrossRefGoogle Scholar
  14. 14.
    Gregory RI, Yan KP, Amuthan G et al (2004) The Microprocessor complex mediates the genesis of microRNAs. Nature (Lond) 432:235–40CrossRefGoogle Scholar
  15. 15.
    Han J, Lee Y, Yeom KH et al (2006) Molecular basis for the recognition of primary microR-NAs by the Drosha-DGCR8 complex. Cell 125:887–901PubMedCrossRefGoogle Scholar
  16. 16.
    Yi R, Qin Y, Macara IG et al (2003) Exportin-5 mediates the nuclear export of pre-microR-NAs and short hairpin RNAs. Genes Dev 17:3011–3016PubMedCrossRefGoogle Scholar
  17. 17.
    Lund E, Guttinger S, Calado A et al (2004) Nuclear export of microRNA precursors. Science 303:95–98PubMedCrossRefGoogle Scholar
  18. 18.
    Hutvagner G, McLachlan J, Pasquinelli AE et al (2001) A cellular function for the RNA-interference enzyme Dicer in the maturation of the let-7 small temporal RNA. Science 293:834–838PubMedCrossRefGoogle Scholar
  19. 19.
    Matranga C, Tomari Y, Shin C et al (2005) Passenger-strand cleavage facilitates assembly of siRNA into Ago2-containing RNAi enzyme complexes. Cell 123:607–620PubMedCrossRefGoogle Scholar
  20. 20.
    Rand TA, Petersen S, Du F et al (2005) Argonaute2 cleaves the anti-guide strand of siRNA during RISC activation. Cell 123:621–629PubMedCrossRefGoogle Scholar
  21. 21.
    Gregory RI, Chendrimada TP, Cooch N et al (2005) Human RISC couples microRNA biogenesis and posttranscriptional gene silencing. Cell 123:631–640PubMedCrossRefGoogle Scholar
  22. 22.
    Khvorova A, Reynolds A, Jayasena SD (2003) Functional siRNAs and miRNAs exhibit strand bias. Cell 115:209–216PubMedCrossRefGoogle Scholar
  23. 23.
    Schwarz DS, Hutvágner G, Du T et al (2003) Asymmetry in the assembly of the RNAi enzyme complex. Cell 115:199–208PubMedCrossRefGoogle Scholar
  24. 24.
    Chendrimada TP, Gregory RI, Kumaraswamy E et al (2005) TRBP recruits the Dicer complex to Ago2 for microRNA processing and gene silencing. Nature (Lond) 436:740–744CrossRefGoogle Scholar
  25. 25.
    Meister G, Landthaler M, Patkaniowska A et al (2004) Human Argonaute2 mediates RNA cleavage targeted by miRNAs and siRNAs. Mol Cell 15:185–197PubMedCrossRefGoogle Scholar
  26. 26.
    Hutvágner G, Zamore PD (2002) A microRNA in a multiple-turnover RNAi enzyme complex. Science 297:2056–2060PubMedCrossRefGoogle Scholar
  27. 27.
    Doench JG, Sharp PA (2004) Specificity of microRNA target selection in translational repression. Genes Dev 18:504–511PubMedCrossRefGoogle Scholar
  28. 28.
    Kiriakidou M, Nelson PT, Kouranov A et al (2004) A combined computational-experimental approach predicts human microRNA targets. Genes Dev 18:1165–1178PubMedCrossRefGoogle Scholar
  29. 29.
    Lu J, Getz G, Miska EA et al (2005) MicroRNA expression profiles classify human cancers. Nature (Lond) 435:834–838CrossRefGoogle Scholar
  30. 30.
    Calin GA, Sevignani C, Dumitru CD et al (2004) Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. Proc Natl Acad Sci USA 101:2999–3004PubMedCrossRefGoogle Scholar
  31. 31.
    Calin GA, Dumitru CD, Shimizu M et al (2002) Frequent deletions and down-regulation of micro-RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc Natl Acad Sci USA 99:15524–15529PubMedCrossRefGoogle Scholar
  32. 32.
    Cimmino A, Calin GA, Fabbri M et al (2005) miR-15 and miR-16 induce apoptosis by targeting BCL2. Proc Natl Acad Sci USA 102:13944–13949PubMedCrossRefGoogle Scholar
  33. 33.
    Zhang L, Huang J, Yang N et al (2006) microRNAs exhibit high frequency genomic alterations in human cancer. Proc Natl Acad Sci USA 103:9136–9141PubMedCrossRefGoogle Scholar
  34. 34.
    Hayashita Y, Osada H, Tatematsu Y et al (2005) A polycistronic microRNA cluster, miR-17–92, is overexpressed in human lung cancers and enhances cell proliferation. Cancer Res 65:9628–9632PubMedCrossRefGoogle Scholar
  35. 35.
    He L, Thomson JM, Hemann MT et al (2005) A microRNA polycistron as a potential human oncogene. Nature (Lond) 435:828–833CrossRefGoogle Scholar
  36. 36.
    O'Donnell KA, Wentzel EA, Zeller KI ey al (2005) c-Myc-regulated microRNAs modulate E2F1 expression. Nature (Lond) 435:839–843CrossRefGoogle Scholar
  37. 37.
    Dews M, Homayouni A, Yu D et al (2006) Augmentation of tumor angiogenesis by a Myc-activated microRNA cluster. Nat Genet 38:1060–1065PubMedCrossRefGoogle Scholar
  38. 38.
    Ramaswamy S, Tamayo P, Rifkin R et al (2001) Multiclass cancer diagnosis using tumor gene expression signatures. Proc Natl Acad Sci USA 98:15149–15154PubMedCrossRefGoogle Scholar
  39. 39.
    Krutzfeldt J, Rajewsky N, Braich R et al (2005) Silencing of microRNAs in vivo with ‘antago-mirs’. Nature (Lond) 438:685–689CrossRefGoogle Scholar
  40. 40.
    Esau C, Davis S, Murray SF et al (2006) miR-122 regulation of lipid metabolism revealed by in vivo antisense targeting. Cell Metab 3:87–98PubMedCrossRefGoogle Scholar
  41. 41.
    John B, Enright AJ, Aravin A et al (2004) Human MicroRNA targets. PLoS Biol 2:e363PubMedCrossRefGoogle Scholar
  42. 42.
    Kiriakidou M, Nelson PT, Kouranov A et al (2004) A combined computational-experimental approach predicts human microRNA targets. Genes Dev 18:1165–1178PubMedCrossRefGoogle Scholar
  43. 43.
    Lewis BP, Shih IH, Jones-Rhoades MW et al (2003) Prediction of mammalian microRNA targets. Cell 115:787–798PubMedCrossRefGoogle Scholar
  44. 44.
    Krek A, Grun D, Poy MN et al (2005) Combinatorial microRNA target predictions. Nat Genet 37:495–500PubMedCrossRefGoogle Scholar
  45. 45.
    Miranda KC, Huynh T, Tay Y et al (2006) A pattern-based method for the identification of microRNA binding sites and their corresponding heteroduplexes. Cell 126:1203–1217PubMedCrossRefGoogle Scholar

Copyright information

© Springer 2009

Authors and Affiliations

  • Soken Tsuchiya
    • 1
  • Kazuya Terasawa
    • 2
  • Ryo Kunimoto
    • 3
  • Yasushi Okuno
    • 3
  • Fumiaki Sato
    • 1
  • Kazuharu Shimizu
    • 1
  • Gozoh Tsujimoto
    • 2
  1. 1.Department of Nanobio Drug Discovery, Graduate School of Pharmaceutical SciencesKyoto UniversityKyotoJapan
  2. 2.Department of Genomic Drug Discovery ScienceKyoto UniversitySakyo-kuJapan
  3. 3.Department of PharmacoInformatics, Graduate School of Pharmaceutical SciencesKyoto UniversityKyotoJapan

Personalised recommendations