Plant Functional Genomics Based on Integration of Metabolomics and Transcriptomics: Toward Plant Systems Biology

  • Kazuki Saito

By taking the advantages of development of sequencing technology, the genome sequences of several plant species have been revealed: these include Arabidopsis thaliana [1], Oryza sativa (rice) [2], Populus trichocarpa (poplar) [3], Vitis vinifera (grapevine) [4], and Sorghum bicolor (sorghum) ( sorghum). However, even in Arabidopsis, which is most extensively investigated in terms of gene function, only half the genes have been functionally annotated based on sequence similarity to known genes, and the function of only about 11% has been confirmed with evidence [5]. Therefore, the identification of the function of unknown genes is currently a major subject in plant genomics. Analyses of the changes in plants in which specific genes are either overexpressed (gain-of-function experiment) or knocked out (loss-of-function experiment) are generally used for decoding the functions of genes. Systematic analyses of the transcriptome and metabolome, in particular, correlating the expression pattern of genes with the accumulation pattern of metabolites, could be an excellent way for deducing the functions of genes, even if these engineered plants do not show apparent phe-notypic alternation [6–9].

In plants, a large number of genes involved in primary and secondary metabolism are present to form multigene families, for example, in Arabidopsis, 30 terpene synthase genes, 272 cytochrome P450 genes, 107 glycosyltransferase genes, and 130 ABC protein genes [10]. These genes are believed to be involved in the synthesis, modification, degradation, and/or transport of particular metabolites in plants. Compared with the model plant Arabidopsis, the situation is more complicated in the case of other plants, even if their genome sequences are available, because of the lack of feasible genetic resources for functional investigation such as large mutant panels and full-length cDNA collections. The integration of metabolic profiles with gene expression profiles can provide hints for the identification of functions of unknown metabolic genes, regardless of model or nonmodel plants. With the recent advances of sophisticated bioinformatics tools and analytical technology, the systems biology approach becomes more realistic to solve biological problems. In this chapter, the functional genomics study of combining transcriptome and metab-olome is discussed, leading to the development of plant systems biology.


Anthocyanin Biosynthesis System Biology Approach Gene Expression Correlation Glycosyltransferase Gene Plant Functional Genomic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    The Arabidopsis Genome Initiative (2000) Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature (Lond) 408:796–815.CrossRefGoogle Scholar
  2. 2.
    International Rice Genome Sequencing Project (2005) The map-based sequence of the rice genome. Nature (Lond) 436:793–800.CrossRefGoogle Scholar
  3. 3.
    Tuskan, G. A., Difazio, S., Jansson, S., Bohlmann, J., Grigoriev, I., Hellsten, U., Putnam, N., Ralph, S., Rombauts, S., Salamov, A., Schein, J., Sterck, L., Aerts, A., Bhalerao, R. R., Bhalerao, R. P., Blaudez, D., Boerjan, W., Brun, A., Brunner, A., Busov, V., Campbell, M., Carlson, J., Chalot, M., Chapman, J., Chen, G. L., Cooper, D., Coutinho, P. M., Couturier, J., Covert, S., Cronk, Q., Cunningham, R., Davis, J., Degroeve, S., Dejardin, A., Depamphilis, C., Detter, J., Dirks, B., Dubchak, I., Duplessis, S., Ehlting, J., Ellis, B., Gendler, K., Goodstein, D., Gribskov, M., Grimwood, J., Groover, A., Gunter, L., Hamberger, B., Heinze, B., Helariutta, Y., Henrissat, B., Holligan, D., Holt, R., Huang, W., Islam-Faridi, N., Jones, S., Jones-Rhoades, M., Jorgensen, R., Joshi, C., Kangasjarvi, J., Karlsson, J., Kelleher, C., Kirkpatrick, R., Kirst, M., Kohler, A., Kalluri, U., Larimer, F., Leebens-Mack, J., Leple, J. C., Locascio, P., Lou, Y., Lucas, S., Martin, F., Montanini, B., Napoli, C., Nelson, D. R., Nelson, C., Nieminen, K., Nilsson, O., Pereda, V., Peter, G., Philippe, R., Pilate, G., Poliakov, A., Razumovskaya, J., Richardson, P., Rinaldi, C., Ritland, K., Rouze, P., Ryaboy, D., Schmutz, J., Schrader, J., Segerman, B., Shin, H., Siddiqui, A., Sterky, F., Terry, A., Tsai, C. J., Uberbacher, E., Unneberg, P., et al. (2006) The genome of black cottonwood, Populus trichocarpa (Torr. & Gray). Science 313:1596–604.PubMedCrossRefGoogle Scholar
  4. 4.
    Jaillon, O., Aury, J. M., Noel, B., Policriti, A., Clepet, C., Casagrande, A., Choisne, N., Aubourg, S., Vitulo, N., Jubin, C., Vezzi, A., Legeai, F., Hugueney, P., Dasilva, C., Horner, D., Mica, E., Jublot, D., Poulain, J., Bruyere, C., Billault, A., Segurens, B., Gouyvenoux, M., Ugarte, E., Cattonaro, F., Anthouard, V., Vico, V., Del Fabbro, C., Alaux, M., Di Gaspero, G., Dumas, V., Felice, N., Paillard, S., Juman, I., Moroldo, M., Scalabrin, S., Canaguier, A., Le Clainche, I., Malacrida, G., Durand, E., Pesole, G., Laucou, V., Chatelet, P., Merdinoglu, D., Delledonne, M., Pezzotti, M., Lecharny, A., Scarpelli, C., Artiguenave, F., Pe, M. E., Valle, G., Morgante, M., Caboche, M., Adam-Blondon, A. F., Weissenbach, J., Quetier, F. & Wincker, P.(2007) The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla. Nature (Lond) 449:463–7.CrossRefGoogle Scholar
  5. 5.
    The Multinational Arabidopsis Steering Commitee (2007) The Multinational Coordinated Arabidopsis thaliana Functional Genomics Project. Annual Report 2007.Google Scholar
  6. 6.
    Bino, R. J., Hall, R. D., Fiehn, O., Kopka, J., Saito, K., Draper, J., Nikolau, B. J., Mendes, P., Roessner-Tunali, U., Beale, M. H., Trethewey, R. N., Lange, B. M., Wurtele, E. S. & Sumner, L. W. (2004) Potential of metabolomics as a functional genomics tool. Trends Plant Sci 9:418–25.PubMedCrossRefGoogle Scholar
  7. 7.
    Oksman-Caldentey, K. M. & Saito, K. (2005) Integrating genomics and metabolomics for engineering plant metabolic pathways. Curr Opin Biotechnol 16:174–9.PubMedCrossRefGoogle Scholar
  8. 8.
    Schauer, N. & Fernie, A. R. (2006) Plant metabolomics: towards biological function and mechanism. Trends Plant Sci 11:508–16.PubMedCrossRefGoogle Scholar
  9. 9.
    Saito, K., Hirai, M. & Yonekura-Sakakibara, K. (2008) Decoding genes by coexpression network and metabolomics: ‘majority report by precogs.’ Trends Plant Sci 13:36–43.PubMedCrossRefGoogle Scholar
  10. 10.
    D'Auria, J. C. & Gershenzon, J. (2005) The secondary metabolism of Arabidopsis thaliana: growing like a weed. Curr Opin Plant Biol 8:308–16.PubMedCrossRefGoogle Scholar
  11. 11.
    Tohge, T., Nishiyama, Y., Hirai, M. Y., Yano, M., Nakajima, J., Awazuhara, M., Inoue, E., Takahashi, H., Goodenowe, D. B., Kitayama, M., Noji, M., Yamazaki, M. & Saito, K. (2005) Functional genomics by integrated analysis of metabolome and transcriptome of Arabidopsis plants over-expressing an MYB transcription factor. Plant J 42:218–35.PubMedCrossRefGoogle Scholar
  12. 12.
    Luo, J., Nishiyama, Y., Fuell, C., Taguchi, G., Elliott, K., Hill, L., Tanaka, Y., Kitayama, M., Yamazaki, M., Bailey, P., Parr, A., Michael, A. J., Saito, K. & Martin, C. (2007) Convergent evolution in the BAHD family of acyl transferases: identification and characterization of anthocyanin acyl transferases from Arabidopsis thaliana. Plant J 50:678–95.PubMedCrossRefGoogle Scholar
  13. 13.
    Wangwattana, B., Koyama, Y., Nishiyama, Y., Kitayama, M., Yamazaki, M. & Saito, K. (2008) Characterization of PAP1-upregulated glutathione S-transferase genes in Arabidopsis thaliana. Plant Biotechnol 25:191–6.Google Scholar
  14. 14.
    Yonekura-Sakakibara, K., Tohge, T., Niida, R. & Saito, K. (2007) Identification of a flavonol 7-O-rhamnosyltransferase gene determining flavonoid pattern in Arabidopsis by transcrip-tome coexpression analysis and reverse genetics. J Biol Chem 282:14932–41.PubMedCrossRefGoogle Scholar
  15. 15.
    Obayashi, T., Kinoshita, K., Nakai, K., Shibaoka, M., Hayashi, S., Saeki, M., Shibata, D., Saito, K. & Ohta, H. (2007) ATTED-II: a database of co-expressed genes and cis elements for identifying co-regulated gene groups in Arabidopsis. Nucleic Acids Res 35:D863–9.PubMedCrossRefGoogle Scholar
  16. 16.
    Goda, H., Sasaki, E., Akiyama, K., Maruyama-Nakashita, A., Nakabayashi, K. et al. (2008) The AtGenExpress hormone- and chemical-treatment data set: Experimental design, data evaluation, model data analysis, and data access. Plant J 55:526–42.PubMedCrossRefGoogle Scholar
  17. 17.
    Tohge, T., Yonekura-Sakakibara, K., Niida, R., Watanabe-Takahashi, A. & Saito, K. (2007) Phytochemical genomics in Arabidopsis thaliana: a case study for functional identification of flavonoid biosynthesis genes. Pure Appl Chem 79:811–23.CrossRefGoogle Scholar
  18. 18.
    Yano, M., Kanaya, S., Altaf-UI-Amin, M., Kurokawa, K., Hirai, M. Y. & Saito, K. (2006) Integrated data mining of transcriptome and metabolome based on BL-SOM. J Comput Aid Chem 7:125–36.CrossRefGoogle Scholar
  19. 19.
    Hirai, M. Y., Yano, M., Goodenowe, D. B., Kanaya, S., Kimura, T., Awazuhara, M., Arita, M., Fujiwara, T. & Saito, K. (2004) Integration of transcriptomics and metabolomics for understanding of global responses to nutritional stresses in Arabidopsis thaliana. Proc Natl Acad Sci USA 101:10205–10.PubMedCrossRefGoogle Scholar
  20. 20.
    Hirai, M. Y., Klein, M., Fujikawa, Y., Yano, M., Goodenowe, D. B., Yamazaki, Y., Kanaya, S., Nakamura, Y., Kitayama, M., Suzuki, H., Sakurai, N., Shibata, D., Tokuhisa, J., Reichelt, M., Gershenzon, J., Papenbrock, J. & Saito, K. (2005) Elucidation of gene-to-gene and metabolite-to-gene networks in Arabidopsis by integration of metabolomics and transcriptomics. J Biol Chem 280:25590–5.PubMedCrossRefGoogle Scholar
  21. 21.
    Hirai, M. Y., Sugiyama, K., Sawada, Y., Tohge, T., Obayashi, T., Suzuki, A., Araki, R., Sakurai, N., Suzuki, H., Aoki, K., Goda, H., Nishizawa, O. I., Shibata, D. & Saito, K. (2007) Omics-based identification of Arabidopsis Myb transcription factors regulating aliphatic glu-cosinolate biosynthesis. Proc Natl Acad Sci USA 104:6478–83.PubMedCrossRefGoogle Scholar
  22. 22.
    Kusano, M., Fukushima, A., Arita, M., Jonsson, P., Moritz, T., Kobayashi, M., Hayashi, N., Tohge, T. & Saito, K. (2007) Unbiased characterization of genotype-dependent metabolic regulations by metabolomic approach in Arabidopsis thaliana. BMC Syst Biol 1:53.PubMedCrossRefGoogle Scholar

Copyright information

© Springer 2009

Authors and Affiliations

  • Kazuki Saito
    • 1
    • 2
  1. 1.Chiba University, Graduate School of Pharmaceutical SciencesInage-kuJapan
  2. 2.RIKEN Plant Science CenterTsurumi-kuJapan

Personalised recommendations