Structural Insights into the Life History of Thrombin

  • James A. Huntington

Abstract

Thrombin is the ultimate coagulation factor. Not only is it the final protease generated by the blood coagulation cascade, it has more than 12 substrates and 5 cofactors. How thrombin specificity is directed during the four stages of hemostasis is of great interest to the medical community, as insufficient thrombin activity leads to bleeding and excessive activity results in thrombosis. Over the last three decades we have learned a great deal about how thrombin is generated and how it recognizes its several cofactors, substrates, and inhibitors. Although much has been inferred from biochemical studies, our current understanding is primarily based on numerous crystallographic structures of thrombin complexes. In this chapter I provide an overview of the multiple roles thrombin plays in the initiation, amplification, propagation, and attenuation phases of hemostasis, and describe how the special structural features of thrombin are exploited to achieve regulation and substrate selectivity.

Key words

Thrombin Substrate Recognition Crystal structure Exosite 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Owen, CAJ (2001) Prothrombin. In: Nichols WL, Bowie EJ (eds) A history of blood coagulation. Mayo Foundation for Medical Education and Research, Rochester, MN, pp 27–35Google Scholar
  2. 2.
    Marcum, JA (1998) Defending the priority of “remarkable researches”: the discovery of fibrin ferment. Hist Philos Life Sci 20:51–76PubMedGoogle Scholar
  3. 3.
    Davie EW, Kulman JD (2006) An overview of the structure and function of thrombin. Semin Thromb Hemost 32(Suppl 1):3–15PubMedCrossRefGoogle Scholar
  4. 4.
    Lane DA, Philippou H, Huntington JA (2005) Directing thrombin. Blood 106:2605–2612PubMedCrossRefGoogle Scholar
  5. 5.
    Monroe DM, Hoffman M (2006) What does it take to make the perfect clot? Arterioscler Thromb Vasc Biol 26:41–48PubMedCrossRefGoogle Scholar
  6. 6.
    Jesty J, Beltrami E (2005) Positive feedbacks of coagulation: their role in threshold regulation. Arterioscler Thromb Vasc Biol 25:2463–2469PubMedCrossRefGoogle Scholar
  7. 7.
    Mann KG, Brummel K, Butenas S (2003) What is all that thrombin for? J Thromb Haemost 1:1504–1514PubMedCrossRefGoogle Scholar
  8. 8.
    Furie B, Liebman HA, Blanchard RA, et al (1984) Comparison of the native prothrombin antigen and the prothrombin time for monitoring oral anticoagulant therapy. Blood 64:445–451PubMedGoogle Scholar
  9. 9.
    Deguchi H, Takeya H, Gabazza EC, et al (1997) Prothrombin kringle 1 domain interacts with factor Va during the assembly of prothrombinase complex. Biochem J 321 (Pt 3):729–735PubMedGoogle Scholar
  10. 10.
    Bianchini EP, Orcutt SJ, Panizzi P, et al (2005) Ratcheting of the substrate from the zymogen to proteinase conformations directs the sequential cleavage of prothrombin by prothrombinase. Proc Natl Acad Sci U S A 102:10099–10104PubMedCrossRefGoogle Scholar
  11. 11.
    Boissel JP, Le Bonniec B, Rabiet MJ, et al (1984) Covalent structures of beta and gamma autolytic derivatives of human alpha-thrombin. J Biol Chem 259:5691–5697PubMedGoogle Scholar
  12. 12.
    De Cristofaro R, Akhavan S, Altomare C, et al (2004) A natural prothrombin mutant reveals an unexpected influence of A-chain structure on the activity of human alpha-thrombin. J Biol Chem 279:13035–13043PubMedCrossRefGoogle Scholar
  13. 13.
    Bode W, Mayr I, Baumann U, et al (1989) The refined 1.9 A crystal structure of human alpha-thrombin: interaction with D-Phe-Pro-Arg chloromethylketone and significance of the Tyr-Pro-Pro-Trp insertion segment. EMBO J 8:3467–3475PubMedGoogle Scholar
  14. 14.
    Di Cera E, Guinto ER, Vindigni A, et al (1995) The Na+ binding site of thrombin. J Biol Chem 270:22089–22092PubMedCrossRefGoogle Scholar
  15. 15.
    Bode W, Turk D, Karshikov A (1992) The refined 1.9-A X-ray crystal structure of D-Phe-Pro-Arg chloromethylketone-inhibited human alpha-thrombin: structure analysis, overall structure, electrostatic properties, detailed active-site geometry, and structure-function relationships. Protein Sci 1:426–471PubMedGoogle Scholar
  16. 16.
    Van de Locht A, Bode W, Huber R, et al (1997) The thrombin E192Q-BPTI complex reveals gross structural rearrangements: implications for the interaction with anti-thrombin and thrombomodulin. EMBO J 16:2977–2984PubMedCrossRefGoogle Scholar
  17. 17.
    Schechter I, Berger A (1967) On the size of the active site in proteases. I. Papain. Biochem Biophys Res Commun 27:157–162PubMedCrossRefGoogle Scholar
  18. 18.
    Harris JL, Backes BJ, Leonetti F, et al (2000) Rapid and general profiling of protease specificity by using combinatorial fluorogenic substrate libraries. Proc Natl Acad Sci U S A 97:7754–7759PubMedCrossRefGoogle Scholar
  19. 19.
    Petrassi HM, Williams JA, Li J, et al (2005) A strategy to profile prime and non-prime proteolytic substrate specificity. Bioorg Med Chem Lett 15:3162–3166PubMedCrossRefGoogle Scholar
  20. 20.
    Ohkubo S, Miyadera K, Sugimoto Y, et al (2001) Substrate phage as a tool to identify novel substrate sequences of proteases. Comb Chem High Throughput Screen 4:573–583PubMedGoogle Scholar
  21. 21.
    Zhang E, Tulinsky A (1997) The molecular environment of the Na+ binding site of thrombin. Biophys Chem 63:185–200PubMedCrossRefGoogle Scholar
  22. 22.
    Page MJ, Di Cera E (2006) Is Na+ a coagulation factor? Thromb Hemost 95:920–921Google Scholar
  23. 23.
    Di Cera E, Page MJ, Bah A, et al (2007) Thrombin allostery. Phys Chem Chem Phys 9:1291–1306PubMedCrossRefGoogle Scholar
  24. 24.
    Tsiang M, Paborsky LR, Li WX, et al (1996) Protein engineering thrombin for optimal specificity and potency of anticoagulant activity in vivo. Biochemistry 35:16449–16457PubMedCrossRefGoogle Scholar
  25. 25.
    Cantwell AM, Di Cera E (2000) Rational design of a potent anticoagulant thrombin. J Biol Chem 275:39827–39830PubMedCrossRefGoogle Scholar
  26. 26.
    Gruber A, Marzec UM, Bush L, et al (2007) Relative antithrombotic and antihemostatic effects of protein C activator versus low-molecular-weight heparin in primates. Blood 109:3733–3740PubMedCrossRefGoogle Scholar
  27. 27.
    Johnson DJ, Adams TE, Li W, et al (2005) Crystal structure of wild-type human thrombin in the Na+-free state. Biochem J 392:21–28PubMedCrossRefGoogle Scholar
  28. 28.
    Pineda AO, Chen ZW, Bah A, et al (2006) Crystal structure of thrombin in a self-inhibited conformation. J Biol Chem 281:32922–32928PubMedCrossRefGoogle Scholar
  29. 29.
    Pineda AO, Carrell CJ, Bush LA, et al (2004) Molecular dissection of Na+ binding to thrombin. J Biol Chem 279:31842–31853PubMedCrossRefGoogle Scholar
  30. 30.
    Pineda AO, Sawides S, Waksman G, et al (2002) Crystal structure of the anticoagulant slow form of thrombin. J Biol Chem 277:40177–40180PubMedCrossRefGoogle Scholar
  31. 31.
    Wells CM, Di Cera E (1992) Thrombin is a Na(+)-activated enzyme. Biochemistry 31:11721–11730PubMedCrossRefGoogle Scholar
  32. 32.
    Karshikov A, Bode W, Tulinsky A, et al (1992) Electrostatic interactions in the association of proteins: an analysis of the thrombin-hirudin complex. Protein Sci 1:727–735PubMedCrossRefGoogle Scholar
  33. 33.
    Anderson PJ, Nesset A, Dharmawardana KR, et al (2000) Characterization of proexosite I on prothrombin. J Biol Chem 275:16428–16434PubMedCrossRefGoogle Scholar
  34. 34.
    Arni RK, Padmanabhan K, Padmanabhan KP, et al (1994) Structure of the non-covalent complex of prothrombin kringle 2 with PPACK-thrombin. Chem Phys Lipids 67–68:59–66PubMedCrossRefGoogle Scholar
  35. 35.
    Fuentes-Prior P, Iwanaga Y, Huber R, et al (2000) Structural basis for the anticoagulant activity of the thrombin-thrombomodulin complex. Nature 404:518–525PubMedCrossRefGoogle Scholar
  36. 36.
    Baglin TP, Carrell RW, Church FC, et al (2002) Crystal structures of native and thrombin-complexed heparin cofactor II reveal a multistep allosteric mechanism. Proc Natl Acad Sci U S A 99:11079–11084PubMedCrossRefGoogle Scholar
  37. 37.
    Pechik I, Madrazo J, Mosesson MW, et al (2004) Crystal structure of the complex between thrombin and the central “E” region of fibrin. Proc Natl Acad Sci U S A 101:2718–2723PubMedCrossRefGoogle Scholar
  38. 38.
    Dumas JJ, Kumar R, Seehra J, et al (2003) Crystal structure of the GpIbalpha-thrombin complex essential for platelet aggregation. Science 301:222–226PubMedCrossRefGoogle Scholar
  39. 39.
    Carter WJ, Cama E, Huntington JA (2004) Crystal structure of thrombin bound to heparin. J Biol Chem 280:2745–2749PubMedCrossRefGoogle Scholar
  40. 40.
    Huntington JA (2005) Molecular recognition mechanisms of thrombin. J Thromb Haemost 3:1861–1872PubMedCrossRefGoogle Scholar
  41. 41.
    Yun TH, Baglia FA, Myles T, et al (2003) Thrombin activation of factor XI on activated platelets requires the interaction of factor XI and platelet glycoprotein Ib alpha with thrombin anion-binding exosites I and II, respectively. J Biol Chem 278: 48112–48119PubMedCrossRefGoogle Scholar
  42. 42.
    Adams TE, Huntington JA (2006) Thrombin-cofactor interactions: structural insights into regulatory mechanisms. Arterioscler Thromb Vasc Biol 26:1738–1745PubMedCrossRefGoogle Scholar
  43. 43.
    Pechik I, Yakovlev S, Mosesson MW, et al (2006) Structural basis for sequential cleavage of fibrinopeptides upon fibrin assembly. Biochemistry 45:3588–3597PubMedCrossRefGoogle Scholar
  44. 44.
    Li CQ, Vindigni A, Sadler JE, et al (2001) Platelet glycoprotein Ib alpha binds to thrombin anion-binding exosite II inducing allosteric changes in the activity of thrombin. J Biol Chem 276:6161–6168PubMedCrossRefGoogle Scholar
  45. 45.
    De Candia E, Hall SW, Rutella S, et al (2001) Binding of thrombin to glycoprotein Ib accelerates the hydrolysis of Par-1 on intact platelets. J Biol Chem 276:4692–4698PubMedCrossRefGoogle Scholar
  46. 46.
    Celikel R, McClintock RA, Roberts JR, et al (2003) Modulation of alpha-thrombin function by distinct interactions with platelet glycoprotein Ibalpha. Science 301:218–221PubMedCrossRefGoogle Scholar
  47. 47.
    Vu TK, Wheaton VI, Hung DT, et al (1991) Domains specifying thrombin-receptor interaction. Nature 353:674–677PubMedCrossRefGoogle Scholar
  48. 48.
    Mathews II, Padmanabhan KP, Ganesh V, et al (1994) Crystallographic structures of thrombin complexed with thrombin receptor peptides: existence of expected and novel binding modes. Biochemistry 33:3266–3279PubMedCrossRefGoogle Scholar
  49. 49.
    Myles T, Yun TH, Leung LL (2002) Structural requirements for the activation of human factor VIII by thrombin. Blood 100:2820–2826PubMedCrossRefGoogle Scholar
  50. 50.
    Naski MC, Fenton JW, Maraganore JM, et al (1990) The COOH-terminal domain of hirudin: an exosite-directed competitive inhibitor of the action of alpha-thrombin on fibrinogen. J Biol Chem 265:13484–13489PubMedGoogle Scholar
  51. 51.
    Bukys MA, Orban T, Kim PY, et al (2006) The structural integrity of anion binding exosite I of thrombin is required and sufficient for timely cleavage and activation of factor V and factor VIII. J Biol Chem 281:18569–18580PubMedCrossRefGoogle Scholar
  52. 52.
    Esmon CT, Lollar P (1996) Involvement of thrombin anion-binding exosites 1 and 2 in the activation of factor V and factor VIII. J Biol Chem 271:13882–13887PubMedCrossRefGoogle Scholar
  53. 53.
    Myles T, Yun TH, Hall SW, et al (2001) An extensive interaction interface between thrombin and factor V is required for factor V activation. J Biol Chem 276:25143–25149PubMedCrossRefGoogle Scholar
  54. 54.
    Dharmawardana KR, Olson ST, Bock PE (1999) Role of regulatory exosite I in binding of thrombin to human factor V, factor Va, factor Va subunits, and activation fragments. J Biol Chem 274:18635–18643PubMedCrossRefGoogle Scholar
  55. 55.
    Arocas V, Lemaire C, Bouton MC, et al (1998) Inhibition of thrombin-catalyzed factor V activation by bothrojaracin. Thromb Haemost 79:1157–1161PubMedGoogle Scholar
  56. 56.
    Nogami K, Shima M, Hosokawa K, et al (2000) Factor VIII C2 domain contains the thrombin-binding site responsible for thrombin-catalyzed cleavage at Argl689. J Biol Chem 275:25774–25780PubMedCrossRefGoogle Scholar
  57. 57.
    Suzuki H, Shima M, Nogami K, et al (2006) Factor V C2 domain contains a major thrombin-binding site responsible for thrombin-catalyzed factor V activation. J Thromb Haemost 4:1354–1360PubMedCrossRefGoogle Scholar
  58. 58.
    Edwards C, Armstrong P, Goode G, et al (1907) Cross-talking between calcium and histamine in the expression of MAPKs in hypertensive vascular smooth muscle cells. Cell Mol Biol (Noisy-le-grand) 53:61–66Google Scholar
  59. 59.
    Chung DW, Davie EW (1984) gamma and gamma’ chains of human fibrinogen are produced by alternative mRNA processing. Biochemistry 23:4232–4236PubMedCrossRefGoogle Scholar
  60. 60.
    Pineda AO, Chen ZW, Marino F, et al (2007) Crystal structure of thrombin in complex with fibrinogen gamma’ peptide. Biophys Chem 125:556–559PubMedCrossRefGoogle Scholar
  61. 61.
    Meh DA, Siebenlist KR, Brennan SO, et al (2001) The amino acid sequence in fibrin responsible for high affinity thrombin binding. Thromb Haemost 85:470–474PubMedGoogle Scholar
  62. 62.
    Lorand L (1907) Factor XIII: structure, activation, and interactions with fibrinogen and fibrin. Ann N Y Acad Sci 936:291–311CrossRefGoogle Scholar
  63. 63.
    Philippou H, Rance J, Myles T, et al (2003) Roles of low specificity and cofactor interaction sites on thrombin during factor XIII activation: competition for cofactor sites on thrombin determines its fate. J Biol Chem 278:32020–32026PubMedCrossRefGoogle Scholar
  64. 64.
    Bouma BN, Meijers JC (2003) Thrombin-activatable fibrinolysis inhibitor (TAFI, plasma procarboxypeptidase B, procarboxypeptidase R, procarboxypeptidase U). J Thromb Haemost 1:1566–1574PubMedCrossRefGoogle Scholar
  65. 65.
    Bajzar L, Morser J, Nesheim M (1996) TAFI, or plasma procarboxypeptidase B, couples the coagulation and fibrinolytic cascades through the thrombin-thrombomodulin complex. J Biol Chem 271:16603–16608PubMedCrossRefGoogle Scholar
  66. 66.
    Kokame K, Zheng X, Sadler JE (1998) Activation of thrombin-activable fibrinolysis inhibitor requires epidermal growth factor-like domain 3 of thrombomodulin and is inhibited competitively by protein C. J Biol Chem 273:12135–12139PubMedCrossRefGoogle Scholar
  67. 67.
    Kahn ML, Zheng YW, Huang W, et al (1998) A dual thrombin receptor system for platelet activation. Nature 394:690–694PubMedCrossRefGoogle Scholar
  68. 68.
    Jacques SL, Kuliopulos A (2003) Protease-activated receptor-4 uses dual prolines and an anionic retention motif for thrombin recognition and cleavage. Biochem J 376:733–740PubMedCrossRefGoogle Scholar
  69. 69.
    Wu CC, Teng CM (2006) Comparison of the effects of PAR1 antagonists, PAR4 antagonists, and their combinations on thrombin-induced human platelet activation. Eur J Pharmacol 546:142–147PubMedCrossRefGoogle Scholar
  70. 70.
    Butenas S, Dee JD, Mann KG (2003) The function of factor XI in tissue factor-initiated thrombin generation. J Thromb Haemost 1:2103–2111PubMedCrossRefGoogle Scholar
  71. 71.
    Baglia FA, Badellino KO, Li CQ, et al (2002) Factor XI binding to the platelet glycoprotein Ib-IX-V complex promotes factor XI activation by thrombin. J Biol Chem 277:1662–1668PubMedCrossRefGoogle Scholar
  72. 72.
    Baglia FA, Walsh PN (1996) A binding site for thrombin in the apple 1 domain of factor XI. J Biol Chem 271:3652–3658PubMedCrossRefGoogle Scholar
  73. 73.
    Papagrigoriou E, McEwan PA, Walsh PN, et al (2006) Crystal structure of the factor XI zymogen reveals a pathway for transactivation. Nat Struct Mol Biol 13:557–558PubMedCrossRefGoogle Scholar
  74. 74.
    Jin L, Pandey P, Babine, RE, et al (2005) Crystal structures of the FXIa catalytic domain in complex with ecotin mutants reveal substrate-like interactions. J Biol Chem 280:4704–4712PubMedCrossRefGoogle Scholar
  75. 75.
    Esmon CT (2003) The protein C pathway. Chest 124:26S–32SPubMedCrossRefGoogle Scholar
  76. 76.
    Dahlback B, Villoutreix BO (2003) Molecular recognition in the protein C anticoagulant pathway. J Thromb Haemost 1:1525–1534PubMedCrossRefGoogle Scholar
  77. 77.
    Weiler H, Isermann BH (2003) Thrombomodulin. J Thromb Haemost 1:1515–1524PubMedCrossRefGoogle Scholar
  78. 78.
    Vindigni A, White CE, Komives EA, et al (1997) Energetics of thrombin-thrombomodulin interaction. Biochemistry 36:6674–6681PubMedCrossRefGoogle Scholar
  79. 79.
    Lin JH, McLean K, Morser J, et al (1994) Modulation of glycosaminoglycan addition in naturally expressed and recombinant human thrombomodulin. J Biol Chem 269:25021–25030PubMedGoogle Scholar
  80. 80.
    Ye J, Rezaie AR, Esmon CT (1994) Glycosaminoglycan contributions to both protein C activation and thrombin inhibition involve a common arginine-rich site in thrombin that includes residues arginine 93, 97, and 101. J Biol Chem 269:17965–17970PubMedGoogle Scholar
  81. 81.
    Oganesyan V, Oganesyan N, Terzyan S, et al (2002) The crystal structure of the endothelial protein C receptor and a bound phospholipid. J Biol Chem 277:24851–24854PubMedCrossRefGoogle Scholar
  82. 82.
    Esmon CT (2000) The endothelial cell protein C receptor. Thromb Haemost 83:639–643PubMedGoogle Scholar
  83. 83.
    Stearns-Kurosawa DJ, Kurosawa S, Mollica JS, et al (1996) The endothelial cell protein C receptor augments protein C activation by the thrombin-thrombomodulin complex. Proc Natl Acad Sci U S A 93:10212–10216PubMedCrossRefGoogle Scholar
  84. 84.
    Yang L, Rezaie AR (2003) The fourth epidermal growth factor-like domain of thrombomodulin interacts with the basic exosite of protein C. J Biol Chem 278:10484–10490PubMedCrossRefGoogle Scholar
  85. 85.
    Hall SW, Nagashima M, Zhao L, et al (1999) Thrombin interacts with thrombomodulin, protein C, and thrombin-activatable fibrinolysis inhibitor via specific and distinct domains. J Biol Chem 274:25510–25516PubMedCrossRefGoogle Scholar
  86. 86.
    Sasisekharan R, Raman R, Prabhakar V (1907) Glycomics approach to structure-function relationships of glycosaminoglycans. Annu Rev Biomed Eng 8:181–231CrossRefGoogle Scholar
  87. 87.
    Huntington JA (2005) Heparin activation of serpins. In: Garg HG, Linhardt RJ, Hales CA (eds) Chemistry and biology of heparin and heparan sulfate. Elsevier, Oxford, 367–398CrossRefGoogle Scholar
  88. 88.
    Li W, Johnson DJ, Esmon CT, et al (2004) Structure of the antithrombin-thrombin-heparin ternary complex reveals the antithrombotic mechanism of heparin. Nat Struct Mol Biol 11:857–862PubMedCrossRefGoogle Scholar
  89. 89.
    Geiger M (2007) Protein C inhibitor, a serpin with functions in-and outside vascular biology. Thromb Haemost 97:343–347PubMedGoogle Scholar
  90. 90.
    Rezaie AR, Cooper ST, Church FC, et al (1995) Protein C inhibitor is a potent inhibitor of the thrombin-thrombomodulin complex. J Biol Chem 270:25336–25339PubMedCrossRefGoogle Scholar
  91. 91.
    Meddahi S, Bara L, Fessi H, et al (1907) Standard measurement of clot-bound thrombin by using a chromogenic substrate for thrombin. Thromb Res 114:51–56Google Scholar
  92. 92.
    Huntington JA (2006) Shape-shifting serpins: advantages of a mobile mechanism. Trends Biochem Sci 31:450–455CrossRefGoogle Scholar
  93. 93.
    Silverman GA, Bird PI, Carrell RW, et al (2001) The serpins are an expanding super-family of structurally similar but functionally diverse proteins: evolution, mechanism of inhibition, novel functions, and a revised nomenclature. J Biol Chem 276:33293–33296PubMedCrossRefGoogle Scholar
  94. 94.
    Law RH, Zhang Q, McGowan S, et al (1907) An overview of the serpin superfamily. Genome Biol 7:216CrossRefGoogle Scholar
  95. 95.
    Huntington JA, Read RJ, Carrell RW (2000) Structure of a serpin-protease complex shows inhibition by deformation. Nature 407:923–926PubMedCrossRefGoogle Scholar
  96. 96.
    Gettins PG (2002) Serpin structure, mechanism, and function. Chem Rev 102:4751–4804PubMedCrossRefGoogle Scholar
  97. 97.
    Olson ST, Swanson R, Day D, et al (2001) Resolution of Michaelis complex, acylation, and conformational change steps in the reactions of the serpin, plasminogen activator inhibitor-1, with tissue plasminogen activator and trypsin. Biochemistry 40: 11742–11756PubMedCrossRefGoogle Scholar
  98. 98.
    Bock PE, Olson ST, Bjork I (1997) Inactivation of thrombin by antithrombin is accompanied by inactivation of regulatory exosite I. J Biol Chem 272:19837–19845PubMedCrossRefGoogle Scholar
  99. 99.
    Fredenburgh JC, Stafford AR, Weitz JI (2001) Conformational changes in thrombin when complexed by serpins. J Biol Chem 276:44828–44834PubMedCrossRefGoogle Scholar
  100. 100.
    Long GL, Kjellberg M, Villoutreix BO, et al (2003) Probing plasma clearance of the thrombin-antithrombin complex with a monoclonal antibody against the putative serpin-enzyme complex receptor-binding site. Eur J Biochem 270:4059–4069PubMedCrossRefGoogle Scholar
  101. 101.
    Kounnas MZ, Church FC, Argraves WS, et al (1996) Cellular internalization and degradation of antithrombin III-thrombin, heparin cofactor II-thrombin, and alpha 1-antitrypsin-trypsin complexes is mediated by the low density lipoprotein receptor-related protein. J Biol Chem 271:6523–6529PubMedCrossRefGoogle Scholar
  102. 102.
    Corral J, Rivera J, Guerrero JA, et al (2007) Latent and polymeric antithrombin: clearance and potential thrombotic risk. Exp Biol Med (Maywood) 232:219–226Google Scholar

Copyright information

© Springer 2008

Authors and Affiliations

  • James A. Huntington
    • 1
  1. 1.Division of Structural Medicine, Thrombosis Research Unit, Cambridge Institute for Medical ResearchDepartment of Haematology, University of CambridgeCambridgeUK

Personalised recommendations