Advertisement

Pattern Recognition in Direct and Indirect View

  • Hans Strasburger
  • Ingo Rentschler

Abstract

More than a century ago, it was shown that there is an acuity deficit in peripheral vision that can be compensated for by increasing stimulus size (Aubert and Foerster 1857; Wertheim 1894). The corresponding size-scaling approach, or cortical magnification concept, has accounted for much of the eccentricity variation in grating contrast sensitivity (Koenderink et al. 1978; Rovamo and Virsu 1979) and various other measures of acuity (e.g., Levi et al. 1985; Virsu et al. 1987). Yet this cannot be the whole truth since size-scaling fails to establish positional invariance for a wide range of visual tasks, like numerosity judgments (Parth and Rentschler 1984), discrimination of phase-modulated (Harvey et al. 1985) and mirror-symmetric images (Rentschler and Treutwein 1985), face recognition (Hübner et al. 1985), and recognition of numeric characters (Strasburger and Rentschler 1996); (Strasburger et al. 1991).

Keywords

Spatial Attention Discrimination Learning Category Learning Peripheral Vision Contrast Threshold 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Atkinson J, Pimm-Smith E, Evans C, Harding G, Braddick O (1986) Visual crowding in young children. Doc Ophthalmol Proc 45:201–213Google Scholar
  2. Aubert H, Foerster CFR (1857) Beiträge zur Kenntnis des indirecten Sehens. (I). Untersuchungen über den Raumsinn der Retina. Arch Ophthalmol 3:1–37Google Scholar
  3. Averbach E, Coriell AS (1961) Short-term memory in vision. Bell System Tech J 40:309–328Google Scholar
  4. Baddeley A (1986) Working memory. Clarendon Press, OxfordGoogle Scholar
  5. Bischof WF, Caelli T (1997) Scene understanding by rule evaluation. IEEE Trans Pattern Anal Machine Intell (PAMI) 19:1284–1288CrossRefGoogle Scholar
  6. Bouma H (1970) Interaction effects in parafoveal letter recognition. Nature 226:177–178PubMedCrossRefGoogle Scholar
  7. Caelli T, Bischof WF (1997) Machine learning and image interpretation. Plenum Press, New YorkGoogle Scholar
  8. Deco G, Rolls ET (2004) A neurodynamical cortical model of visual attention and invariant object recognition. Vision Res 44:621–642PubMedCrossRefGoogle Scholar
  9. Desimone R, Duncan J (1995) Neural mechanisms of visual attention. Annu Rev Neurosci 18:193–222PubMedCrossRefGoogle Scholar
  10. Eriksen CW, Rohrbaugh JW (1970) Some factors determining efficiency of selective attention. Am J Psychol 83:330–343CrossRefGoogle Scholar
  11. Flom MC, Weymouth FW, Kahnemann D (1963) Visual resolution and contour interaction. J Opt Soc Am 53:1026–1032PubMedCrossRefGoogle Scholar
  12. Fuster JM (2003) Cortex and mind. Oxford University Press, OxfordGoogle Scholar
  13. Geiger G, Lettvin JY (1986) Enhancing the perception of form in peripheral vision. Perception 15:119–130PubMedCrossRefGoogle Scholar
  14. Harvey LO, Jr. (1997) Efficient estimation of sensory thresholds with ML-PEST. Spat Vis 11:121–128PubMedCrossRefGoogle Scholar
  15. Harvey LO, Jr., Rentschler I, Weiss C (1985) Sensitivity to phase distortion in central and peripheral vision. Percept Psychophys 38:392–396PubMedGoogle Scholar
  16. He S, Cavanagh P, Intriligator J (1996) Attentional resolution and the locus of visual awareness. Nature 383:334–337PubMedCrossRefGoogle Scholar
  17. Hübner M, Rentschler I, Encke W (1985) Hidden-face recognition: comparing foveal and extrafoveal performance. Hum Neurobiol 4:1–7PubMedGoogle Scholar
  18. Jüttner M, Rentschler I (1996) Reduced perceptual dimensionality in extrafoveal vision. Vision Res 36:1007–1022PubMedCrossRefGoogle Scholar
  19. Jüttner M, Rentschler I (2000) Scale-invariant superiority of foveal vision in perceptual categorization. Eur J Neurosci 12:353–359PubMedCrossRefGoogle Scholar
  20. Koenderink JJ, Bouman MA, Bueno de Mesquita AE, Slappendel S (1978) Perimetry of contrast detection thresholds of moving spatial sine wave patterns. I. The near peripheral visual field (eccentricity 0°-8°). J Opt Soc Am 68:845–84PubMedCrossRefGoogle Scholar
  21. LaBerge D (1995) Computational and anatomical models of selective attention in object identification. In: Gazzaniga MS (Ed) The cognitive neurosciences. MIT Press, Cambridge MA, pp 649–663Google Scholar
  22. Levi DM, Klein SA, Aitsebaomo AP (1985) Vernier acuity, crowding and cortical magnification. Vision Res 25:963–977PubMedCrossRefGoogle Scholar
  23. Mackeben M (1999) Sustained focal attention and peripheral letter recognition. Spat Vis 12:51–72PubMedCrossRefGoogle Scholar
  24. Miller EK, Desimone R (1994) Parallel neuronal mechanisms for short-term memory. Science 263:520–522PubMedCrossRefGoogle Scholar
  25. Miller EK, Erickson CA, Desimone R (1996) Neural mechanisms of visual working memory in prefrontal cortex of the macaque. J Neurosci 16:5154–5167PubMedGoogle Scholar
  26. Nakayama K, Mackeben M (1989) Sustained and transient components of focal visual attention. Vision Res 29:1631–1647PubMedCrossRefGoogle Scholar
  27. Parth P, Rentschler I (1984) Numerosity judgements in peripheral vision: limitations of the cortical magnification hypothesis. Behav Brain Res 11:241–248PubMedCrossRefGoogle Scholar
  28. Pelli DG, Palomares M, Majaj NJ (2004) Crowding is unlike ordinary masking: distinguishing feature integration from detection. J Vis 4:1136–1169PubMedCrossRefGoogle Scholar
  29. Rentschler I (1985) Symmetry-coded cells in the visual cortex? Nature 317:581–582PubMedCrossRefGoogle Scholar
  30. Rentschler I, Jüttner M (2007) Mirror-image relations in category learning. Vis Cognit 15:211–237CrossRefGoogle Scholar
  31. Rentschler I, Treutwein B (1985) Loss of spatial phase relationships in extrafoveal vision. Nature 313:308–310PubMedCrossRefGoogle Scholar
  32. Rentschler I, Jüttner M, Caelli T (1994) Probabilistic analysis of human supervised learning and classification. Vision Res 34:669–687PubMedCrossRefGoogle Scholar
  33. Rovamo J, Virsu V (1979) An estimation and application of the human cortical magnification factor. Exp Brain Res 37:495–510PubMedCrossRefGoogle Scholar
  34. Saarinen J (1987) Perception of positional relationships between line segments in eccentric vision. Perception 16:583–591PubMedCrossRefGoogle Scholar
  35. Strasburger H (2005) Unfocussed spatial attention underlies the crowding effect in indirect form vision. J Vis 5:1024–1037PubMedCrossRefGoogle Scholar
  36. Strasburger H, Rentschler I (1996) Contrast-dependent dissociation of visual recognition and detection field. Eur J Neurosci 8:1787–1791PubMedCrossRefGoogle Scholar
  37. Strasburger H, Harvey LOJ, Rentschler I (1991) Contrast thresholds for identification of numeric characters in direct and excentric view. Percept Psychophys 49:495–508PubMedGoogle Scholar
  38. Stuart JA, Burian HM (1962) A study of separation difficulty: its relationship to visual acuity in normal and amblyopic eyes. Am J Ophthalmol 53:471–477PubMedGoogle Scholar
  39. Tanaka K (1996) Inferotemporal cortex and object vision. Annu Rev Neurosci 19:109–139PubMedCrossRefGoogle Scholar
  40. Tripathy SP, Levi DM (1994) Long-range dichoptic interactions in the human visual cortex in the region corresponding to the blind spot. Vision Res 34:1127–1138PubMedCrossRefGoogle Scholar
  41. Vidyasagar TR (2001) From attentional gating in macaque primary visual cortex to dyslexia in humans. Prog Brain Res 134:297–312PubMedCrossRefGoogle Scholar
  42. Virsu V, Näsänen R, Osmoviita K (1987) Cortical magnification and peripheral vision. J Opt Soc Am A 4:1568–1578PubMedCrossRefGoogle Scholar
  43. Watanabe S (1985) Pattern recognition: human and mechanical. John Wiley, New YorkGoogle Scholar
  44. Wertheim T (1894) Über die indirekte Sehschärfe. Z Psychol Physiol Sinnesorg 7:172–187Google Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • Hans Strasburger
    • 1
    • 3
  • Ingo Rentschler
    • 2
  1. 1.Generation Research ProgramUniversity of MünchenBad TölzGermany
  2. 2.Institute of Medical PsychologyUniversity of MunichMünchenGermany
  3. 3.Department of Medical PsychologyUniversity of GöttingenGöttingenGermany

Personalised recommendations