Pattern Recognition in Direct and Indirect View

  • Hans Strasburger
  • Ingo Rentschler


More than a century ago, it was shown that there is an acuity deficit in peripheral vision that can be compensated for by increasing stimulus size (Aubert and Foerster 1857; Wertheim 1894). The corresponding size-scaling approach, or cortical magnification concept, has accounted for much of the eccentricity variation in grating contrast sensitivity (Koenderink et al. 1978; Rovamo and Virsu 1979) and various other measures of acuity (e.g., Levi et al. 1985; Virsu et al. 1987). Yet this cannot be the whole truth since size-scaling fails to establish positional invariance for a wide range of visual tasks, like numerosity judgments (Parth and Rentschler 1984), discrimination of phase-modulated (Harvey et al. 1985) and mirror-symmetric images (Rentschler and Treutwein 1985), face recognition (Hübner et al. 1985), and recognition of numeric characters (Strasburger and Rentschler 1996); (Strasburger et al. 1991).


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Atkinson J, Pimm-Smith E, Evans C, Harding G, Braddick O (1986) Visual crowding in young children. Doc Ophthalmol Proc 45:201–213Google Scholar
  2. Aubert H, Foerster CFR (1857) Beiträge zur Kenntnis des indirecten Sehens. (I). Untersuchungen über den Raumsinn der Retina. Arch Ophthalmol 3:1–37Google Scholar
  3. Averbach E, Coriell AS (1961) Short-term memory in vision. Bell System Tech J 40:309–328Google Scholar
  4. Baddeley A (1986) Working memory. Clarendon Press, OxfordGoogle Scholar
  5. Bischof WF, Caelli T (1997) Scene understanding by rule evaluation. IEEE Trans Pattern Anal Machine Intell (PAMI) 19:1284–1288CrossRefGoogle Scholar
  6. Bouma H (1970) Interaction effects in parafoveal letter recognition. Nature 226:177–178PubMedCrossRefGoogle Scholar
  7. Caelli T, Bischof WF (1997) Machine learning and image interpretation. Plenum Press, New YorkGoogle Scholar
  8. Deco G, Rolls ET (2004) A neurodynamical cortical model of visual attention and invariant object recognition. Vision Res 44:621–642PubMedCrossRefGoogle Scholar
  9. Desimone R, Duncan J (1995) Neural mechanisms of visual attention. Annu Rev Neurosci 18:193–222PubMedCrossRefGoogle Scholar
  10. Eriksen CW, Rohrbaugh JW (1970) Some factors determining efficiency of selective attention. Am J Psychol 83:330–343CrossRefGoogle Scholar
  11. Flom MC, Weymouth FW, Kahnemann D (1963) Visual resolution and contour interaction. J Opt Soc Am 53:1026–1032PubMedCrossRefGoogle Scholar
  12. Fuster JM (2003) Cortex and mind. Oxford University Press, OxfordGoogle Scholar
  13. Geiger G, Lettvin JY (1986) Enhancing the perception of form in peripheral vision. Perception 15:119–130PubMedCrossRefGoogle Scholar
  14. Harvey LO, Jr. (1997) Efficient estimation of sensory thresholds with ML-PEST. Spat Vis 11:121–128PubMedCrossRefGoogle Scholar
  15. Harvey LO, Jr., Rentschler I, Weiss C (1985) Sensitivity to phase distortion in central and peripheral vision. Percept Psychophys 38:392–396PubMedGoogle Scholar
  16. He S, Cavanagh P, Intriligator J (1996) Attentional resolution and the locus of visual awareness. Nature 383:334–337PubMedCrossRefGoogle Scholar
  17. Hübner M, Rentschler I, Encke W (1985) Hidden-face recognition: comparing foveal and extrafoveal performance. Hum Neurobiol 4:1–7PubMedGoogle Scholar
  18. Jüttner M, Rentschler I (1996) Reduced perceptual dimensionality in extrafoveal vision. Vision Res 36:1007–1022PubMedCrossRefGoogle Scholar
  19. Jüttner M, Rentschler I (2000) Scale-invariant superiority of foveal vision in perceptual categorization. Eur J Neurosci 12:353–359PubMedCrossRefGoogle Scholar
  20. Koenderink JJ, Bouman MA, Bueno de Mesquita AE, Slappendel S (1978) Perimetry of contrast detection thresholds of moving spatial sine wave patterns. I. The near peripheral visual field (eccentricity 0°-8°). J Opt Soc Am 68:845–84PubMedCrossRefGoogle Scholar
  21. LaBerge D (1995) Computational and anatomical models of selective attention in object identification. In: Gazzaniga MS (Ed) The cognitive neurosciences. MIT Press, Cambridge MA, pp 649–663Google Scholar
  22. Levi DM, Klein SA, Aitsebaomo AP (1985) Vernier acuity, crowding and cortical magnification. Vision Res 25:963–977PubMedCrossRefGoogle Scholar
  23. Mackeben M (1999) Sustained focal attention and peripheral letter recognition. Spat Vis 12:51–72PubMedCrossRefGoogle Scholar
  24. Miller EK, Desimone R (1994) Parallel neuronal mechanisms for short-term memory. Science 263:520–522PubMedCrossRefGoogle Scholar
  25. Miller EK, Erickson CA, Desimone R (1996) Neural mechanisms of visual working memory in prefrontal cortex of the macaque. J Neurosci 16:5154–5167PubMedGoogle Scholar
  26. Nakayama K, Mackeben M (1989) Sustained and transient components of focal visual attention. Vision Res 29:1631–1647PubMedCrossRefGoogle Scholar
  27. Parth P, Rentschler I (1984) Numerosity judgements in peripheral vision: limitations of the cortical magnification hypothesis. Behav Brain Res 11:241–248PubMedCrossRefGoogle Scholar
  28. Pelli DG, Palomares M, Majaj NJ (2004) Crowding is unlike ordinary masking: distinguishing feature integration from detection. J Vis 4:1136–1169PubMedCrossRefGoogle Scholar
  29. Rentschler I (1985) Symmetry-coded cells in the visual cortex? Nature 317:581–582PubMedCrossRefGoogle Scholar
  30. Rentschler I, Jüttner M (2007) Mirror-image relations in category learning. Vis Cognit 15:211–237CrossRefGoogle Scholar
  31. Rentschler I, Treutwein B (1985) Loss of spatial phase relationships in extrafoveal vision. Nature 313:308–310PubMedCrossRefGoogle Scholar
  32. Rentschler I, Jüttner M, Caelli T (1994) Probabilistic analysis of human supervised learning and classification. Vision Res 34:669–687PubMedCrossRefGoogle Scholar
  33. Rovamo J, Virsu V (1979) An estimation and application of the human cortical magnification factor. Exp Brain Res 37:495–510PubMedCrossRefGoogle Scholar
  34. Saarinen J (1987) Perception of positional relationships between line segments in eccentric vision. Perception 16:583–591PubMedCrossRefGoogle Scholar
  35. Strasburger H (2005) Unfocussed spatial attention underlies the crowding effect in indirect form vision. J Vis 5:1024–1037PubMedCrossRefGoogle Scholar
  36. Strasburger H, Rentschler I (1996) Contrast-dependent dissociation of visual recognition and detection field. Eur J Neurosci 8:1787–1791PubMedCrossRefGoogle Scholar
  37. Strasburger H, Harvey LOJ, Rentschler I (1991) Contrast thresholds for identification of numeric characters in direct and excentric view. Percept Psychophys 49:495–508PubMedGoogle Scholar
  38. Stuart JA, Burian HM (1962) A study of separation difficulty: its relationship to visual acuity in normal and amblyopic eyes. Am J Ophthalmol 53:471–477PubMedGoogle Scholar
  39. Tanaka K (1996) Inferotemporal cortex and object vision. Annu Rev Neurosci 19:109–139PubMedCrossRefGoogle Scholar
  40. Tripathy SP, Levi DM (1994) Long-range dichoptic interactions in the human visual cortex in the region corresponding to the blind spot. Vision Res 34:1127–1138PubMedCrossRefGoogle Scholar
  41. Vidyasagar TR (2001) From attentional gating in macaque primary visual cortex to dyslexia in humans. Prog Brain Res 134:297–312PubMedCrossRefGoogle Scholar
  42. Virsu V, Näsänen R, Osmoviita K (1987) Cortical magnification and peripheral vision. J Opt Soc Am A 4:1568–1578PubMedCrossRefGoogle Scholar
  43. Watanabe S (1985) Pattern recognition: human and mechanical. John Wiley, New YorkGoogle Scholar
  44. Wertheim T (1894) Über die indirekte Sehschärfe. Z Psychol Physiol Sinnesorg 7:172–187Google Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • Hans Strasburger
    • 1
    • 3
  • Ingo Rentschler
    • 2
  1. 1.Generation Research ProgramUniversity of MünchenBad TölzGermany
  2. 2.Institute of Medical PsychologyUniversity of MunichMünchenGermany
  3. 3.Department of Medical PsychologyUniversity of GöttingenGöttingenGermany

Personalised recommendations