Ultra-High Resolution Electron Beam Patterning of SiO2: A Review

  • David R. Allee
  • Xiao Dan Pan
  • Alec N. Broers
  • Corwin P. Umbach
Conference paper

Summary

Arrays of lines with periods down to 15nm have been directly patterned in SiO2 with electron irradiation. Two methods have been developed to eliminate the surface contamination and enable the subsequent development in HF based etches: 1) exposing the oxide through a sacrificial layer and 2) oxygen reactive ion etching. This period is three times better than is possible with polymethylmethacrylate (PMMA), the most widely used high resolution electron beam resist. Preliminary pattern transfer experiments using chlorine reactive ion etching have transferred feature sizes down to 10nm into Si. Because patterned SiO2 is itself extremely useful as a key component of many electronic devices, the ability to directly pattern SiO2 with nanometer scale resolution, albeit with a high dose, will enhance the techniques available to prototype both conventional and quantum effect ultra-small devices.

Keywords

Electron Beam Lithography Sacrificial Layer Scanning Force Microscope Electron Stimulate Desorption Exposure Mechanism 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Chao PC, Shur MS, Tiberio RC, Duh KHG, Smith PM, Ballingall JM, Ho P, Jabra AA (1989) IEEE Trans Electron Dev 36 (3): 461–471ADSCrossRefGoogle Scholar
  2. 2.
    Patrick W, Mackie WS, Beaumont SP, Wilkinson CDW, Oxley CH (1985) IEEE Electron Dev Lett 6 (9): 471–472CrossRefGoogle Scholar
  3. 3.
    Han J, Ferry DK, Newman P (1990) IEEE Electron Dev Lett 11 (5): 209–211ADSCrossRefGoogle Scholar
  4. 4.
    Allee DR, de la Houssaye PR, Schlom DG, Harrris JS Jr, Pease RFW (1988) J Vac Sci Technol B6 (1): 328–332CrossRefGoogle Scholar
  5. 5.
    Umbach CP, Palevski A, Heiblum M, Sivan U (1989) J Vac Sci Technol B7 (6): 2003–2006CrossRefGoogle Scholar
  6. 6.
    Ismail K, Chu W, Antoniadis DA, Smith HI (1989) Appl Phys Lett 54: 460–462ADSCrossRefGoogle Scholar
  7. 7.
    Ismail K, Chu W, Tiberio R, Yen A, Lezec HJ, Shepard MI, Musil CR, Melngailis J, Antoniadis DA, Smith HI (1989) J Vac Sci Technol B7 (6): 2025–2029CrossRefGoogle Scholar
  8. 8.
    Allee DR, Chou SY, Harris JS Jr, Pease RFW (1989) J Vac Sci Technol B7(6):2015–2019Google Scholar
  9. 9.
    Bernstein G, Ferry DK (1987) J Vac Sci Technol B5 (4): 964–966CrossRefGoogle Scholar
  10. 10.
    Kubena RL, Joyce RJ, Ward JW, Garvin HL, Sratton FP, Brault RG (1988) J Vac Sci Technol B6: 353–356CrossRefGoogle Scholar
  11. 11.
    Rarback H, Shu D, Feng SC, Ade H, Kirz J, McNulty I, Kern DP, Chang THP, Vladimirsky Y, Iskander N, Attwood D, McQuaid K, Rothman S (1988) Rev Sci Instrum 59: 52–59ADSCrossRefGoogle Scholar
  12. 12.
    McCord MA, Pease RFW (1986) J Vac Sci Technol B4: 86–88Google Scholar
  13. 13.
    McCord MA, Pease RFW (1985) J Vac Sci Technol B3: 198–201CrossRefGoogle Scholar
  14. 14.
    Eigler DM, Schweizer EK (1990) Nature 344: 524–526ADSCrossRefGoogle Scholar
  15. 15.
    Broers AN, Timbs AE (1989) Microelectron Engin 9: 187–190CrossRefGoogle Scholar
  16. 16.
    Craighead HG, Howard RE, Jackel LD, Mankiewich PM (1983) Appl Phys Lett 42 (1): 38–40ADSCrossRefGoogle Scholar
  17. 17.
    Broers AN, Harper JME, Molzen WW (1978) Appl Phys Lett 33 (5): 392–394ADSCrossRefGoogle Scholar
  18. 18.
    Broers AN (1981) J Electrochem Soc 128 (1): 166–170CrossRefGoogle Scholar
  19. 19.
    Ouano AC, Gipstein E, Johnston D, Need OU III (1977) Polymer Eng Sci 17: 396–401CrossRefGoogle Scholar
  20. 20.
    Broers AN, Cuomo JJ, Harper J, Molzen W, Laibowitz RB, Pomerantz M (1978) Electron Micros II1:343–354Google Scholar
  21. 21.
    Broers AN, Cuomo JJ, Krakow W (1981) IBM Tech Disclosure Bull 24: 1534Google Scholar
  22. 22.
    Isaacson M, Muray A (1981) J Vac Sci Technol 19: 1117–1120ADSCrossRefGoogle Scholar
  23. 23.
    Muray A, Scheinfein M, Isaacson M, Adesida I (1985) J Vac Sci Technol B3(1):367–372Google Scholar
  24. 24.
    Mochel ME, Humphreys CJ, Eades JA, Mochel JM, Petford AM (1983) Appl Phys Lett 42 (4): 392–394ADSCrossRefGoogle Scholar
  25. 25.
    Muray A, Isaacson M (1983) J Vac Sci Technol B1 (4): 1091–1095CrossRefGoogle Scholar
  26. 26.
    Kratschmer E, Isaacson M (1986) J Vac Sci Technol B4 (1): 361–364CrossRefGoogle Scholar
  27. 27.
    O’Keeffe TW, Handy RM (1968) Solid state electronics, vol 11. Pergamon, London, pp 261–266Google Scholar
  28. 28.
    Broers AN, Molzen WW, Cuomo JJ, Wittels ND (1976) Appl Phys Lett 29 (9): 596–598ADSCrossRefGoogle Scholar
  29. 29.
    Allee DR, Broers AN (1990) Appl Phys Lett 57 (21): 2271–2273ADSCrossRefGoogle Scholar
  30. 30.
    Allee DR, Umbach CP, Broers AN (1991) J Vac Sci Technol B9 (6): 2839–2843Google Scholar
  31. 31.
    Joy DC (1988) In: Craven AJ, Elder H (eds) Proc European meeting on electron microscopy 1988. Inst Phys Conf Ser 93(1):23Google Scholar
  32. 32.
    Pan X, Allee DR, Broers AN, Tang YS, Wilkinson CW (1991) Appl Phys Lett 59 (24): 3157–3158ADSCrossRefGoogle Scholar
  33. 33.
    Vasilov VS, Kiv AE, Niyazova OR (1975) Phys Sol (a) 32: 11CrossRefGoogle Scholar
  34. 34.
    Beall Fowler W (1983) Semicond Insul 5: 583Google Scholar
  35. 35.
    Aitken JM (1980) J Noncryst Sol 40: 31ADSCrossRefGoogle Scholar
  36. 36.
    Knotek ML (1983) Semicond Insul 5: 361Google Scholar
  37. 37.
    Feibelman PJ, Knotek ML (1978) Phys Rev B18 (12): 6531–6539ADSCrossRefGoogle Scholar
  38. 38.
    Taft EA (1978) J Electrochem Soc 125: 968CrossRefGoogle Scholar
  39. 39.
    Pliskin WA (1977) J Vac Sci Technol 14 (5): 1064–1081ADSCrossRefGoogle Scholar

Copyright information

© Springer Japan 1992

Authors and Affiliations

  • David R. Allee
    • 1
  • Xiao Dan Pan
  • Alec N. Broers
    • 2
  • Corwin P. Umbach
    • 3
  1. 1.Department of Electrical EngineeringArizona State UniversityTempeUSA
  2. 2.Department of EngineeringCambridge UniversityCambridgeUK
  3. 3.Thomas J. Watson Research CenterIBM Research DivisionYorktown HeightsUSA

Personalised recommendations