Advertisement

Computer-Assisted and Frameless Stereotaxy in Australia: The Operating Arm System

  • Malcolm F. Pell
Conference paper

Summary

The trend toward minimally invasive surgery, coupled with the increasing use of computer software and hardware, has led to a greater use of stereotactic procedures as part of mainstream neurosurgery. Computer-assisted and frameless stereotactic systems allow the performance of stereotactic procedures without the need for mechanical linkage to a stereotactic frame. Both mechanical and optical digitizers are used in Australia, the most widely used system being the Operating Arm System (OAS) from Radionics (Burlington, MA, USA). This system has the advantages of simplicity of use, software programs of image fusion, and a functional stereotactic atlas, and can be used for both frameless and framed stereotactic cases. The initial Australian experience with the OAS at St. Vincent’s Hospital and Concord Hospital in Sydney and its use in 106 cases is presented.

Key words

Frameless stereotaxy Intracranial neurosurgery Image fusion Mechanical digitizer Functional atlas 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Apuzzo MJ, Chandrasoma PT, Cohen D, et al (1987) Computer imaging stereotaxy: experience and perspective related to 500 procedures applied to brain masses. Neurosurgery 20: 930–937PubMedCrossRefGoogle Scholar
  2. 2.
    Bradford R, Thomas DGT, Bydder GM (1987) MRI-directed stereotactic biopsy of cerebral lesions. Acta Neurochir 39: 25–27CrossRefGoogle Scholar
  3. 3.
    Thomas DGT, Nouby RM (1989) Experience in 300 cases of CT-directed stereotactic surgery for lesion biopsy and aspiration of haematoma. Br J Neurosurg 3: 321–326PubMedCrossRefGoogle Scholar
  4. 4.
    Pell MF, Thomas DGT (1991) The initial experience with the Cosman-Roberts-Wells stereo-tactic system. Br J Neurosurg 5: 123–128PubMedCrossRefGoogle Scholar
  5. 5.
    Pell MF, Thomas DGT, Krateminos GP (1993) Stereotactic management of intrinsic brain stem lesions. Ann Acad Med Singapore 22: 447–451PubMedGoogle Scholar
  6. 6.
    Guthrie BL (1994) Graphic-interactive cranial surgery: the operating arm system. In: Pell MF, Thomas DGT (eds) Handbook of stereotaxy using the CRW apparatus. Williams & Wilkins, Boston, pp 193–211Google Scholar
  7. 7.
    Guthrie BL (1993) Graphic interactive cranial surgery. Clin Neurosurg 41: 489–516Google Scholar
  8. 8.
    Roberts DW, Strohbehn JW, Hatch JF, et al (1986) A frameless stereotactic integration of CT imaging and the operating microscope. J Neurosurg 65: 545–549PubMedCrossRefGoogle Scholar
  9. 9.
    Watanabe E, Watanabe T, Manake S, et al (1987) Three-dimensional digitizer (Neuronavigator): new equipment of CT-guided stereotaxy surgery. Surg Neuro 27: 543–547CrossRefGoogle Scholar
  10. 10.
    Watanabe E, Mayanazi Y, Kosugi Y, et al (1991) Open surgery assisted by the Neuronavigator, a stereotactic articulated sensitive arm. Neurosurgery 28: 792–799PubMedCrossRefGoogle Scholar
  11. 11.
    Guthrie BL, Kaplan R, Kelly PJ (1990) Neurosurgical stereotactic operating arm. Stereotactic Funct Neurosurg 54 /55: 497Google Scholar
  12. 12.
    Guthrie BL, Adler JR Jr (1992) Computer-assisted preoperative planning, interactive surgery and frameless stereotaxy. Clin Neurosurg 38: 112–131PubMedGoogle Scholar
  13. 13.
    Zinreich SJ, Tebo SA, Long DM, et al (1993) Frameless stereotaxic integration of CT imaging data: accuracy and initial applications. Radiology 188: 735–742PubMedGoogle Scholar
  14. 14.
    Sandeman DR, Patel N, Chandler C, et al (1994) Advances in image-directed neurosurgery: preliminary experience with the ISG Viewing Wand compared with the Leksell G Frame. Br J Neurosurg 8: 529–544PubMedCrossRefGoogle Scholar
  15. 15.
    Kitchen ND, Lemieux L, Thomas DGT (1993) Accuracy in frame-based and frameless stereotaxy. Stereotactic Funct Neurosurg 61: 195–206CrossRefGoogle Scholar
  16. 16.
    Barnett GH, Kormos DW, Steiner CP, et al (1993) Intraoperative localisation using an armless, frameless stereotactic wand. J Neurosurg 78: 510–514PubMedCrossRefGoogle Scholar
  17. 17.
    Reinhardt HF, Zweifel HJ (1990) Interactive sonar-operated device for stereotactic and open surgery. Stereotactic Funct Neurosurg 54 /55: 393–397CrossRefGoogle Scholar
  18. 18.
    Reinhardt HF, Horstmann GH, Gratzl 0 (1993) Sonic stereometry in microsurgical procedures for deep-seated brain tumours and vascular malformations. Neurosurgery 32: 51–57Google Scholar
  19. 19.
    Bucholz R (1993) Frameless stereotaxy and intraoperative navigation. Practical course presented at the International Congress of Neurological Surgeons, Vancouver, British Columbia, 1993Google Scholar
  20. 20.
    Kato A, Yoshimine T, Hayakawa T, et al (1991) A frameless, armless navigation system for computer-assisted neurosurgery. Technical note. J Neurosurg 74: 845–849Google Scholar
  21. 21.
    Tan KK, Grzeszczuk R, Levin DN, et al (1993) A frameless stereotactic approach to neurosurgical planning based on retrospective patient-image registration. Technical note. J Neurosurg 79: 296–303Google Scholar
  22. 22.
    Roberts TS, De Soto LA, Haynor DR (1994) Electromagnetic navigation systems: use with the CRW. In: Pell MF, Thomas DGT (eds) Handbook of stereotaxy using the CRW apparatus. Williams & Wilkins, Boston, pp 213–217Google Scholar
  23. 23.
    Barnett GH, Kormos DW, Steiner CP, et al (1993) Use of a frameless, armless stereotactic wand for brain tumor localisation with two-dimensional and three-dimensional neuro-imaging. Neurosurgery 33: 674–678PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Tokyo 1997

Authors and Affiliations

  • Malcolm F. Pell
    • 1
    • 2
  1. 1.St. Vincent’s HospitalDarlinghurst, SydneyAustralia
  2. 2.Concord Repatriation General HospitalConcord, SydneyAustralia

Personalised recommendations