HLA class I alleles in Australian aborigines and their peptide binding profiles

  • Xiaojiang Gao
  • Sue Lester
  • Anthony Veale
  • Barry Boettcher
  • Bart Currie
  • James McCluskey
  • Gareth Chelvanayagam


The HLA system is under balancing selection. HLA alleles are maintained in populations by their divergent functions. The peptide binding profiles of HLA alleles may hold the key to a better understanding of HLA diversification and polymorphism maintenance. Long isolated Australian aboriginal populations provide a good model for these studies. The four HLA-A, seven B and five or six C alleles commonly detected in them represent the minimum class I repertoire carried by the founder group as well as the minimum class I polymorphism that needs to be maintained in these populations. All these alleles have a unique combination of the P2 and P9 anchor preferences indicating unique peptide binding profiles that have ‘earned’ their place in the minimum allele set. This study of Australian aborigines provides further insights into the mechanism of HLA evolution in general.

Key words

Major histocompatibility complex Class I human leucocyte antigen gene Human evolution Peptide presentation Australian aborigines 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Argos P (1987) A sensitive procedure to compare amino acid sequences. J. Mol Biol 193: 385–396PubMedCrossRefGoogle Scholar
  2. Barber LD, Gillece-Castro B, Percival L, Li X, Clayberger C, Parham P (1995) Overlap in the repertoires of peptides bound in vivo by a group of related class I HLA-B allotypes. Curr Biol 5: 179–190PubMedCrossRefGoogle Scholar
  3. Belich MP, Madrigal JA, Hildebrand WH, Zemmour J, Williams RC, Luz R, Petzl-Erler ML, Parham P (1992) Unusual HLA-B alleles in two tribes of Brazilian Indians. Nature 357: 326–329PubMedCrossRefGoogle Scholar
  4. Bellwood P (1989) The colonisation of the Pacific: some current hypotheses. In Hill AVS. Serjeantson SW (eds) The colonisation of the Pacific: a genetic trail. Clarendon Press, Oxford, pp 1–59Google Scholar
  5. Bjorkman PJ, Parham P (1990) Structure, function and diversity of class I major histocompatibility complex molecules. Annu Rev Biochem 59: 253–288PubMedCrossRefGoogle Scholar
  6. Charron D (ed) (1997) Genetic diversity of HLA: Functional and Medical Implication. EDK Publishing, ParisGoogle Scholar
  7. Chelvanayagam G (1996) A road map for HLA-A, HLA-B, and HLA-C peptide binding specificities. Immunogenetics 45: 5–26CrossRefGoogle Scholar
  8. Chelvanayagam G, Jakobsen IB, Gao X, Easteal S (1996) Structural comparison of major histocompatibility complex class I molecules and homology modeling of five distinct human leukocyte antigen-A alleles. Protein Eng 9: 1151–1164PubMedCrossRefGoogle Scholar
  9. Chelvanayagam G, Apostolopulos V, McKenzie IFC (1997) Milestones in the molecular structure of the major histocompatibility complex. Protein Eng 10: 471–474PubMedCrossRefGoogle Scholar
  10. Chen W, Khilko S, Fecondo J, Margulies DH, McCluskey J (1994)Google Scholar
  11. Determinant selection of major histocompatibility complex class I-restricted antigenic peptides is explained by 461 class I-peptide affinity and is strongly influenced by nondominant anchor residues. J Exp Med 180:1471–1483Google Scholar
  12. Chen BP, Parham P (1989) Direct binding of influenza peptides to class I HLA molecules. Nature 337: 743–745PubMedCrossRefGoogle Scholar
  13. DiBrino M, Parker KC, Shiloach J, Turner RV, Tsuchida T, Garfield M, Biddison WE, Coligan JE (1994) Endogenous peptides with distinct amino acid anchor residue motifs bind to HLA-A1 and HLA-B8. J Immunol 152: 620–631PubMedGoogle Scholar
  14. Doherty PC, Zinkemagel RM (1975) Enhanced immunological surveillance in mice heterozygous at the H-2 gene complex. Nature 256: 50–52PubMedCrossRefGoogle Scholar
  15. Fremont DH, Matsumura M, Stura EA, Peterson PA, Wilson IA (1992) Crystal structures of two viral peptides in complex with murine MHC class I H-2Kb. Science 257: 919–927PubMedCrossRefGoogle Scholar
  16. Gao X, Veal A, Serjeantson SW (1992a) AB 1: a novel allele found in one third of an Australian population. Immunogenetics 36: 64–66PubMedCrossRefGoogle Scholar
  17. Gao X, Veal A, Serjeantson SW (1992b) HLA class II diversity in Australian Aborigines: unusual HLA-DRB 1 alleles. Immunogenetics 36: 333–337PubMedGoogle Scholar
  18. Gao X, Jakobsen I, Serjeantson SW (1994) Characterisation of the HLA-A polymorphism by locus-specific polymerase chain reaction amplification and oligonucleotide hybridisation. Hum Immunol 41: 267–279PubMedCrossRefGoogle Scholar
  19. Gao X, Lester S, Matheson B, Boettcher J, McCluskey J (1997a) Three newly identified A*24 alleles: A*2406, A*2413 and A*2414. Tissue Antigens 50: 192–196PubMedCrossRefGoogle Scholar
  20. Gao X, Lester S, Boettcher B, McCluskey J (1997b) Diversity of HLA genes in populations of Australia and the Pacific. In: Charron D (ed) Genetic diversity of HLA: Functional and Medical Implication. Vol. 1. EDK Publishing, Paris, pp 298–306Google Scholar
  21. Hughes AL, Nei M (1988) Pattern of nucleotide substitution at major histocompatibility complex class I loci reveals overdominant selection. Nature 335: 167–170PubMedCrossRefGoogle Scholar
  22. akobsen IB, Gao X, Easteal S, Chelvanayagam G (1998) Correlating sequence variation with HLA-A allelic families: implications for T cell receptor binding specificities. Immunol Cell Biol 76: 135–142CrossRefGoogle Scholar
  23. Kato K, Trapani JA, Allopenna J, Dupont B, Yang SY (1989) Molecular analysis of the serologically defined HLA-Aw 19 antigens: A genetically distinct family of HLA-A antigens comprising A29, A31, A32, and Aw33, but probably not A30. J Immunol 143: 3371–3378PubMedGoogle Scholar
  24. Lienert K, McCluskey J, Bennett G, Fowler C, Russ G (1995) HLA class I variation in Australian aborigines: characterization of allele B*1521. Tissue Antigens 45: 12–17PubMedCrossRefGoogle Scholar
  25. Lester S, Cassidy S, Humphreys I, Bennett G, Hurley CK, Boettcher B, McCluskey J (1995) Evolution in HLA-DRB 1 and major histocompatibility complex class II haplotypes of Australian aborigines, Definition of a new DRB 1 allele and distribution of DRB1 gene frequencies. Hum Immunol 42: 154–160PubMedCrossRefGoogle Scholar
  26. Parham P, Arnett KL, Adams EJ, Little AM, Tees K, Barber LD, Marsh SG, Ohta T, Markow T, Petzl-Erler ML (1997) Episodic evolution and turnover of HLA-B in the indigenous human populations of the Americas. Tissue Antigens 50: 219–232PubMedCrossRefGoogle Scholar
  27. Roberts-Thomson JM, Martinson JJ, Norwich JT, Harding RM, Clegg JB, Boettcher B (1999) An ancient common origin of aboriginal Australians and New Guinea highlanders is supported by a—globin haplotypes analysis. Am J Hum Genet 58: 10171024Google Scholar
  28. Ruppert J, Sidney J, Celis E, Kubo RT, Grey HM, Sette A (1993) Prominent role of secondary anchor residues in peptide binding to HLA-A2.1 molecules. Cell 74: 929–937PubMedCrossRefGoogle Scholar
  29. Serjeantson SW (1989) HLA genes and antigens. In: Hill AVH, Serjeantson SW (eds) The Colonization of the Pacific: A Genetic Trail. Clarendo Press, Oxford, pp 121–173Google Scholar
  30. Thorne A, Grün R, Mortimer G, Spooner NA, Simpson JJ, McCulloch M, Taylor L, Curnoe D (1999) Australia’s oldest human remains: age of the Lake Mungo 3 skeleton. J Hum Evol 36: 591–612PubMedCrossRefGoogle Scholar
  31. Watkins DI, McAdam SN, Liu X, Strang CR, Milford EL, Levine CG, Garber TL, Dogon AL, Lord CI, Ghim SH et al. (1992) New recombinant HLA-B alleles in a tribe of South American Amerindians indicate rapid evolution of MHC class I loci. Nature 357: 329333Google Scholar
  32. White N (1997) Genes, languages and landscapes in Australia. In: McConvell P and Evans N (eds) Archaeology and linguistics: aboriginal Australia in global perspective. Oxford University Press, Oxford, pp 45–81Google Scholar

Copyright information

© Springer Japan 2000

Authors and Affiliations

  • Xiaojiang Gao
    • 1
    • 2
  • Sue Lester
    • 3
  • Anthony Veale
    • 4
  • Barry Boettcher
    • 5
  • Bart Currie
    • 6
  • James McCluskey
    • 3
  • Gareth Chelvanayagam
    • 2
  1. 1.IRSP, SAIC Frederick, NCI-FCRDFrederickUSA
  2. 2.Human Genetics Group, John Curtin School of Medical ResearchThe Australian National UniversityCanberraAustralia
  3. 3.Red Cross Blood Transfusion ServiceAdelaideAustralia
  4. 4.National Centre for Epidemiology and Population HealthThe Australian National UniversityCanberraAustralia
  5. 5.Department of Biological SciencesThe University of NewcastleNewcastleAustralia
  6. 6.Menzies School of Health ResearchDarwinAustralia

Personalised recommendations