Advertisement

Propagation Simulation

  • Tatsuhiko Saito
Chapter
Part of the Springer Geophysics book series (SPRINGERGEOPHYS)

Abstract

Tsunami propagation simulations are very useful in both theoretical and application studies. Recent improvements in computer performance and the detailed bathymetry surveys in local- and global-scale make numerical simulations more feasible and reliable. This chapter treats the theoretical background and numerical schemes underlying tsunami propagation simulations. Since tsunami wavelength is usually greater than the sea depth, we approximate a 3-D equation of motion using 2-D tsunami equations. There are various kinds of tsunami equations according to the approximations. Hence, it is important to select appropriate tsunami equations depending on the situation and purpose of the simulation. Section 6.1 is an overview of various tsunami equations and introduces some results of the simulations. Section 6.2 derives the 2-D tsunami equations from the 3-D equation of motion by assuming long-wavelength wave propagation. We explain the linear long-wave equations, nonlinear long-wave equations, and linear dispersive equations. Section 6.3 illustrates the finite difference methods for numerically simulating the tsunami propagation across realistic bathymetry.

Keywords

Long-wave approximation Nonlinear long-wave equations Linear dispersive equations Nonlinear dispersive equations Finite difference method 

References

  1. Baba T et al (2016) Large-scale, high-speed tsunami prediction for the great Nankai trough earthquake on the K computer. Int J High Perform Comput Appl 30(1):71–84.  https://doi.org/10.1177/1094342015584090 CrossRefGoogle Scholar
  2. Cerjan C, Kosloff D, Kosloff R, Reshef M (1985) A nonreflecting boundary condition for discrete acoustic and elastic wave equations. Geophysics 50(4):705–708CrossRefGoogle Scholar
  3. Coastal Engineering Committee, Japan Society of Civil Engineers (1994) Kaigan Hado (in Japanese), Japan Society of Civil Engineers, pp 520Google Scholar
  4. Fujii Y, Satake K, Sakai S, Shinohara M, Kanazawa T (2011) Tsunami source of the 2011 off the Pacific coast of Tohoku earthquake. Earth Planet Sp 63(7):55.  https://doi.org/10.5047/eps.2011.06.010 CrossRefGoogle Scholar
  5. Hwang LS, Butler HL, Divoky DJ (1972) Tsunami model: generation and open-sea characteristics. Bull Seismol Soc Am 62(6):1579–1596Google Scholar
  6. Imamura F (1996) In: Yeh H, Liu P, Synolakis C (eds) Review of tsunami simulation with a finite difference method, in long-wave Runup models. World Scientific Publishing, Hackensack, pp 25–42Google Scholar
  7. Inazu D, Saito T (2014) Two subevents across the Japan trench during the 7 December 2012 off Tohoku earthquake (Mw 7.3) inferred from offshore tsunami records. J Geophys Res Solid Earth 119(7):5800–5813.  https://doi.org/10.1002/2013JB010892 CrossRefGoogle Scholar
  8. Iwasaki R, Mano A (1979) Two-dimensional numerical simulation of tsunami runup in the Eulerian description (in Japanese). Proceedings of 26th conference on coastal engineering, JSCE, pp 70–74Google Scholar
  9. Kirby JT, Shi F, Tehranirad B, Harris JC, Grilli ST (2013) Dispersive tsunami waves in the ocean: model equations and sensitivity to dispersion and Coriolis effects. Ocean Model 62:39–55.  https://doi.org/10.1016/j.ocemod.2012.11.009 CrossRefGoogle Scholar
  10. Koketsu K et al (2011) A unified source model for the 2011 Tohoku earthquake. Earth Planet Sci Lett 310(3):480–487.  https://doi.org/10.1016/j.epsl.2011.09.009 CrossRefGoogle Scholar
  11. Lotto GC, Nava G, Dunham EM (2017) Should tsunami simulations include a nonzero initial horizontal velocity? Earth Planet Sp 69:117.  https://doi.org/10.1186/s40623-017-0701-8 CrossRefGoogle Scholar
  12. Madsen PA, Sørensen OR (1992) A new form of the Boussinesq equations with improved linear dispersion characteristics. Part 2. A slowly-varying bathymetry. Coast Eng 18(3–4):183–204.  https://doi.org/10.1016/0378-3839(92)90019-Q CrossRefGoogle Scholar
  13. Maeda T, Tsushima H, Furumura T (2016) An effective absorbing boundary condition for linear long-wave and linear dispersive-wave tsunami simulations. Earth Planet Sp 68(1):1–14.  https://doi.org/10.1186/s40623-016-0436-y CrossRefGoogle Scholar
  14. Minoura K, Imamura F, Sugawara D, Kono Y, Iwashita T (2001) The 869 Jogan tsunami deposit and recurrence interval of large-scale tsunami on the Pacific coast of Northeast Japan. J Nat Dis Sci 23(2):83–88Google Scholar
  15. Munk WH (1963) Some comments regarding diffusion and absorption of tsunamis. In Proceedings of tsunami meetings, tenth Pacific science congress, IUGG Monograph, no. 24, Paris, pp 53–72Google Scholar
  16. Namegaya Y, Satake K (2014) Reexamination of the AD 869 Jogan earthquake size from tsunami deposit distribution, simulated flow depth, and velocity. Geophys Res Lett 41(7):2297–2303.  https://doi.org/10.1002/2013GL058678 CrossRefGoogle Scholar
  17. Oishi Y, Imamura F, Sugawara D (2015) Near-field tsunami inundation forecast using the parallel TUNAMI-N2 model: application to the 2011 Tohoku-Oki earthquake combined with source inversions. Geophys Res Lett 42(4):1083–1091.  https://doi.org/10.1002/2014GL062577 CrossRefGoogle Scholar
  18. Peregrine DH (1972) Equations for water waves and the approximations behind them. Waves on beaches and resulting sediment transport, pp 95–121CrossRefGoogle Scholar
  19. Saito T (2013) Dynamic tsunami generation due to sea-bottom deformation: analytical representation based on linear potential theory. Earth Planets Space 65(12):1411–1423CrossRefGoogle Scholar
  20. Saito T, Satake K, Furumura T (2010) Tsunami waveform inversion including dispersive waves: the 2004 earthquake off Kii peninsula, Japan. J Geophys Res Solid Earth 115:B06303.  https://doi.org/10.1029/2009JB006884 CrossRefGoogle Scholar
  21. Saito T, Ito Y, Inazu D, Hino R (2011) Tsunami source of the 2011 Tohoku-Oki earthquake, Japan: inversion analysis based on dispersive tsunami simulations. Geophys Res Lett 38(7).  https://doi.org/10.1029/2011GL049089 CrossRefGoogle Scholar
  22. Saito T, Inazu D, Tanaka S, Miyoshi T (2013) Tsunami coda across the Pacific Ocean following the 2011 Tohoku-Oki earthquake. Bull Seismol Soc Am 103(2B):1429–1443.  https://doi.org/10.1785/0120120183 CrossRefGoogle Scholar
  23. Saito T, Inazu D, Miyoshi T, Hino R (2014) Dispersion and nonlinear effects in the 2011 Tohoku-Oki earthquake tsunami. J Geophys Res Oceans 119:5160–5180.  https://doi.org/10.1002/2014JC009971 CrossRefGoogle Scholar
  24. Satake K (1995) Linear and nonlinear computations of the 1992 Nicaragua earthquake tsunami. Pure Appl Geophys 144:450–470.  https://doi.org/10.1007/BF00874378 CrossRefGoogle Scholar
  25. Satake K, Fujii Y, Harada T, Namegaya Y (2013) Time and space distribution of coseismic slip of the 2011 Tohoku earthquake as inferred from tsunami waveform data. Bull Seismol Soc Am 103(2B):1473–1492.  https://doi.org/10.1785/0120120122 CrossRefGoogle Scholar
  26. Sato H, Fehler MC, Maeda T (2012) Seismic wave propagation and scattering in the heterogeneous earth, vol 484. Springer, BerlinCrossRefGoogle Scholar
  27. Shi F, Kirby JT, Harris JC, Geiman JD, Grilli ST (2012) A high-order adaptive time-stepping TVD solver for Boussinesq modeling of breaking waves and coastal inundation. Ocean Model 43:36–51.  https://doi.org/10.1016/j.ocemod.2011.12.004 CrossRefGoogle Scholar
  28. Suzuki W, Aoi S, Sekiguchi H, Kunugi T (2011) Rupture process of the 2011 Tohoku-Oki mega-thrust earthquake (M9. 0) inverted from strong-motion data. Geophys Res Lett 38(7).  https://doi.org/10.1029/2011GL049136 CrossRefGoogle Scholar
  29. Van Dorn WG (1984) Some tsunami characteristics deducible from tide records. J Phys Oceanogr 13:353–363CrossRefGoogle Scholar
  30. Van Dorn WG (1987) Tide gage response to tsunamis. Part II: other oceans and smaller seas. J Phys Oceanogr 17:1507–1516CrossRefGoogle Scholar

Copyright information

© Springer Japan KK, part of Springer Nature 2019

Authors and Affiliations

  • Tatsuhiko Saito
    • 1
  1. 1.National Research Institute for Earth Science and Disaster ResilienceTsukubaJapan

Personalised recommendations