Advertisement

Muse Cells pp 167-186 | Cite as

Application of Muse Cell Therapy to Stroke

  • Kuniyasu NiizumaEmail author
  • Cesar V. Borlongan
  • Teiji Tominaga
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1103)

Abstract

Stroke is defined as a sudden onset of neurologic deficits arising from cerebrovascular complications. It is the second common cause of death around the world and the major cause of disability. Because brain is an organ with complicated neural networks and neurons are highly differentiated, it has been traditionally considered to possess a limited potential for regeneration. The number of stroke patients is increasing, and stroke represents a serious problem from the viewpoint of the national medical economy. Even with the current sophisticated treatments, more than half of stroke patient survivors remain disabled. Therefore, it is imperative to develop a new treatment for promoting functional recovery and repair of the lost neurological circuit. Multilineage-differentiating stress-enduring (Muse) cells are endogenous non-tumorigenic stem cells with pluripotency. After transplantation, Muse cells recognize the injured site through their specific receptor for damage signal, home preferentially into these tissues and spontaneously differentiate into tissue-compatible cells to replace the lost cells, and repair the tissue, delivering functional and structural regeneration. These properties are desirable for the treatment of strokes and advantageous compared to other stem cell therapies. Here, we describe the current status of stem cell therapies for stroke and future possibilities of Muse cell therapy.

Keywords

Brain Brain ischemia Cell therapies Cerebral infarction Intracerebral hemorrhage Muse cells Regeneration Stem cells Stroke 

References

  1. 1.
    Pelvig DP, Pakkenberg H, Stark AK, Pakkenberg B (2008) Neocortical glial cell numbers in human brains. Neurobiol Aging 29:1754–1762CrossRefGoogle Scholar
  2. 2.
    Jin K, Minami M, Lan JQ, Mao XO, Batteur S, Simon RP, Greenberg DA (2001) Neurogenesis in dentate subgranular zone and rostral subventricular zone after focal cerebral ischemia in the rat. Proc Natl Acad Sci USA 98:4710–4715CrossRefGoogle Scholar
  3. 3.
    Jin K, Wang X, Xie L, Mao XO, Zhu W, Wang Y, Shen J, Mao Y, Banwait S, Greenberg DA (2006) Evidence for stroke-induced neurogenesis in the human brain. Proc Natl Acad Sci USA 103:13198–13202CrossRefGoogle Scholar
  4. 4.
    Tatebayashi K, Tanaka Y, Nakano-Doi A, Sakuma R, Kamachi S, Shirakawa M, Uchida K, Kageyama H, Takagi T, Yoshimura S, Matsuyama T, Nakagomi T (2017) Identification of multipotent stem cells in human brain tissue following stroke. Stem Cells Dev 26:787–797CrossRefGoogle Scholar
  5. 5.
    Takata M, Nakagomi T, Kashiwamura S, Nakano-Doi A, Saino O, Nakagomi N, Okamura H, Mimura O, Taguchi A, Matsuyama T (2012) Glucocorticoid-induced TNF receptor-triggered T cells are key modulators for survival/death of neural stem/progenitor cells induced by ischemic stroke. Cell Death Differ 19:756–767CrossRefGoogle Scholar
  6. 6.
    Donnan GA, Fisher M, Macleod M, Davis SM (2008) Stroke. Lancet 371:1612–1623CrossRefGoogle Scholar
  7. 7.
    Khalili MA, Sadeghian-Nodoushan F, Fesahat F, Mir-Esmaeili SM, Anvari M, Hekmati-Moghadam SH (2014) Mesenchymal stem cells improved the ultrastructural morphology of cerebral tissues after subarachnoid hemorrhage in rats. Exp Neurobiol 23:77–85CrossRefGoogle Scholar
  8. 8.
    Stonesifer C, Corey S, Ghanekar S, Diamandis Z, Acosta SA, Borlongan CV (2017) Stem cell therapy for abrogating stroke-induced neuroinflammation and relevant secondary cell death mechanisms. Prog Neurobiol 158:94–131CrossRefGoogle Scholar
  9. 9.
    Kondziolka D, Steinberg GK, Wechsler L, Meltzer CC, Elder E, Gebel J, Decesare S, Jovin T, Zafonte R, Lebowitz J, Flickinger JC, Tong D, Marks MP, Jamieson C, Luu D, Bell-Stephens T, Teraoka J (2005) Neurotransplantation for patients with subcortical motor stroke: a phase 2 randomized trial. J Neurosurg 103:38–45CrossRefGoogle Scholar
  10. 10.
    Savitz SI, Dinsmore J, Wu J, Henderson GV, Stieg P, Caplan LR (2005) Neurotransplantation of fetal porcine cells in patients with basal ganglia infarcts: a preliminary safety and feasibility study. Cerebrovasc Dis 20:101–107CrossRefGoogle Scholar
  11. 11.
    Bang OY, Lee JS, Lee PH, Lee G (2005) Autologous mesenchymal stem cell transplantation in stroke patients. Ann Neurol 57:874–882CrossRefGoogle Scholar
  12. 12.
    Lee JS, Hong JM, Moon GJ, Lee PH, Ahn YH, Bang OY (2010) A long-term follow-up study of intravenous autologous mesenchymal stem cell transplantation in patients with ischemic stroke. Stem Cells 28:1099–1106CrossRefGoogle Scholar
  13. 13.
    Honmou O, Houkin K, Matsunaga T, Niitsu Y, Ishiai S, Onodera R, Waxman SG, Kocsis JD (2011) Intravenous administration of auto serum-expanded autologous mesenchymal stem cells in stroke. Brain 134:1790–1807CrossRefGoogle Scholar
  14. 14.
    Bhasin A, Srivastava MV, Kumaran SS, Mohanty S, Bhatia R, Bose S, Gaikwad S, Garg A, Airan B (2011) Autologous mesenchymal stem cells in chronic stroke. Cerebrovasc Dis Extra 1:93–104CrossRefGoogle Scholar
  15. 15.
    Diez-Tejedor E, Gutierrez-Fernandez M, Martinez-Sanchez P, Rodriguez-Frutos B, Ruiz-Ares G, Lara ML, Gimeno BF (2014) Reparative therapy for acute ischemic stroke with allogeneic mesenchymal stem cells from adipose tissue: a safety assessment: a phase II randomized, double-blind, placebo-controlled, single-center, pilot clinical trial. J Stroke Cerebrovasc Dis 23:2694–2700CrossRefGoogle Scholar
  16. 16.
    Steinberg GK, Kondziolka D, Wechsler LR, Lunsford LD, Coburn ML, Billigen JB, Kim AS, Johnson JN, Bates D, King B, Case C, McGrogan M, Yankee EW, Schwartz NE (2016) Clinical outcomes of transplanted modified bone marrow-derived mesenchymal stem cells in stroke: a phase 1/2a study. Stroke 47:1817–1824CrossRefGoogle Scholar
  17. 17.
    Barbosa Da Fonseca LM, Battistella V, de Freitas GR, Gutfilen B, Dos Santos Goldenberg RC, Maiolino A, Wajnberg E, Rosado De Castro PH, Mendez-Otero R, Andre C (2009) Early tissue distribution of bone marrow mononuclear cells after intra-arterial delivery in a patient with chronic stroke. Circulation 120:539–541CrossRefGoogle Scholar
  18. 18.
    Suarez-Monteagudo C, Hernandez-Ramirez P, Alvarez-Gonzalez L, Garcia-Maeso I, de la Cuetara-Bernal K, Castillo-Diaz L, Bringas-Vega ML, Martinez-Aching G, Morales-Chacon LM, Baez-Martin MM, Sanchez-Catasus C, Carballo-Barreda M, Rodriguez-Rojas R, Gomez-Fernandez L, Alberti-Amador E, Macias-Abraham C, Balea ED, Rosales LC, Del Valle Perez L, Ferrer BB, Gonzalez RM, Bergado JA (2009) Autologous bone marrow stem cell neurotransplantation in stroke patients. An open study. Restor Neurol Neurosci 27:151–161PubMedGoogle Scholar
  19. 19.
    Savitz SI, Misra V, Kasam M, Juneja H, Cox CS Jr, Alderman S, Aisiku I, Kar S, Gee A, Grotta JC (2011) Intravenous autologous bone marrow mononuclear cells for ischemic stroke. Ann Neurol 70:59–69CrossRefGoogle Scholar
  20. 20.
    Battistella V, de Freitas GR, da Fonseca LM, Mercante D, Gutfilen B, Goldenberg RC, Dias JV, Kasai-Brunswick TH, Wajnberg E, Rosado-De-Castro PH, Alves-Leon SV, Mendez-Otero R, Andre C (2011) Safety of autologous bone marrow mononuclear cell transplantation in patients with nonacute ischemic stroke. Regen Med 6:45–52CrossRefGoogle Scholar
  21. 21.
    Moniche F, Gonzalez A, Gonzalez-Marcos JR, Carmona M, Pinero P, Espigado I, Garcia-Solis D, Cayuela A, Montaner J, Boada C, Rosell A, Jimenez MD, Mayol A, Gil-Peralta A (2012) Intra-arterial bone marrow mononuclear cells in ischemic stroke: a pilot clinical trial. Stroke 43:2242–2244CrossRefGoogle Scholar
  22. 22.
    Friedrich MA, Martins MP, Araujo MD, Klamt C, Vedolin L, Garicochea B, Raupp EF, Sartori El Ammar J, Machado DC, Costa JC, Nogueira RG, Rosado-De-Castro PH, Mendez-Otero R, Freitas GR (2012) Intra-arterial infusion of autologous bone marrow mononuclear cells in patients with moderate to severe middle cerebral artery acute ischemic stroke. Cell Transplant 21(Suppl 1):S13–S21CrossRefGoogle Scholar
  23. 23.
    Rosado-De-Castro PH, Schmidt Fda R, Battistella V, Lopes De Souza SA, Gutfilen B, Goldenberg RC, Kasai-Brunswick TH, Vairo L, Silva RM, Wajnberg E, Alvarenga Americano Do Brasil PE, Gasparetto EL, Maiolino A, Alves-Leon SV, Andre C, Mendez-Otero R, Rodriguez De Freitas G, Barbosa Da Fonseca LM (2013) Biodistribution of bone marrow mononuclear cells after intra-arterial or intravenous transplantation in subacute stroke patients. Regen Med 8:145–155CrossRefGoogle Scholar
  24. 24.
    Taguchi A, Sakai C, Soma T, Kasahara Y, Stern DM, Kajimoto K, Ihara M, Daimon T, Yamahara K, Doi K, Kohara N, Nishimura H, Matsuyama T, Naritomi H, Sakai N, Nagatsuka K (2015) Intravenous autologous bone marrow mononuclear cell transplantation for stroke: phase1/2a clinical trial in a homogeneous group of stroke patients. Stem Cells Dev 24:2207–2218CrossRefGoogle Scholar
  25. 25.
    Amariglio N, Hirshberg A, Scheithauer BW, Cohen Y, Loewenthal R, Trakhtenbrot L, Paz N, Koren-Michowitz M, Waldman D, Leider-Trejo L, Toren A, Constantini S, Rechavi G (2009) Donor-derived brain tumor following neural stem cell transplantation in an ataxia telangiectasia patient. PLoS Med 6:e1000029CrossRefGoogle Scholar
  26. 26.
    Osanai T, Houkin K, Uchiyama S, Minematsu K, Taguchi A, Terasaka S (2017) Treatment evaluation of acute stroke for using in regenerative cell elements (TREASURE) trial: rationale and design. Int J Stroke 1747493017743057Google Scholar
  27. 27.
    Uchida N, Kushida Y, Kitada M, Wakao S, Kumagai N, Kuroda Y, Kondo Y, Hirohara Y, Kure S, Chazenbalk G, Dezawa M (2017) Beneficial effects of systemically administered human Muse cells in Adriamycin nephropathy. J Am Soc Nephrol 28:2946–2960CrossRefGoogle Scholar
  28. 28.
    Uchida H, Sakata H, Fujimura M, Niizuma K, Kushida Y, Dezawa M, Tominaga T (2015) Experimental model of small subcortical infarcts in mice with long-lasting functional disabilities. Brain Res 1629:318–328CrossRefGoogle Scholar
  29. 29.
    Uchida H, Morita T, Niizuma K, Kushida Y, Kuroda Y, Wakao S, Sakata H, Matsuzaka Y, Mushiake H, Tominaga T, Borlongan CV, Dezawa M (2016) Transplantation of unique subpopulation of fibroblasts, Muse cells, ameliorates experimental stroke possibly via robust neuronal differentiation. Stem Cells 34:160–173CrossRefGoogle Scholar
  30. 30.
    Uchida H, Niizuma K, Kushida Y, Wakao S, Tominaga T, Borlongan CV, Dezawa M (2017) Human Muse cells reconstruct neuronal circuitry in subacute lacunar stroke model. Stroke 48:428–435CrossRefGoogle Scholar
  31. 31.
    Yasuhara T, Matsukawa N, Hara K, Maki M, Ali MM, Yu SJ, Bae E, Yu G, Xu L, McGrogan M, Bankiewicz K, Case C, Borlongan CV (2009) Notch-induced rat and human bone marrow stromal cell grafts reduce ischemic cell loss and ameliorate behavioral deficits in chronic stroke animals. Stem Cells Dev 18:1501–1514CrossRefGoogle Scholar
  32. 32.
    Shen LH, Li Y, Chen J, Zacharek A, Gao Q, Kapke A, Lu M, Raginski K, Vanguri P, Smith A, Chopp M (2007) Therapeutic benefit of bone marrow stromal cells administered 1 month after stroke. J Cereb Blood Flow Metab 27:6–13CrossRefGoogle Scholar
  33. 33.
    Chen J, Zhang ZG, Li Y, Wang L, Xu YX, Gautam SC, Lu M, Zhu Z, Chopp M (2003) Intravenous administration of human bone marrow stromal cells induces angiogenesis in the ischemic boundary zone after stroke in rats. Circ Res 92:692–699CrossRefGoogle Scholar
  34. 34.
    Chen J, Li Y, Wang L, Zhang Z, Lu D, Lu M, Chopp M (2001) Therapeutic benefit of intravenous administration of bone marrow stromal cells after cerebral ischemia in rats. Stroke 32:1005–1011CrossRefGoogle Scholar
  35. 35.
    Pappenheimer AM Jr, Harper AA, Moynihan M, Brockes JP (1982) Diphtheria toxin and related proteins: effect of route of injection on toxicity and the determination of cytotoxicity for various cultured cells. J Infect Dis 145:94–102CrossRefGoogle Scholar
  36. 36.
    Cummings BJ, Uchida N, Tamaki SJ, Salazar DL, Hooshmand M, Summers R, Gage FH, Anderson AJ (2005) Human neural stem cells differentiate and promote locomotor recovery in spinal cord-injured mice. Proc Natl Acad Sci USA 102:14069–14074CrossRefGoogle Scholar
  37. 37.
    Yamauchi T, Kuroda Y, Morita T, Shichinohe H, Houkin K, Dezawa M, Kuroda S (2015) Therapeutic effects of human multilineage-differentiating stress enduring (MUSE) cell transplantation into infarct brain of mice. PLoS One 10:e0116009CrossRefGoogle Scholar
  38. 38.
    Li ZM, Zhang ZT, Guo CJ, Geng FY, Qiang F, Wang LX (2013) Autologous bone marrow mononuclear cell implantation for intracerebral hemorrhage-a prospective clinical observation. Clin Neurol Neurosurg 115:72–76CrossRefGoogle Scholar
  39. 39.
    Sharma A, Sane H, Gokulchandran N, Khopkar D, Paranjape A, Sundaram J, Gandhi S, Badhe P (2014) Autologous bone marrow mononuclear cells intrathecal transplantation in chronic stroke. Stroke Res Treat 2014:234095PubMedPubMedCentralGoogle Scholar
  40. 40.
    Zhu J, Xiao Y, Li Z, Han F, Xiao T, Zhang Z, Geng F (2015) Efficacy of surgery combined with autologous bone marrow stromal cell transplantation for treatment of intracerebral hemorrhage. Stem Cells Int 2015:318269PubMedPubMedCentralGoogle Scholar
  41. 41.
    Shimamura N, Kakuta K, Wang L, Naraoka M, Uchida H, Wakao S, Dezawa M, Ohkuma H (2017) Neuro-regeneration therapy using human Muse cells is highly effective in a mouse intracerebral hemorrhage model. Exp Brain Res 235:565–572CrossRefGoogle Scholar

Copyright information

© Springer Japan KK, part of Springer Nature 2018

Authors and Affiliations

  • Kuniyasu Niizuma
    • 1
    • 2
    • 3
    Email author
  • Cesar V. Borlongan
    • 4
  • Teiji Tominaga
    • 3
  1. 1.Department of Neurosurgical Engineering and Translational NeuroscienceTohoku University Graduate School of Biomedical EngineeringSendaiJapan
  2. 2.Department of Neurosurgical Engineering and Translational NeuroscienceTohoku University Graduate School of MedicineSendaiJapan
  3. 3.Department of NeurosurgeryTohoku University Graduate School of MedicineSendaiJapan
  4. 4.Department of Neurosurgery and Brain RepairUniversity of South Florida College of MedicineTampaUSA

Personalised recommendations