Advertisement

Muse Cells pp 153-166 | Cite as

Acute Myocardial Infarction, Cardioprotection, and Muse Cells

  • Shinya Minatoguchi
  • Atsushi Mikami
  • Toshiki Tanaka
  • Shingo Minatoguchi
  • Yoshihisa Yamada
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1103)

Abstract

Acute myocardial infarction (AMI) is a common cause of morbidity and mortality worldwide. Severe MI leads to heart failure due to a marked loss of functional cardiomyocytes. First-line treatment for AMI is to reperfuse the occluded coronary artery by PCI as soon as possible. Besides PCI, there are several therapies to reduce the infarct size and improve the cardiac function and remodeling. These are drug therapies such as pharmacological pre- and postconditioning, cytokine therapies, and stem cell therapies. None of these therapies have been clinically developed as a standard treatment for AMI. Among many cell sources for stem cell therapies, the Muse cell is an endogenous non-tumorigenic pluripotent stem cell, which is able to differentiate into cells of all three germ layers from a single cell, suggesting that the Muse cell is a potential cell source for regenerative medicine. Endogenous Muse cell dynamics in the acute phase plays an important role in the prognosis of AMI patients; AMI patients with a higher number of Muse cells in the peripheral blood in the acute phase show more favorable improvement of the cardiac function and remodeling in the chronic phase, suggesting their innate reparative function for the heart. Intravenously administered exogenous Muse cells engrafted preferentially and efficiently to infarct border areas via the S1P-S1PR2 axis and differentiated spontaneously into working cardiomyocytes and vessels, showed paracrine effects, markedly reduced the myocardial infarct size, and delivered long-lasting improvement of the cardiac function and remodeling for 6 months. These findings suggest that Muse cells are reparative stem cells, and thus their clinical application is warranted.

Keywords

Muse cells Cardiomyocyte regeneration Acute myocardial infarction Cardiac function Cardiac remodeling 

References

  1. 1.
    Pfeffer MA, Brawnwald E (1990) Ventricular remodeling after myocardial infarction. Experimental observation and clinical implications. Circulation 81:1161–1172CrossRefGoogle Scholar
  2. 2.
    Glogar D, Yang P, Steurer G (1996) Management of acute myocardial infarction: evaluating the past, practicing in the present, elaborating the future. Am Heart J 132:465–470CrossRefGoogle Scholar
  3. 3.
    Berger BB, Ellis SG, Holmes DR Jr, Granger CB, Criger DA, Betriu A, Topol EJ, Califf RM (1999) For the GUSTO-II investigators. Relationship between delay in performing direct coronary angioplasty and early clinical outcome in patients with acute myocardial infarction-results from the global use of strategies to open occluded arteries in acute coronary syndromes (GUSTO-IIb) trial. Circulation 100:14–20CrossRefGoogle Scholar
  4. 4.
    Murry CE, Jennings RB, Reimer KA (1986) Preconditioning with ischemia: a delay of lethal cell injury in ischemic myocardium. Circulation 74:1124–1136CrossRefGoogle Scholar
  5. 5.
    Yellon DM, Alkhulaifi AM, Browne EE, Pugsley WB (1992) Ischaemic preconditioning limits infarct size in the rat heart. Cardiovasc Res 26:983–987CrossRefGoogle Scholar
  6. 6.
    Liu GS, Thornton J, Van Winkle DM, Stanley AWH, Olsson RA, Downey JM (1991) Protection against infarction afforded by preconditioning is mediated by A1 adenosine receptors in rabbit heart. Circulation 84:350–356CrossRefGoogle Scholar
  7. 7.
    Scott RJ, Rohmann S, Braun ER, Schaper W (1990) Ischemic preconditioning reduces infarct size in swine myocardium. Circ Res 66:1133–1142CrossRefGoogle Scholar
  8. 8.
    Noda T, Minatoguchi S, Fujii K, Hori M, Ito T, Kanmatsuse K, Matsuzaki M, Miura T, Nonogi H, Tada M, Tanaka M, Fujiwara H (1999) Evidence for the delayed effect in human ischemic preconditioning. J Am Coll Cardiol 34:1966–1974CrossRefGoogle Scholar
  9. 9.
    Ottani F, Galvani M, Ferrini D, Sorbello F, Limonetti P, Pantoli D, Rusticali F (1995) Prodromal angina limit infarct size. A role for ischemic preconditioning. Circulation 91:291–297CrossRefGoogle Scholar
  10. 10.
    Nakagawa Y, Ito H, Kitakaze M, Kusuoka H, Hori M, Kuzuya T, Higashino Y, Fujii K, Minamino T (1995) Effect of angina pectoris on myocardial protection in patients with reperfused anterior wall myocardial infarction: retrospective clinical evidence of “preconditioning.”. J Am Coll Cardiol 25:1076–1083CrossRefGoogle Scholar
  11. 11.
    Thornton JD, Liu GS, Olsson RA, Downey JM (1992) Intravenous pretreatment with A1-selective adenosine analogues protects the heart against infarction. Circulation 85:659–665CrossRefGoogle Scholar
  12. 12.
    Mahiko G, Liu Y, Yang XM, Ardell JL, Cohen MV, Downey JM (1995) Role of bradykinin in protection of ischemic preconditioning in rabbit hearts. Circ Res 77:611–621CrossRefGoogle Scholar
  13. 13.
    Wang GY, Wu S, Pei JM, Yu XC, Wong TM (2001) Kappa- but not delta-opioid receptors mediate effects of ischemic preconditioning on both infarct and arrhythmia in rats. Am J Physiol Heart Circ Physiol 280:H384–H391CrossRefGoogle Scholar
  14. 14.
    Bankwara Z, Hale SL, Kloner RA (1994) α-Adrenoceptor stimulation with exogenous norepinephrine or release of endogenous catecholamines mimics ischemic preconditioning. Circulation 90:1023–1028CrossRefGoogle Scholar
  15. 15.
    Tsuchida A, Liu Y, Liu GS, Choen MV, Downey JM (1994) α1-adrenergic agonist precondition rabbit ischemic myocardium independent of adenosine by direct activation of protein kinase C. Circ Res 75:576–585CrossRefGoogle Scholar
  16. 16.
    Kariya T, Minatoguchi S, Ohno T, Yamashita K, Uno Y, Arai M, Koshiji M, Fujiwara T (1997) Hisayoshi Fujiwara infarct size-reducing effect to ischemic preconditioning is related to α1b-adrenoceptors but not to α1a-adrenoceptors in rabbits. J Cardiovasc Pharmacol 30:437–445CrossRefGoogle Scholar
  17. 17.
    Tanaka M, Fujiwara H, Yamasaki K, Sasayama S (1994) Superoxide dismutase and N-2-mercaptopropionyl glycine attenuate infarct size limitation effect of ischaemic preconditioning in the rabbit. Cardiovasc Res 28:980–986CrossRefGoogle Scholar
  18. 18.
    Ytrehus K, Liu Y, Downey J (1994) Preconditioning protects ischemic rabbit heart by protein kinase C activation. Am J Phys 266:H1145–H1152Google Scholar
  19. 19.
    Gross GJ, Auchampach J (1992) Blockade of ATP-sensitive potassium channels prevent myocardial preconditioning in dogs. Circ Res 70:223–233CrossRefGoogle Scholar
  20. 20.
    Hide EJ, Thiemermann C (1996) Limitation of myocardial infarct size in the rabbit by ischaemic preconditioning is abolished by sodium 5-hydroxydecanoate. Cardiovasc Res 31:941–946CrossRefGoogle Scholar
  21. 21.
    IONA Study Group (2002) Effect of nicorandil on coronary events in patients with stable angina: the impact of Nicorandil in Angina (IONA) randomized trial. Lancet 359:1269–1275CrossRefGoogle Scholar
  22. 22.
    Zhao ZQ, Corvera JS, Halkos ME, Kerendi F, Wang NP, Guyton RA, Vinten-Johansen J (2003) Inhibition of myocardial injury by ischemic postconditioning during reperfusion: comparison with ischemic preconditioning. Am J Physiol Heart Circ Physiol 285:H579–H588CrossRefGoogle Scholar
  23. 23.
    Tsang A, Hausenloy DJ, Mocanu MM, Yellon DM (2004) Postconditioning: a form of “modified reperfusion” protects the myocardium by activating the phosphatidylinositol 3-kinase-Akt pathway. Circ Res 95:230–232CrossRefGoogle Scholar
  24. 24.
    Orlic D, Kajstura J, Chimenti S et al (2001) Mobilized bone marrow cells repair the infarcted heart, improving function and survival. Proc Natl Acad Sci USA 98:10344–10349CrossRefGoogle Scholar
  25. 25.
    Minatoguchi S, Takemura G, Chen XH, Wang N, Uno Y, Koda M, Arai M, Misao Y, Lu C, Suzuki K, Goto K, Komada A, Takahashi T, Kosai K, Fujiwara T, Fujiwara H (2004) Acceleration of the healing process and myocardial regeneration may be important as a mechanism of improvement of cardiac function and remodeling by postinfarction granulocyte colony-stimulating factor treatment. Circulation 109:2572–2580CrossRefGoogle Scholar
  26. 26.
    Harada M, Qin Y, Takano H, Sano M, Nishi J, Iwanaga K, Akazawa H, Kunieda T, Zhu W, Hasegawa H, Kunisada K, Nagai T, Nakaya H, Takihara K, Komuro I (2005) G-CSF prevents cardiac remodeling after myocardial infarction by activating the Jak-Stat pathway in cardiomyocytes. Nat Med 11:305–311CrossRefGoogle Scholar
  27. 27.
    Kawada H, Fujita J, Kinjo K, Matsuzaki Y, Tsuma M, Miyatake H, Muguruma Y, Tsuboi K, Itabashi Y, Ikeda Y, Ogawa S, Okano H, Hotta T, Ando K, Fukuda K (2004) Nonhematopoietic mesenchymal stem cells can be mobilized and differentiate into cardiomyocytes after myocardial infarction. Blood 104:3581–3587CrossRefGoogle Scholar
  28. 28.
    Valgimigli M, Rigolin GM, Cittanti C, Malagutti P, Curello S, Percoco G, Bugli AM, Della Porta M, Bragotti LZ, Ansani L, Mauro E, Lanfranchi A, Giganti M, Feggi L, Castoldi G, Ferrari R (2005) Use of granulocyte-colony stimulating factor during acute myocardial infarction to enhance bone marrow stem cell mobilization in humans: clinical and angiographic safety profile. Eur Heart J 26:1838–1845CrossRefGoogle Scholar
  29. 29.
    Kuethe F, Figulla HR, Herzau M, Voth M, Fritzenwanger M, Opfermann T, Pachmann K, Krack A, Sayer HG, Gottschild D, Werner GS (2005) Treatment with granulocyte-colony stimulating factor for mobilization of bone marrow cells in patients with acute myocardial infarction. Am Heart J 150:115 e1–115 e7CrossRefGoogle Scholar
  30. 30.
    Ince H, Petzsch M, Kleine HD, Schmidt H, Rehders T, Korber T, Schmichen C, Freund M, Nienaber CA (2005) Preservation from ventricular remodeling by front-integrated revascularization and stem cell liberation in evolving acute myocardial infarction by use of granulocyte-colony-stimulating factor (FIRSTLINE-AMI). Circulation 112:3097–3106CrossRefGoogle Scholar
  31. 31.
    Ince H, Petzsch M, Kleine HD, Eckard H, Rehders T, Burska D, Kische S, Freund M, Nienaber CA (2005) Prevention of left ventricular remodeling with granulocyte colony-stimulating factor after acute myocardial infarction: final 1-year results of the front-integrated revascularization in evolving acute myocardial infarction by granulucyte colony-stimulating factor (FIRSTLINE-AMI) trial. Circulation 112:173–180CrossRefGoogle Scholar
  32. 32.
    Ripa RS, Jorgensen E, Wang Y, Thune JJ, Nilsson JC, Sondergaard L, Johnsen HE, Kober L, Grande P, Kastrup J (2006) Stem cell mobilization induced by subcutaneous granulocyte-colony stimulating factor to improve cardiac regeneration after acute ST elevation myocardial infarction. Result of the double-blind, randomized, placebo-controlled stem cells in myocardial infarction (STEMMI) trial. Circulation 113:1983–1992CrossRefGoogle Scholar
  33. 33.
    Zohlnhofer D, Ott I, Mehilli J, Schomig K, Michalk F, Ibrahim T, Meisetschlager G, von Wedel J, Bollwhein H, Seyfarth M, Dirschinger J, Schmitt C, Schwaiger M, Kastrati A, Schomig A, REVIVAL-2 Investigators (2006) Stem cell mobilization by granulocyte colony-stimulating factor in patients with acute myocardial infarction: a randomized controlled trial. JAMA 295:1003–1010CrossRefGoogle Scholar
  34. 34.
    Suzuki K, Nagashima K, Arai M, Uno Y, Misao Y, Takemura G, Nishigaki K, Minatoguchi S, Watanabe S, Tei C, Fujiwara H (2006) Effect of granulocyte colony-stimulating factor treatment at a low dose but a long duration in patients with coronary heart disease. Circ J 70:430–437CrossRefGoogle Scholar
  35. 35.
    Kranz SB (1991) Erythropoietin. Blood 77:419–434Google Scholar
  36. 36.
    Eschbach JW (1989) The anemia of chronic renal failure: pathophysiology and the effects of recombinant erythropoietin. Kidney Int 35:134–148CrossRefGoogle Scholar
  37. 37.
    Calvillo L, Latini R, Kajstura J, Leri A, Anversa P, Ghezzi P et al (2003) Recombinant human erythropoietin protects the myocardium from ischemia-reperfusion injury and promotes beneficial remodeling. PNAS 100:4802–4806CrossRefGoogle Scholar
  38. 38.
    Parsa CJ, Matsumori A, Kim J, Riel RU, Pascal LS, Walton GB et al (2003) A novel protective effect of erythropoietin in the infarcted heart. J Clin Invest 112:999–1007CrossRefGoogle Scholar
  39. 39.
    Gao D, Ning N, Niu X, Dang Y, Dong X, Wei J, Zhu C (2012) Erythropoietin treatment in patients with acute myocardial infarction: a meta-analysis of randomized controlled trials. Am Heart J 164:715–721CrossRefGoogle Scholar
  40. 40.
    Hori E, Hayakawa Y, Hayashi T, Hori S, Okamoto S, Shibata T et al (2016) Mobilization of pluripotent multilineage-differentiating stress-enduring cells in ischemic stroke. J Stroke Cerebrovasc Dis 25:1473–1481CrossRefGoogle Scholar
  41. 41.
    Tanaka T, Nishigaki K, Minatoguchi S, Nawa T, Yamada Y, Kanamori H, Mikami A, Ushikoshi H, Kawasaki M, Dezawa M, Minatoguchi S (2018) Mobilized Muse cells after acute myocardial infarction predict cardiac function and remodeling in the chronic phase. Circ J 82:1319–1326CrossRefGoogle Scholar
  42. 42.
    George JC (2010) Stem cell therapy in acute myocardial infarction: a review of clinical trials. Transl Res 155:10–19CrossRefGoogle Scholar
  43. 43.
    Fisher SA, Zhang H, Doree C, Mathur A, Martin-Rendon E (2015) Stem cell treatment for acute myocardial infarction. Cochrane Database Syst Rev 9:CD006536Google Scholar
  44. 44.
    Kuroda Y, Kitada M, Wakao S, Nishikawa K, Tanimura Y, Makinoshima H, Goda M, Akashi H, Inutsuka A, Niwa A, Shigemoto T, Nabeshima Y, Nakahata T, Nabeshima Y, Fujiyoshi Y, Dezawa M (2010) Unique multipotent cells in adult human mesenchymal cell populations. Proc Natl Acad Sci USA 107:8639–8643CrossRefGoogle Scholar
  45. 45.
    Wakao S, Kitada M, Kuroda Y, Shigemoto T, Matsuse D, Akashi H, Tanimura Y, Tsuchiyama K, Kikuchi T, Goda M, Nakahata T, Fujiyoshi Y, Dezawa M (2011) Multilineage-differentiating stress-enduring (Muse) cells are a primary source of induced pluripotent stem cells in human fibroblasts. Proc Natl Acad Sci USA 108:9875–9880CrossRefGoogle Scholar
  46. 46.
    Kuroda Y, Wakao S, Kitada M, Murakami T, Nojima M, Dezawa M (2013) Isolation, culture and evaluation of multilineage-differentiating stress-enduring (Muse) cells. Nat Protoc 8:1391–1415CrossRefGoogle Scholar
  47. 47.
    Dezawa M (2016) Muse cells provide the pluripotency of mesenchymal stem cells: direct contribution of Muse cells to tissue regeneration. Cell Transplant 25:849–861CrossRefGoogle Scholar
  48. 48.
    Alessio N, Ozcan S, Tatsumi K, Murat A, Peluso G, Dezawa M, Galderisi U (2016) The secretome of MUSE cells contains factors that may play a role in regulation of stemness, apoptosis and immunomodulation. Cell Cycle 16:33.  https://doi.org/10.1080/15384101.2016.1211215 CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Yamada Y, Wakao S, Kushida Y, Minatoguchi S, Mikami A, Higashi K, Baba S, Shigemoto T, Kuroda Y, Kanamori H, Amin M, Kawasaki M, Nishigaki K, Taoka M, Isobe T, Muramatsu C, Dezawa M, Minatoguchi S (2018) S1P-S1PR2 axis mediates homing of Muse cells into damaged heart for long lasting tissue repair and functional recovery after acute myocardial infarction. Circ Res 122:1069–1083CrossRefGoogle Scholar
  50. 50.
    Nagaya N, Fujii T, Iwase T, Ohgushi H, Itoh T, Uematsu M, Yamagishi M, Mori H, Kangawa K, Kitamura S (2004) Intravenous administration of mesenchymal stem cells improves cardiac function in rats with acute myocardial infarction through angiogenesis and myogenesis. Am J Physiol Heart Circ Physiol 287:H2670–H2676CrossRefGoogle Scholar
  51. 51.
    Freyman T, Polin G, Osman H, Crary J, Lu M, Cheng L, Palasis M, Wilensky RL (2006) A quantitative, randomized study evaluating three methods of mesenchymal stem cell delivery following myocardial infarction. Eur Heart J 27:1114–1122CrossRefGoogle Scholar

Copyright information

© Springer Japan KK, part of Springer Nature 2018

Authors and Affiliations

  • Shinya Minatoguchi
    • 1
    • 2
  • Atsushi Mikami
    • 1
  • Toshiki Tanaka
    • 3
  • Shingo Minatoguchi
    • 3
  • Yoshihisa Yamada
    • 3
  1. 1.Department of Circulatory and Respiratory Advanced MedicineGifu University Graduate School of MedicineGifuJapan
  2. 2.Heart Failure Center, Gifu Municipal HospitalGifuJapan
  3. 3.Department of CardiologyGifu University Graduate School of MedicineGifuJapan

Personalised recommendations