Advertisement

Muse Cells pp 131-152 | Cite as

The Role of the Mitochondria in the Evolution of Stem Cells, Including MUSE Stem Cells and Their Biology

  • James E. TroskoEmail author
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1103)

Abstract

From the transition of single-cell organisms to multicellularity of metazoans, evolutionary pressures selected new genes and phenotypes to cope with the oxygenation of the Earth’s environment, especially via the symbiotic acquisition of the mitochondrial organelle. There were many new genes and phenotypes that appeared, namely, stem cells, low-oxygen-micro-environments to house these genes (“niches”), new epigenetic mechanisms to regulate , selectively, the gene repertoire to control proliferation, differentiation, apoptosis, senescence and DNA protection mechanisms, including antioxidant genes and DNA repair. This transition required a critical regulation of the metabolism of glucose to produce energy for both the stem cell quiescent state and the energy-requiring differentiated state. While the totipotent-, embryonic-, pluripotent-, and a few adult organ-specific stem cells were recognized, only relatively recently, because of the isolation of somatic cell nuclear transfer (SCNT) stem cells and “induced pluripotent stem” cells, challenges to the origin of these “iPS” cells have been made. The isolation and characterization of human MUSE stem cells and more adult organ-specific adult stem cells have indicated that these MUSE cells have many shared characteristics of the “iPS” cells, yet they do not form teratomas but can give rise to the trigeminal cell layers. While the MUSE cells are a subset of human fibroblastic cells, they have not been characterized, yet, for the mitochondrial metabolic genes, either in the stem cell state or during their differentiation processes. A description of other human adult stem cells will be made to set future studies of how the MUSE stem cells compare to all other stem cells.

Keywords

WARBURG hypothesis Human adult stem cells Gap junctional intercellular communication Oxidative stress 

References

  1. 1.
    Saul JM (2010) A geologist speculates on gemstones, origin of gas and oil, moonlike impact scars on the earth, the emergence of animals and cancer. Les 3 Colonnes, ParisGoogle Scholar
  2. 2.
    Torday J (2014) Evolutionary biology redux. Perspect Biol Med 56:455–484CrossRefGoogle Scholar
  3. 3.
    Dobzhansky T (1975) Nothing in biology makes sense except in the light of evolution. Am Biol Teach 35:125–129CrossRefGoogle Scholar
  4. 4.
    Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126:663–676CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Cibelli JB (2014) Human somatic cell nuclear transfer is alive and well. Cell Stem Cell 14(6):699–701PubMedCrossRefPubMedCentralGoogle Scholar
  6. 6.
    Wakao S, Kitada M, Kuroda Y et al (2011) Multilineage-differentiating stress-enduring (Muse) cells are a primary source of induced pluripotent stem cells in human fibroblasts. Proc Natl Acad Sci USA 108(24):9875–9880.  https://doi.org/10.1073/pnas CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Trosko JE, Kang KS (2012) Evolution of energy metabolism, stem cells and cancer stem cells: how the Warburg and Barker hypotheses might be linked. Int J Stem Cells 5:39–56PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Trosko JE (2007) Gap junction intercellular communication as a ‘Biological Rosetta Stone’ in understanding, in a systems manner, stem cell behavior, mechanisms of epigenetic toxicology, chemoprevention and chemotherapy. J Membr Biol 218:93–100PubMedCrossRefPubMedCentralGoogle Scholar
  9. 9.
    Torday J, Rehan VK (2012) Evolutionary biology, cell-cell communication and complex disease. Wiley-Blackwell, HobokenCrossRefGoogle Scholar
  10. 10.
    Perva S, Taneja R, Ghaffan S (2009) Oxidative stress regulation of stem and progenitor cells. Antioxid Redox Signal 11:2777–2789CrossRefGoogle Scholar
  11. 11.
    Upham BL, Trosko JE (2009) Carcinogenic tumor promotion, induced oxidative stress signaling, modulated gap junction function and altered gene expression. Antioxid Redox Signal 11:297–308PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Brigelius-Flohé R, Flohé L (2011) Basic principles and emerging concepts in the redox control of transcription factors. Antioxid Redox Signal 15:2335–2381PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Rigoulet M, Yoboue ED, Devin A (2011) Mitochondrial ROS generation and its regulation: mechanisms involved in H(2)O(2) signaling. Antioxid Redox Signal 14(3):459–468.  https://doi.org/10.1089/ars.2010.3363 CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Dang CV (2012) Links between metabolism and cancer. Genes Dev 26:9.  https://doi.org/10.1101/gad.189365.112 CrossRefGoogle Scholar
  15. 15.
    Saul JM (2008) Did detoxification processes cause complex life to emerge? Lethaia 42:179–184CrossRefGoogle Scholar
  16. 16.
    Nursall JR (1959) Oxygen as prerequisite to the origin of metazoan. Nature 183:1170–1172CrossRefGoogle Scholar
  17. 17.
    Ozbek S, Balayubramanian PG, Chiquet-Ehrismann R, Tucker RP et al (2010) The evolution of excellular matrix. Mol Biol Cell 21:4300–4305PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Mohyeldin A, Garzon-Muvdi T, Quinones-Hinojosa A (2010) Oxygen in stem cell biology: a critical component of stem cell niche. Cell Stem Cell 7:150–161PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Park S, You X, Imlay JA (2005) Substantial DNA damage from submicromolar intracellular hydrogen peroxide detected in Hpx- mutants of Escherichia coli. Proc Natl Acad Sci USA 102:9317–9322PubMedCrossRefPubMedCentralGoogle Scholar
  20. 20.
    Rosenberg B, VanCamp L, Trosko JE et al (1969) Platinum compounds: a new class of potent antitumour agents. Nature 222:385–386PubMedCrossRefPubMedCentralGoogle Scholar
  21. 21.
    Finkel T, Manuel Serrano M, Blasco MA (2007) The common biology of cancer and ageing. Nature 448:767–774.  https://doi.org/10.1038/nature05985 CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Potter VR (1978) Phenotypic diversity in experimental hepatomas: concept of partially blocked ontogeny. Br J Cancer 38:1–23PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Potter VR (1973) Biochemistry of cancer. In: Holland J, Frei E (eds) Cancer medicine. Lea and Febiger Publishers, Philadelphia, pp 178–192Google Scholar
  24. 24.
    Hayflick L (1965) The limited in vitro lifespan of human diploid cell strains. Exp Cell Res 37:614–636PubMedCrossRefPubMedCentralGoogle Scholar
  25. 25.
    Cruciani V, Mikalsen SO (2005) The connexin gene family in mammals. Biol Chem 386:325–332PubMedPubMedCentralGoogle Scholar
  26. 26.
    Evans WH, Martin PEM (2002) Gap junctions: structure and function. Mol Membr Biol 19:121–136PubMedCrossRefPubMedCentralGoogle Scholar
  27. 27.
    Horiguchi K, Kouki T, Fujiwara K et al (2011) The extracellular matrix component laminin promotes gap junction formation in the rat anterior pituitary gland. J Endocrinol 208:225–232PubMedPubMedCentralGoogle Scholar
  28. 28.
    Markert CL (1984) Genetic control of cell interactions in chimeras. Dev Genet 4:267–279CrossRefGoogle Scholar
  29. 29.
    Carruba G, Trosko JE The long evolutionary journey of cancer from ancestor to modern humans. In pressGoogle Scholar
  30. 30.
    Warburg OH (1956) On the origin of cancer cells. Science 123:309–314PubMedCrossRefGoogle Scholar
  31. 31.
    Shamblott MJ et al (1998) Derivation of pluripotent stem cells from cultured human premortal germ cell. Proc National Acad Sci USA 95(23):13726–13731CrossRefGoogle Scholar
  32. 32.
    Thomson JA et al (1998) Embryonic stem cell lines derived from human blastocyst. Science 282(5391):1145–1147PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Trosko JE, Chang CC, Wilson MR et al (2000) Gap junction and the regulation of cellular functions of stem cells during development and differentiation. Methods 20:245–264PubMedCrossRefGoogle Scholar
  34. 34.
    Minsk B, Illensee K (1975) Normal genetically mosaic mice produced from malignant teratocarcinoma cells. Proc Natl Acad Sci USA 72:3585–3589CrossRefGoogle Scholar
  35. 35.
    Weinstein IB, Gattoni CS, Kirschmeier P et al (1984) Multistage carcinogenesis involves multiple genes and multiple mechanisms. J Cell Physiol Suppl 3:127–137PubMedCrossRefGoogle Scholar
  36. 36.
    Pitot H, Dragon YP (1991) Facts and theories concerning the mechanisms of carcinogenesis. FASEB J 5:2280–2286PubMedCrossRefGoogle Scholar
  37. 37.
    Nowell PC (1976) The clonal evolution of tumor cell populations. Science 194:23–28PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Fialkow PJ (1976) Clonal origin of human tumors. Annu Rev Med 30(1976):135–176Google Scholar
  39. 39.
    Atena M, Reza AM, Meehran G (2014) A review on the biology of cancer stem cells. Stem Cell Discov 4:83–89CrossRefGoogle Scholar
  40. 40.
    Reya T, Morrison SJ, Clarke MF et al (2001) Stem cells, cancer, and cancer stem cells. Nature 414:105–111PubMedCrossRefPubMedCentralGoogle Scholar
  41. 41.
    Cleaver JE (1978) Xeroderma pigmentosum: genetic and environmental influences in skin carcinogenesis. Int J Dermatol 17:435–444PubMedCrossRefPubMedCentralGoogle Scholar
  42. 42.
    Trosko JE (2003) The role of stem cells and gap junctional intercellular communication in carcinogenesis. J Biochem Mol Biol 36:43–48PubMedPubMedCentralGoogle Scholar
  43. 43.
    Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell 100:57–70PubMedCrossRefPubMedCentralGoogle Scholar
  44. 44.
    Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144:646–674CrossRefGoogle Scholar
  45. 45.
    Sell S (1993) Cellular origin of cancer: differentiation or stem cell maturation arrest? Environ Health Perspect 101:15–26PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Yamanaka S (2012) Induced pluripotent stem cells: past, present, and future. Cell Stem Cell 10(6):678–684PubMedCrossRefPubMedCentralGoogle Scholar
  47. 47.
    DiPaolo JA (1983) Relative difficulties in transforming human and animal cells in vitro. J Natl Cancer Inst 70:3–8.84PubMedPubMedCentralGoogle Scholar
  48. 48.
    Kakunaga T (1978) Neoplastic transformation of human diploid fibroblast cells by chemical carcinogens. Proc Natl Acad Sci USA 75:1334–1338PubMedCrossRefPubMedCentralGoogle Scholar
  49. 49.
    Rhim JS (1993) Neoplastic transformation of human cells in vitro. Crit Rev Oncog 4:312–335Google Scholar
  50. 50.
    Land H, Parada LF, Weinberg RA (1983) Tumorigenic conversion of primary embryo fibroblasts requires at least two cooperating oncogenes. Nature 304:596–602PubMedCrossRefPubMedCentralGoogle Scholar
  51. 51.
    Trosko JE (2008) Human adult stem cells as the target cells for the initiation of carcinogenesis and for the generation of “cancer stem cells”. Int J Stem Cells 1:8–26PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Trosko JE (2008) Commentary: re-programming or selecting adult stem cells. Stem Cell Rev 4:81–88PubMedCrossRefPubMedCentralGoogle Scholar
  53. 53.
    Trosko JE (2009) Cancer stem cells and cancer non-stem cells: from adult stem cells or from re-programming of differentiated somatic cells. Vet Pathol 46:176–193PubMedCrossRefPubMedCentralGoogle Scholar
  54. 54.
    Trosko JE (2006) From adult stem cells to cancer stem cells: Oct-4 gene, cell-cell communication, and hormones during tumor promotion. Ann NY Acad Sci 1089:36–58PubMedCrossRefPubMedCentralGoogle Scholar
  55. 55.
    Trosko JE (2014) Induction of iPS cells and of cancer stem cells: the stem cell or reprogramming hypothesis of cancer? Anat Rec (Hoboken) 297:161–173CrossRefGoogle Scholar
  56. 56.
    Estrada JC, Albo C, Benguría A et al (2012) Culture of human mesenchymal stem cells at low oxygen tension improves growth and genetic stability by activating glycolysis. Cell Death Differ 19(5):743–755.  https://doi.org/10.1038/cdd.2011.172 CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Parrinello S, Samper E, Krtolica A et al (2003) Oxygen sensitivity severely limits the replicative lifespan of murine fibroblasts. Nat Cell Biol 5:741–747PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Chen Q, Fischer A, Reagan JD et al (1995) Oxidative DNA damage and senescence of human diploid fibroblast cells. Proc Natl Acad Sci USA 92:4337–4341PubMedCrossRefPubMedCentralGoogle Scholar
  59. 59.
    Busuttil RA, Rubio M, Dolle ME et al (2003) Oxygen accelerates the accumulation of mutations during the senescence and immortalization of murine cells in culture. Aging Cell 2:287–294PubMedCrossRefPubMedCentralGoogle Scholar
  60. 60.
    Fehrer C, Brunauer R, Laschober G et al (2007) Reduced oxygen tension attenuates differentiation capacity of human mesenchymal stem cells and prolongs their lifespan. Aging Cell 6:745–757PubMedCrossRefPubMedCentralGoogle Scholar
  61. 61.
    Li TS, Marban E (2010) Physiological levels of reactive oxygen species are required to maintain genomic stability in stem cells. Stem Cells 28:1178–1185PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Forsyth NR, Musio A, Vezzoni P et al (2006) Physiologic oxygen enhances human embryonic stem cell clonal recovery and reduces chromosomal abnormalities. Cloning Stem Cells 8:16–23PubMedCrossRefPubMedCentralGoogle Scholar
  63. 63.
    Nakano S, Ueo H, Bruce SA et al (1985) A contact-insensitive subpopulation in Syrian hamster cell cultures with a greater susceptibility to chemically induced neoplastic transformation. Proc Natl Acad Sci USA 82:5005–5009PubMedCrossRefPubMedCentralGoogle Scholar
  64. 64.
    Kao CY, Nomata K, Oakley CS et al (1995) Two types of normal human breast epithelial cells derived from reduction mammoplasty: phenotypic characterization and response to SV40 transfection. Carcinogenesis 16:531–538PubMedCrossRefPubMedCentralGoogle Scholar
  65. 65.
    Tai M-H, Chang CC, Kiupel M et al (2005) Oct-4 expression in adult stem cells: Evidence in support of the stem cell theory of carcinogenesis. Carcinogenesis 26:495–502PubMedCrossRefPubMedCentralGoogle Scholar
  66. 66.
    Ahuja D, Sa’enz-Robles MT, Pipas JM (2005) SV40 large T antigen targets multiple cellular pathways to elicit cellular transformation. Oncogene 24(52):7729–7745PubMedCrossRefPubMedCentralGoogle Scholar
  67. 67.
    Wallace DC (2012) Mitochondria and cancer. Nat Rev Cancer 12(10):685–698.  https://doi.org/10.1038/nrc3365 CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Zong W-X, Rabinowitz JD, White E (2016) Mitochondria and cancer. Mol Cell 61:667–676PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Ralph SJ, Rodriguez-Enriquez S, Neuzil J et al (2010) The causes of cancer revisited: “mitochondrial malignancy” and ROS-induced oncogenic transformation – why mitochondria are targets for cancer therapy. Mol Asp Med 31(2):145–170CrossRefGoogle Scholar
  70. 70.
    Woolfson A (2015) An improbable journey. Nature 520:6176CrossRefGoogle Scholar
  71. 71.
    Spang A, Saw JH, Jorgensen SL et al (2015) Complex archaea that bridge the gap between prokaryotes and eukaryotes. Nature 521:173–179PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Suomalainen A (2015) Asymmetric rejuvenation. Nature 521:296–298PubMedCrossRefPubMedCentralGoogle Scholar
  73. 73.
    Cozzio A, Passegue E, Ayton PM (2003) Similar MLL associated leukemias arising from self-renewing stem cells and short-lived myeloid progenitors. Genes Dev 17:3029–3035PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Barker N, Ridgway RA, van Es JH et al (2009) Crypt stem cells as the cells-of-origin of intestinal cancer. Nature 457:608–611.  https://doi.org/10.1038/nature076 CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Till JE (1982) Stem cells in differentiation and neoplasia. J Cell Physiol 1:3–11CrossRefGoogle Scholar
  76. 76.
    Greaves MF (1986) Differentiation-linked leukemogenesis in lymphocytes. Science 234:697–704PubMedCrossRefGoogle Scholar
  77. 77.
    Gatenby RA, Gillies RJ (2004) Why do cancers have high aerobic glycolysis? Nat Rev Cancer 4(11):891–899PubMedCrossRefGoogle Scholar
  78. 78.
    Armstrong L, Tilgner K, Saretzki G et al (2010) Human induced pluripotent stem cell lines show stress defense mechanisms and mitochondrial regulation similar to those of human embryonic stem cells. Stem Cells 28:661–673PubMedCrossRefPubMedCentralGoogle Scholar
  79. 79.
    Prigione A, Fauler B, Lurz R et al (2010) The senescence-related mitochondrial/oxidative stress pathway is repressed in human induced pluripotent stem cells. Stem Cells 28:721–733PubMedCrossRefGoogle Scholar
  80. 80.
    Nesti C, Pasquali L, Vaglini F et al (2007) The role of mitochondria in stem cell biology. Biosci Rep 27:154–171CrossRefGoogle Scholar
  81. 81.
    Chen CT, Shih YR, Kuo TK et al (2008) Coordinated changes of mitochondrial biogenesis and antioxidant enzymes during osteogenic differentiation of human mesenchymal stem cells. Stem Cells 26:960–968PubMedCrossRefPubMedCentralGoogle Scholar
  82. 82.
    Lo T, Ho JH, Yang MH et al (2011) Glucose reduction prevents replicative senescence and increases mitochondrial respiration in human mesenchymal stem cells. Cell Transplant 20:813–825PubMedCrossRefPubMedCentralGoogle Scholar
  83. 83.
    Armstrong L, Tilgner K, Saretzki G et al (2010) Human induced pluripotent stem cell cell lines show stress defense mechanisms and mitochondrial regulation similar to those of human embryonic stem cells. Stem Cells 28:661–673PubMedCrossRefPubMedCentralGoogle Scholar
  84. 84.
    Kim K, Doi A, Wen B et al (2010) Epigenetic memory in induced pluripotent stem cells. Nature 467:285–290PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Hochedlinger K (2010) Cell type of origin influences the molecular and functional properties of mouse induced pluripotent stem cells. Nat Biotechnol 28:848–855PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Trosko JE (2018) Modulation of cell-cell communication and epigenetic mechanisms as a shared cellular mechanism in diverse childhood brain diseases, such as cancer and autism. EC Neurol 10(3):134–156Google Scholar
  87. 87.
    Miller M, Bassler BL (2001) Quorum sensing in bacteria. Annu Rev Microbiol 55:165–199PubMedCrossRefPubMedCentralGoogle Scholar
  88. 88.
    Lambert G, Estevez-Salmeron L, Oh S et al (2011) An analogy between the evolution of drug resistance in bacterial communities and malignant tissues. Nat Rev Cancer 11:375–382PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Trosko JE (2016) Evolution of microbial quorum sensing to human global quorum sensing: an insight to how gap junctional intercellular communication might be linked to global metabolic disease crisis. Biology 5(2):E29PubMedCrossRefPubMedCentralGoogle Scholar
  90. 90.
    Trosko JE (2017) Commentary: how evolution of quorum sensing must fit into the understanding of the origin, prevention and treatment of cancer. J Cancer Treat Diagn 2(1):26–30CrossRefGoogle Scholar

Copyright information

© Springer Japan KK, part of Springer Nature 2018

Authors and Affiliations

  1. 1.The Department of Pediatrics/Human Development, Center For Integrative Toxicology, College of Human MedicineMichigan State UniversityEast LansingUSA

Personalised recommendations