Muse Cells pp 43-68 | Cite as

Muse Cells Are Endogenous Reparative Stem Cells

  • Yoshihiro Kushida
  • Shohei Wakao
  • Mari DezawaEmail author
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1103)


The dynamics and actions of Muse cells at a time of physical crisis are unique and highly remarkable compared with other stem cell types. When the living body is in a steady state, low levels of Muse cells are mobilized to the peripheral blood, possibly from the bone marrow, and supplied to the connective tissue of nearly every organ. Under conditions of serious tissue damage, such as acute myocardial infarction and stroke, Muse cells are highly mobilized to the peripheral blood, drastically increasing their numbers in the peripheral blood within 24 h after the onset of tissue injury. The alerting signal, sphingosine-1-phosphate, attracts Muse cells to the damaged site mainly via the sphingosine-1-phosphate receptor 2, enabling them to preferentially home to site of injury. After homing, Muse cells spontaneously differentiate into tissue-compatible cells and replenish new functional cells for tissue repair. Because Muse cells have pleiotropic effects, including paracrine, anti-inflammatory, anti-fibrotic, and anti-apoptotic effects, these cells synergistically deliver long-lasting functional and structural recovery. This chapter describes how Muse cells exert their reparative effects in vivo.


Sphingosine-1-phosphate (S1P) Migration Homing Repair Anti-inflammation Anti-fibrosis Immunosuppression Intravenous injection Allograft Paracrine effect 


  1. 1.
    Hori E et al (2016) Mobilization of pluripotent multilineage-differentiating stress-enduring cells in ischemic stroke. J Stroke Cerebrovas Dis 25:1473–1481. CrossRefGoogle Scholar
  2. 2.
    Tanaka T et al (2018) Mobilized muse cells after acute myocardial infarction predict cardiac function and remodeling in the chronic phase. Circ J. Tanaka et al., 2018 Cir J 82(2):561–571. CrossRefGoogle Scholar
  3. 3.
    Kinoshita K et al (2015) Therapeutic potential of adipose-derived SSEA-3-positive muse cells for treating diabetic skin ulcers. Stem Cells Transl Med 4:146–155. CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Yamauchi T et al (2015) Therapeutic effects of human multilineage-differentiating stress enduring (MUSE) cell transplantation into infarct brain of mice. PLoS One 10:e0116009. CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Katagiri H et al (2016) A distinct subpopulation of bone marrow mesenchymal stem cells, muse cells, directly commit to the replacement of liver components. Am J Transplant 16:468–483. CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Uchida H et al (2016) Transplantation of unique subpopulation of fibroblasts, muse cells, ameliorates experimental stroke possibly via robust neuronal differentiation. Stem Cells 34:160–173. CrossRefGoogle Scholar
  7. 7.
    Iseki M et al (2017) Muse cells, nontumorigenic pluripotent-like stem cells, have liver regeneration capacity through specific homing and cell replacement in a mouse model of liver fibrosis. Cell Transplant 26:821–840. CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Uchida H et al (2017) Human muse cells reconstruct neuronal circuitry in subacute lacunar stroke model. Stroke 48:428–435. CrossRefGoogle Scholar
  9. 9.
    Uchida N et al (2017) Beneficial effects of systemically administered human muse cells in adriamycin nephropathy. J Am Soc Nephrol 28:2946–2960. CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Yamada Y et al (2018) S1P-S1PR2 axis mediates homing of muse cells into damaged heart for long lasting tissue repair and functional recovery after acute myocardial infarction. Circ Res. Yamada et al, 2018 Cir Res 122(8):1069-1083. CrossRefGoogle Scholar
  11. 11.
    Barbash IM et al (2003) Systemic delivery of bone marrow-derived mesenchymal stem cells to the infarcted myocardium: feasibility, cell migration, and body distribution. Circulation 108:863–868. CrossRefPubMedGoogle Scholar
  12. 12.
    Schrepfer S et al (2007) Stem cell transplantation: the lung barrier. Transplant Proc 39:573–576. CrossRefPubMedGoogle Scholar
  13. 13.
    Aguilar S et al (2007) Murine but not human mesenchymal stem cells generate osteosarcoma-like lesions in the lung. Stem Cells 25:1586–1594. CrossRefPubMedGoogle Scholar
  14. 14.
    Li H et al (2008) Mesenchymal stem cells alter migratory property of T and dendritic cells to delay the development of murine lethal acute graft-versus-host disease. Stem Cells 26:2531–2541. CrossRefPubMedGoogle Scholar
  15. 15.
    Togel F, Yang Y, Zhang P, Hu Z, Westenfelder C (2008) Bioluminescence imaging to monitor the in vivo distribution of administered mesenchymal stem cells in acute kidney injury. Am J Physiol Renal Physiol 295:F315–F321. CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Kurtz A (2008) Mesenchymal stem cell delivery routes and fate. Int J Stem Cells 1:1–7CrossRefGoogle Scholar
  17. 17.
    Assis AC et al (2010) Time-dependent migration of systemically delivered bone marrow mesenchymal stem cells to the infarcted heart. Cell Transplant 19:219–230. CrossRefPubMedGoogle Scholar
  18. 18.
    Leibacher J, Henschler R (2016) Biodistribution, migration and homing of systemically applied mesenchymal stem/stromal cells. Stem Cell Res Ther 7:7. CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Brooks A et al (2018) Concise review: quantitative detection and modeling the in vivo kinetics of therapeutic mesenchymal stem/stromal cells. Stem Cells Transl Med 7:78–86. CrossRefPubMedGoogle Scholar
  20. 20.
    Peled A et al (1999) Dependence of human stem cell engraftment and repopulation of NOD/SCID mice on CXCR4. Science 283:845–848CrossRefGoogle Scholar
  21. 21.
    Bonig H, Priestley GV, Papayannopoulou T (2006) Hierarchy of molecular-pathway usage in bone marrow homing and its shift by cytokines. Blood 107:79–86. CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Vessey DA, Li L, Honbo N, Karliner JS (2009) Sphingosine 1-phosphate is an important endogenous cardioprotectant released by ischemic pre- and postconditioning. Am J Physiol Heart Circ Physiol 297:H1429–H1435. CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Ratajczak MZ, Suszynska M, Borkowska S, Ratajczak J, Schneider G (2014) The role of sphingosine-1 phosphate and ceramide-1 phosphate in trafficking of normal stem cells and cancer cells. Expert Opin Ther Targets 18:95–107. CrossRefPubMedGoogle Scholar
  24. 24.
    Karpova D, Bonig H (2015) Concise review: CXCR4/CXCL12 signaling in immature hematopoiesis–lessons from pharmacological and genetic models. Stem Cells 33:2391–2399. CrossRefPubMedGoogle Scholar
  25. 25.
    Son BR et al (2006) Migration of bone marrow and cord blood mesenchymal stem cells in vitro is regulated by stromal-derived factor-1-CXCR4 and hepatocyte growth factor-c-met axes and involves matrix metalloproteinases. Stem Cells 24:1254–1264. CrossRefPubMedGoogle Scholar
  26. 26.
    Petit I, Jin D, Rafii S (2007) The SDF-1-CXCR4 signaling pathway: a molecular hub modulating neo-angiogenesis. Trends Immunol 28:299–307. CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Liu X et al (2011) SDF-1/CXCR4 axis modulates bone marrow mesenchymal stem cell apoptosis, migration and cytokine secretion. Protein Cell 2:845–854. CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Cencioni C, Capogrossi MC, Napolitano M (2012) The SDF-1/CXCR4 axis in stem cell preconditioning. Cardiovasc Res 94:400–407. CrossRefPubMedGoogle Scholar
  29. 29.
    Wu Y, Zhao RC (2012) The role of chemokines in mesenchymal stem cell homing to myocardium. Stem Cell Rev 8:243–250. CrossRefPubMedGoogle Scholar
  30. 30.
    van de Kamp J, Jahnen-Dechent W, Rath B, Knuechel R, Neuss S (2013) Hepatocyte growth factor-loaded biomaterials for mesenchymal stem cell recruitment. Stem Cells Int 2013:892065. CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Vogel S et al (2013) Migration of mesenchymal stem cells towards glioblastoma cells depends on hepatocyte-growth factor and is enhanced by aminolaevulinic acid-mediated photodynamic treatment. Biochem Biophys Res Commun 431:428–432. CrossRefPubMedGoogle Scholar
  32. 32.
    Mathias S, Pena LA, Kolesnick RN (1998) Signal transduction of stress via ceramide. Biochem J 335(Pt 3):465–480CrossRefGoogle Scholar
  33. 33.
    Hannun YA, Luberto C, Argraves KM (2001) Enzymes of sphingolipid metabolism: from modular to integrative signaling. Biochemistry 40:4893–4903CrossRefGoogle Scholar
  34. 34.
    Levade T et al (2002) Ceramide in apoptosis: a revisited role. Neurochem Res 27:601–607CrossRefGoogle Scholar
  35. 35.
    Spiegel S, Milstien S (2003) Sphingosine-1-phosphate: an enigmatic signalling lipid. Nat Rev Mol Cell Biol 4:397–407. CrossRefPubMedGoogle Scholar
  36. 36.
    Ogretmen B, Hannun YA (2004) Biologically active sphingolipids in cancer pathogenesis and treatment. Nat Rev Cancer 4:604–616. CrossRefPubMedGoogle Scholar
  37. 37.
    Schwab SR et al (2005) Lymphocyte sequestration through s1p lyase inhibition and disruption of S1P gradients. Science 309:1735–1739. CrossRefPubMedGoogle Scholar
  38. 38.
    Rivera J, Proia RL, Olivera A (2008) The alliance of sphingosine-1-phosphate and its receptors in immunity. Nat Rev Immunol 8:753–763. CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Obinata H, Hla T (2012) Sphingosine 1-phosphate in coagulation and inflammation. Semin Immunopathol 34:73–91. CrossRefPubMedGoogle Scholar
  40. 40.
    Blaho VA, Hla T (2014) An update on the biology of sphingosine 1-phosphate receptors. J Lipid Res 55:1596–1608. CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Sanchez T, Hla T (2004) Structural and functional characteristics of S1P receptors. J Cell Biochem 92:913–922. CrossRefPubMedGoogle Scholar
  42. 42.
    Patmanathan SN, Wang W, Yap LF, Herr DR, Paterson IC (2017) Mechanisms of sphingosine 1-phosphate receptor signalling in cancer. Cell Signal 34:66–75. CrossRefPubMedGoogle Scholar
  43. 43.
    Hannun YA, Obeid LM (2008) Principles of bioactive lipid signalling: lessons from sphingolipids. Nat Rev Mol Cell Biol 9:139. CrossRefPubMedGoogle Scholar
  44. 44.
    Proia RL, Hla T (2015) Emerging biology of sphingosine-1-phosphate: its role in pathogenesis and therapy. J Clin Invest 125:1379–1387. CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Ghasemi R, Dargahi L, Ahmadiani A (2016) Integrated sphingosine-1 phosphate signaling in the central nervous system: from physiological equilibrium to pathological damage. Pharmacol Res 104:156–164. CrossRefPubMedGoogle Scholar
  46. 46.
    Spiegel S, Milstien S (2007) Functions of the multifaceted family of sphingosine kinases and some close relatives. J Biol Chem 282:2125–2129. CrossRefPubMedGoogle Scholar
  47. 47.
    Osada M, Yatomi Y, Ohmori T, Ikeda H, Ozaki Y (2002) Enhancement of sphingosine 1-phosphate-induced migration of vascular endothelial cells and smooth muscle cells by an EDG-5 antagonist. Biochem Biophys Res Commun 299:483–487CrossRefGoogle Scholar
  48. 48.
    Gimeno ML et al (2017) Pluripotent nontumorigenic adipose tissue-derived muse cells have immunomodulatory capacity mediated by transforming growth factor-beta1. Stem Cells Transl Med 6:161–173. CrossRefGoogle Scholar
  49. 49.
    Fisch SC et al (2017) Pluripotent nontumorigenic multilineage differentiating stress enduring cells (muse cells): a seven-year retrospective. Stem Cell Res Ther 8:227. CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Kovats S et al (1990) A class I antigen, HLA-G, expressed in human trophoblasts. Science 248:220–223CrossRefGoogle Scholar
  51. 51.
    Onno M et al (1994) The HLA-G gene is expressed at a low mRNA level in different human cells and tissues. Human Immunol 41:79–86. doi: CrossRefGoogle Scholar
  52. 52.
    Ferreira LM, Meissner TB, Tilburgs T, Strominger JL (2017) HLA-G: at the interface of maternal-fetal tolerance. Trends Immunol 38:272–286. CrossRefPubMedGoogle Scholar
  53. 53.
    Rizzo R, Bortolotti D, Bolzani S, Fainardi E (2014) HLA-G molecules in autoimmune diseases and infections. Front Immunol 5:592. CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Shiroishi M et al (2003) Human inhibitory receptors Ig-like transcript 2 (ILT2) and ILT4 compete with CD8 for MHC class I binding and bind preferentially to HLA-G. Proc Natl Acad Sci U S A 100:8856–8861. CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Endo S, Sakamoto Y, Kobayashi E, Nakamura A, Takai T (2008) Regulation of cytotoxic T lymphocyte triggering by PIR-B on dendritic cells. Proc Natl Acad Sci U S A 105:14515–14520. CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Drukker M et al (2002) Characterization of the expression of MHC proteins in human embryonic stem cells. Proc Natl Acad Sci U S A 99:9864–9869. CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Kim EM, Manzar G, Zavazava N (2013) Human iPS cell-derived hematopoietic progenitor cells induce T-cell anergy in in vitro-generated alloreactive CD8(+) T cells. Blood 121:5167–5175. CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Kyurkchiev S et al (2012) Stem cells in the reproductive system. Am J of Reprod Immunol (NEW YORK, NY: 1989) 67:445–462. CrossRefGoogle Scholar
  59. 59.
    Nasef A et al (2007) Immunosuppressive effects of mesenchymal stem cells: involvement of HLA-G. Transplantation 84:231–237. CrossRefPubMedGoogle Scholar
  60. 60.
    Ivanova-Todorova E et al (2009) HLA-G expression is up-regulated by progesterone in mesenchymal stem cells. Am J Reprod Immunol 62:25–33. CrossRefPubMedGoogle Scholar
  61. 61.
    Lila N et al (2002) Human leukocyte antigen-G expression after heart transplantation is associated with a reduced incidence of rejection. Circulation 105:1949–1954CrossRefGoogle Scholar
  62. 62.
    Alessio N et al (2017) The secretome of MUSE cells contains factors that may play a role in regulation of stemness, apoptosis and immunomodulation. Cell cycle (Georgetown, Tex) 16:33–44. CrossRefGoogle Scholar
  63. 63.
    Chen XH et al (2007) In vivo hepatocyte growth factor gene transfer reduces myocardial ischemia-reperfusion injury through its multiple actions. J Card Fail 13:874–883. CrossRefPubMedGoogle Scholar
  64. 64.
    Isner JM, Asahara T (1999) Angiogenesis and vasculogenesis as therapeutic strategies for postnatal neovascularization. J Clin Invest 103:1231–1236. CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Mias C et al (2009) Mesenchymal stem cells promote matrix metalloproteinase secretion by cardiac fibroblasts and reduce cardiac ventricular fibrosis after myocardial infarction. Stem Cells 27:2734–2743. CrossRefPubMedGoogle Scholar
  66. 66.
    Loffredo FS, Steinhauser ML, Gannon J, Lee RT (2011) Bone marrow-derived cell therapy stimulates endogenous cardiomyocyte progenitors and promotes cardiac repair. Cell Stem Cell 8:389–398. CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Duarte S, Baber J, Fujii T, Coito AJ (2015) Matrix metalloproteinases in liver injury, repair and fibrosis. Matrix Biol J Int Soc Matrix Biol 44-46:147–156. CrossRefGoogle Scholar
  68. 68.
    Somerville RPT, Oblander SA, Apte SS (2003) Matrix metalloproteinases: old dogs with new tricks. Genome Biol 4:216. CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Hemmann S, Graf J, Roderfeld M, Roeb E (2007) Expression of MMPs and TIMPs in liver fibrosis – a systematic review with special emphasis on anti-fibrotic strategies. J Hepatol 46:955–975. doi: CrossRefGoogle Scholar
  70. 70.
    Roeb E (2017) Matrix metalloproteinases and liver fibrosis (translational aspects). Matrix Biol J Int Soc Matrix Biol. CrossRefGoogle Scholar

Copyright information

© Springer Japan KK, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Stem Cell Biology and HistologyTohoku University Graduate School of MedicineSendaiJapan

Personalised recommendations