Muse Cells pp 255-271 | Cite as

Artificial Pigmented Human Skin Created by Muse Cells

  • Takeshi Yamauchi
  • Kenshi YamasakiEmail author
  • Kenichiro Tsuchiyama
  • Setsuya Aiba
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1103)


The skin composes physiological and chemical barrier and renews skin component cells throughout the human life. Melanocytes locate in the basal layer of the epidermis and produce melanin to protect the skin from ultraviolet. Melanin plays key roles in determining human skin and hair color. Melanocyte dysfunction observed in albinism and vitiligo not only causes cosmetic problems but also increases risk of skin cancer. As rejuvenate therapy, embryonic stem (ES) cells and induced pluripotent stem (iPS) cells have been reported to generate melanocytes. Other than ES and iPS cells, human skin tissues maintain pluripotent stem cells, named multilineage-differentiating stress-enduring (Muse) cells. We employ Muse cells isolated from human fibroblasts and adipose tissue to differentiate into melanocytes (Muse-MC). Muse-MC express melanocyte-related molecules, such as tyrosinase and DCT, and show tyrosinase activity. We also succeeded to differentiate Muse cells into fibroblasts and keratinocytes and created three-dimensional (3D) reconstituted skin with Muse cell-derived melanocytes, fibroblasts, and keratinocytes. The 3D reconstituted skin of Muse cell-derived cells coordinately showed epidermis layers and Muse-MC localized in the basal layer of the epidermis. Thus Muse cells in the human skin can be a source of rejuvenation medicine for the skin reconstruction.


Melanocyte Fibroblast Keratinocyte Melanin 3D skin a-MSH 


  1. 1.
    Proksch E, Brandner JM, Jensen JM (2008) The skin: an indispensable barrier. Exp Dermatol 17(12):1063–1072 PubMed PMID: 19043850PubMedCrossRefPubMedCentralGoogle Scholar
  2. 2.
    Shirakata Y, Tokumaru S, Yamasaki K, Sayama K, Hashimoto K (2003) So-called biological dressing effects of cultured epidermal sheets are mediated by the production of EGF family. TGF-beta and VEGF J Dermatol Sci 32(3):209–215 PubMed PMID: 14507446PubMedCrossRefGoogle Scholar
  3. 3.
    Kondo T, Hearing VJ (2011) Update on the regulation of mammalian melanocyte function and skin pigmentation. Expert Rev Dermatol 6(1):97–108 PubMed PMID: 21572549. Pubmed Central PMCID: PMC3093193PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Slominski A, Tobin DJ, Shibahara S, Wortsman J (2004) Melanin pigmentation in mammalian skin and its hormonal regulation. Physiol Rev 84(4):1155–1228 PubMed PMID: 15383650PubMedCrossRefGoogle Scholar
  5. 5.
    Mabula JB, Chalya PL, McHembe MD, Jaka H, Giiti G, Rambau P et al (2012) Skin cancers among Albinos at a University teaching hospital in Northwestern Tanzania: a retrospective review of 64 cases. BMC Dermatol 12:5 PubMed PMID: 22681652. Pubmed Central PMCID: PMC3483204PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Gronskov K, Ek J, Brondum-Nielsen K (2007) Oculocutaneous albinism. Orphanet J Rare Dis 2:43 PubMed PMID: 17980020. Pubmed Central PMCID: PMC2211462PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Ghafourian A, Ghafourian S, Sadeghifard N, Mohebi R, Shokoohini Y, Nezamoleslami S et al (2014) Vitiligo: symptoms, pathogenesis and treatment. Int J Immunopathol Pharmacol 27(4):485–489 PubMed PMID: 25572727PubMedCrossRefGoogle Scholar
  8. 8.
    Alikhan A, Felsten LM, Daly M, Petronic-Rosic V (2011) Vitiligo: a comprehensive overview part I. Introduction, epidemiology, quality of life, diagnosis, differential diagnosis, associations, histopathology, etiology, and work-up. J Am Acad Dermatol 65(3):473–491 PubMed PMID: 21839315PubMedCrossRefGoogle Scholar
  9. 9.
    Felsten LM, Alikhan A, Petronic-Rosic V (2011) Vitiligo: a comprehensive overview part II: treatment options and approach to treatment. J Am Acad Dermatol 65(3):493–514 PubMed PMID: 21839316PubMedCrossRefGoogle Scholar
  10. 10.
    Tsuchiyama K, Watabe A, Sadayasu A, Onodera N, Kimura Y, Aiba S (2016) Successful treatment of segmental vitiligo in children with the combination of 1-mm minigrafts and phototherapy. Dermatology 232(2):237–241 PubMed PMID: 26836583PubMedCrossRefGoogle Scholar
  11. 11.
    van Geel N, Ongenae K, Naeyaert JM (2001) Surgical techniques for vitiligo: a review. Dermatology 202(2):162–166 PubMed PMID: 11306848PubMedCrossRefGoogle Scholar
  12. 12.
    Fioramonti P, Onesti MG, Marchese C, Carella S, Ceccarelli S, Scuderi N (2012) Autologous cultured melanocytes in vitiligo treatment comparison of two techniques to prepare the recipient site: erbium-doped yttrium aluminum garnet laser versus dermabrasion. Dermatol Surg 38(5):809–812 PubMed PMID: 22335629PubMedCrossRefGoogle Scholar
  13. 13.
    Nissan X, Larribere L, Saidani M, Hurbain I, Delevoye C, Feteira J et al (2011) Functional melanocytes derived from human pluripotent stem cells engraft into pluristratified epidermis. Proc Natl Acad Sci U S A 108(36):14861–14866 PubMed PMID: 21856949. Pubmed Central PMCID: PMC3169131PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Fang D, Leishear K, Nguyen TK, Finko R, Cai K, Fukunaga M et al (2006) Defining the conditions for the generation of melanocytes from human embryonic stem cells. Stem Cells 24(7):1668–1677 PubMed PMID: 16574754PubMedCrossRefGoogle Scholar
  15. 15.
    Yang R, Jiang M, Kumar SM, Xu T, Wang F, Xiang L et al (2011) Generation of melanocytes from induced pluripotent stem cells. J Invest Dermatol 131(12):2458–2466 PubMed PMID: 21833016. Pubmed Central PMCID: PMC3213325PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Motohashi T, Aoki H, Chiba K, Yoshimura N, Kunisada T (2007) Multipotent cell fate of neural crest-like cells derived from embryonic stem cells. Stem Cells 25(2):402–410 PubMed PMID: 17038669PubMedCrossRefGoogle Scholar
  17. 17.
    Ohta S, Imaizumi Y, Okada Y, Akamatsu W, Kuwahara R, Ohyama M et al (2011) Generation of human melanocytes from induced pluripotent stem cells. PLoS One 6(1):e16182 PubMed PMID: 21249204. Pubmed Central PMCID: PMC3020956PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Kuroda Y, Kitada M, Wakao S, Nishikawa K, Tanimura Y, Makinoshima H et al (2010) Unique multipotent cells in adult human mesenchymal cell populations. Proc Natl Acad Sci U S A 107(19):8639–8643 PubMed PMID: 20421459. Pubmed Central PMCID: PMC2889306PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Wakao S, Kitada M, Kuroda Y, Shigemoto T, Matsuse D, Akashi H et al (2011) Multilineage-differentiating stress-enduring (muse) cells are a primary source of induced pluripotent stem cells in human fibroblasts. Proc Natl Acad Sci U S A 108(24):9875–9880 PubMed PMID: 21628574. Pubmed Central PMCID: PMC3116385PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Ogura F, Wakao S, Kuroda Y, Tsuchiyama K, Bagheri M, Heneidi S et al (2014) Human adipose tissue possesses a unique population of pluripotent stem cells with nontumorigenic and low telomerase activities: potential implications in regenerative medicine. Stem Cells Dev 23(7):717–728 PubMed PMID: 24256547PubMedCrossRefGoogle Scholar
  21. 21.
    Heneidi S, Simerman AA, Keller E, Singh P, Li X, Dumesic DA et al (2013) Awakened by cellular stress: isolation and characterization of a novel population of pluripotent stem cells derived from human adipose tissue. PLoS One 8(6):e64752 PubMed PMID: 23755141. Pubmed Central PMCID: PMC3673968PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Kuroda Y, Wakao S, Kitada M, Murakami T, Nojima M, Dezawa M (2013) Isolation, culture and evaluation of multilineage-differentiating stress-enduring (Muse) cells. Nat Protoc 8(7):1391–1415 PubMed PMID: 23787896PubMedCrossRefGoogle Scholar
  23. 23.
    Amiri F, Halabian R, Salimian M, Shokrgozar MA, Soleimani M, Jahanian-Najafabadi A et al (2014) Induction of multipotency in umbilical cord-derived mesenchymal stem cells cultivated under suspension conditions. Cell Stress Chaperones 19(5):657–666 PubMed PMID: 24464492. Pubmed Central PMCID: PMC4147073PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Liu Q, Zhang RZ, Li D, Cheng S, Yang YH, Tian T et al (2016) Muse cells, a new type of pluripotent stem cell derived from human fibroblasts. Cell Reprogram 18(2):67–77 PubMed PMID: 27055628PubMedCrossRefGoogle Scholar
  25. 25.
    Dezawa M (2016) Muse cells provide the pluripotency of mesenchymal stem cells: direct contribution of Muse cells to tissue regeneration. Cell Transplant 25(5):849–861 PubMed PMID: 26884346PubMedCrossRefGoogle Scholar
  26. 26.
    Fox NW, Damjanov I, Knowles BB, Solter D (1984) Stage-specific embryonic antigen 3 as a marker of visceral extraembryonic endoderm. Dev Biol 103(1):263–266 PubMed PMID: 6143701PubMedCrossRefGoogle Scholar
  27. 27.
    Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS et al (1998) Embryonic stem cell lines derived from human blastocysts. Science 282(5391):1145–1147 PubMed PMID: 9804556PubMedCrossRefGoogle Scholar
  28. 28.
    Tsuchiyama K, Wakao S, Kuroda Y, Ogura F, Nojima M, Sawaya N et al (2013) Functional melanocytes are readily reprogrammable from multilineage-differentiating stress-enduring (muse) cells, distinct stem cells in human fibroblasts. J Invest Dermatol 133(10):2425–2435 PubMed PMID: 23563197PubMedCrossRefGoogle Scholar
  29. 29.
    Yamauchi T, Yamasaki K, Tsuchiyama K, Koike S, Aiba S (2017) A quantitative analysis of multilineage-differentiating stress-enduring (Muse) cells in human adipose tissue and efficacy of melanocytes induction. J Dermatol Sci 86(3):198–205 PubMed PMID: 28292562PubMedCrossRefGoogle Scholar
  30. 30.
    White RM, Zon LI (2008) Melanocytes in development, regeneration, and cancer. Cell Stem Cell 3(3):242–252 PubMed PMID: 18786412PubMedCrossRefGoogle Scholar
  31. 31.
    Hirobe T, Shinpo T, Higuchi K, Sano T (2010) Life cycle of human melanocytes is regulated by endothelin-1 and stem cell factor in synergy with cyclic AMP and basic fibroblast growth factor. J Dermatol Sci 57(2):123–131 PubMed PMID: 20045284PubMedCrossRefGoogle Scholar
  32. 32.
    Ito K, Morita T, Sieber-Blum M (1993) In vitro clonal analysis of mouse neural crest development. Dev Biol 157(2):517–525 PubMed PMID: 7684712PubMedCrossRefGoogle Scholar
  33. 33.
    Shibahara S, Takeda K, Yasumoto K, Udono T, Watanabe K, Saito H et al (2001) Microphthalmia-associated transcription factor (MITF): multiplicity in structure, function, and regulation. J Investig Dermatol Symp Proc 6(1):99–104 PubMed PMID: 11764295PubMedCrossRefGoogle Scholar
  34. 34.
    Lee SA, Son YO, Kook SH, Choi KC, Lee JC (2011) Ascorbic acid increases the activity and synthesis of tyrosinase in B16F10 cells through activation of p38 mitogen-activated protein kinase. Arch Dermatol Res 303(9):669–678 PubMed PMID: 21667118PubMedCrossRefGoogle Scholar
  35. 35.
    Yamane T, Hayashi S, Mizoguchi M, Yamazaki H, Kunisada T (1999) Derivation of melanocytes from embryonic stem cells in culture. Dev Dyn 216(4–5):450–458 PubMed PMID: 10633864PubMedCrossRefGoogle Scholar
  36. 36.
    Yamauchi T, Yamasaki K, Tsuchiyama K, Koike S, Aiba S (2017) The potential of Muse cells for regenerative medicine of skin: procedures to reconstitute skin with Muse cell-derived keratinocytes, fibroblasts, and melanocytes. J Invest Dermatol 137(12):2639–2642 PubMed PMID: 28736234PubMedCrossRefGoogle Scholar
  37. 37.
    Itoh M, Kiuru M, Cairo MS, Christiano AM (2011) Generation of keratinocytes from normal and recessive dystrophic epidermolysis bullosa-induced pluripotent stem cells. Proc Natl Acad Sci U S A 108(21):8797–8802 PubMed PMID: 21555586. Pubmed Central PMCID: 3102348PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Itoh M, Umegaki-Arao N, Guo Z, Liu L, Higgins CA, Christiano AM (2013) Generation of 3D skin equivalents fully reconstituted from human induced pluripotent stem cells (iPSCs). PLoS One 8(10):e77673 PubMed PMID: 24147053. Pubmed Central PMCID: 3795682PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Guenou H, Nissan X, Larcher F, Feteira J, Lemaitre G, Saidani M et al (2009) Human embryonic stem-cell derivatives for full reconstruction of the pluristratified epidermis: a preclinical study. Lancet 374(9703):1745–1753 PubMed PMID: 19932355PubMedCrossRefGoogle Scholar
  40. 40.
    Wakao S, Kitada M, Kuroda Y, Dezawa M (2012) Isolation of adult human pluripotent stem cells from mesenchymal cell populations and their application to liver damages. Methods Mol Biol 826:89–102 PubMed PMID: 22167642PubMedCrossRefGoogle Scholar
  41. 41.
    Gotz C, Pfeiffer R, Tigges J, Blatz V, Jackh C, Freytag EM et al (2012) Xenobiotic metabolism capacities of human skin in comparison with a 3D epidermis model and keratinocyte-based cell culture as in vitro alternatives for chemical testing: activating enzymes (Phase I). Exp Dermatol 21(5):358–363 PubMed PMID: 22509833PubMedCrossRefGoogle Scholar
  42. 42.
    Stevens A, Zuliani T, Olejnik C, LeRoy H, Obriot H, Kerr-Conte J et al (2008) Human dental pulp stem cells differentiate into neural crest-derived melanocytes and have label-retaining and sphere-forming abilities. Stem Cells Dev 17(6):1175–1184 PubMed PMID: 18393638PubMedCrossRefGoogle Scholar
  43. 43.
    Paino F, Ricci G, De Rosa A, D'Aquino R, Laino L, Pirozzi G et al (2010) Ecto-mesenchymal stem cells from dental pulp are committed to differentiate into active melanocytes. Eur Cell Mater 20:295–305 PubMed PMID: 20931491PubMedCrossRefGoogle Scholar
  44. 44.
    Yang R, Zheng Y, Li L, Liu S, Burrows M, Wei Z et al (2014) Direct conversion of mouse and human fibroblasts to functional melanocytes by defined factors. Nat Commun 5:5807 PubMed PMID: 25510211. Pubmed Central PMCID: 4335710PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Toma JG, Akhavan M, Fernandes KJ, Barnabe-Heider F, Sadikot A, Kaplan DR et al (2001) Isolation of multipotent adult stem cells from the dermis of mammalian skin. Nat Cell Biol 3(9):778–784 PubMed PMID: 11533656PubMedCrossRefGoogle Scholar
  46. 46.
    Toma JG, McKenzie IA, Bagli D, Miller FD (2005) Isolation and characterization of multipotent skin-derived precursors from human skin. Stem Cells 23(6):727–737 PubMed PMID: 15917469PubMedCrossRefGoogle Scholar
  47. 47.
    Sen CK, Gordillo GM, Roy S, Kirsner R, Lambert L, Hunt TK et al (2009) Human skin wounds: a major and snowballing threat to public health and the economy. Wound repair and regeneration : official publication of the wound healing society [and] the European tissue repair. Society 17(6):763–771 PubMed PMID: 19903300. Pubmed Central PMCID: 2810192Google Scholar
  48. 48.
    Kinoshita K, Kuno S, Ishimine H, Aoi N, Mineda K, Kato H et al (2015) Therapeutic potential of adipose-derived SSEA-3-positive Muse cells for treating diabetic skin ulcers. Stem Cells Transl Med 4(2):146–155 PubMed PMID: 25561682. Pubmed Central PMCID: 4303359 PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Hu MS, Longaker MT (2017) A MUSE for skin regeneration. J Invest Dermatol 137(12):2471–2472 PubMed PMID: 29169463PubMedCrossRefGoogle Scholar

Copyright information

© Springer Japan KK, part of Springer Nature 2018

Authors and Affiliations

  • Takeshi Yamauchi
    • 1
  • Kenshi Yamasaki
    • 1
    Email author
  • Kenichiro Tsuchiyama
    • 1
  • Setsuya Aiba
    • 1
  1. 1.Department of DermatologyTohoku University Graduate School of MedicineSendaiJapan

Personalised recommendations