Muse Cells pp 243-253 | Cite as

Current Cell-Based Therapies in the Chronic Liver Diseases

  • Taketo Nishina
  • Kyoko Tomita Hoshikawa
  • Yoshiyuki Ueno
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1103)


Liver diseases account for one of the leading causes of deaths in global health care. Furthermore, chronic liver failure such as liver cirrhosis is, namely, responsible for these fatal conditions. However, only liver transplantation is an established treatment for this end-stage condition, although the availability of this salvage treatment option is quite limited. Thus, the novel therapy such as artificial liver devices or cellular administration has been regarded as feasible. Especially cellular therapies have been proposed in decades. The technical advancement and progress of understanding of cellular differentiation have contributed to the development of basis of cellular therapy. This attractive therapeutic option has been advanced from original embryonic stem cells to more effective cellular fractions such as Muse cells. Indeed several cellular therapies including bone marrow-derived stem cells or peripheral blood-derived stem cells were initiated; the recent most organized clinical trials could not demonstrate its efficacy. Thus, truly innovative cellular therapy is needed to meet the scientific demands, and Muse cell administration is the remaining approach to this. In this article, we will discuss the current development and status of cellular therapy toward chronic liver failure.


Liver cirrhosis Albumin Hepatocyte Regeneration Liver failure Transaminase Bilirubin Fibrosis 



This work was supported in part by the Grant-in-Aid for Scientific Research (B) (Grant #JP16H05283) from JSPS and CREST (grant #17gm0610001h0006) and Research Program on Hepatitis from AMED.


  1. 1.
    Fukui H, Saito H, Ueno Y, Uto H, Obara K, Sakaida I et al (2016) Evidence-based clinical practice guidelines for liver cirrhosis 2015. J Gastroenterol 51(7):629–650CrossRefGoogle Scholar
  2. 2.
    Naggie S, Muir AJ (2017) Oral combination therapies for hepatitis C virus infection: successes, challenges, and unmet needs. Annu Rev Med 68:345–358CrossRefGoogle Scholar
  3. 3.
    Forbes SJ, Newsome PN (2012) New horizons for stem cell therapy in liver disease. J Hepatol 56(2):496–499CrossRefGoogle Scholar
  4. 4.
    Terai S, Tsuchiya A (2017) Status of and candidates for cell therapy in liver cirrhosis: overcoming the “point of no return” in advanced liver cirrhosis. J Gastroenterol 52(2):129–140CrossRefGoogle Scholar
  5. 5.
    Loomba R, Lawitz E, Mantry PS, Jayakumar S, Caldwell SH, Arnold H et al (2018) The ASK1 inhibitor selonsertib in patients with nonalcoholic steatohepatitis: a randomized, phase 2 trial. Hepatology 67(2):549–559CrossRefGoogle Scholar
  6. 6.
    Alison MR, Poulsom R, Jeffery R, Dhillon AP, Quaglia A, Jacob J et al (2000) Hepatocytes from non-hepatic adult stem cells. Nature 406(6793):257CrossRefGoogle Scholar
  7. 7.
    Amer ME, El-Sayed SZ, El-Kheir WA, Gabr H, Gomaa AA, El-Noomani N et al (2011) Clinical and laboratory evaluation of patients with end-stage liver cell failure injected with bone marrow-derived hepatocyte-like cells. Eur J Gastroenterol Hepatol 23(10):936–941CrossRefGoogle Scholar
  8. 8.
    Amin MA, Sabry D, Rashed LA, Aref WM, el-Ghobary MA, Farhan MS et al (2013) Short-term evaluation of autologous transplantation of bone marrow-derived mesenchymal stem cells in patients with cirrhosis: Egyptian study. Clin Transpl 27(4):607–612CrossRefGoogle Scholar
  9. 9.
    Andreone P, Catani L, Margini C, Brodosi L, Lorenzini S, Sollazzo D et al (2015) Reinfusion of highly purified CD133+ bone marrow-derived stem/progenitor cells in patients with end-stage liver disease: a phase I clinical trial. Dig Liver Dis 47(12):1059–1066CrossRefGoogle Scholar
  10. 10.
    Dubuquoy L, Louvet A, Lassailly G, Truant S, Boleslawski E, Artru F et al (2015) Progenitor cell expansion and impaired hepatocyte regeneration in explanted livers from alcoholic hepatitis. Gut 64(12):1949–1960CrossRefGoogle Scholar
  11. 11.
    El-Ansary M, Abdel-Aziz I, Mogawer S, Abdel-Hamid S, Hammam O, Teaema S et al (2012) Phase II trial: undifferentiated versus differentiated autologous mesenchymal stem cells transplantation in Egyptian patients with HCV induced liver cirrhosis. Stem Cell Rev 8(3):972–981CrossRefGoogle Scholar
  12. 12.
    Kharaziha P, Hellstrom PM, Noorinayer B, Farzaneh F, Aghajani K, Jafari F et al (2009) Improvement of liver function in liver cirrhosis patients after autologous mesenchymal stem cell injection: a phase I-II clinical trial. Eur J Gastroenterol Hepatol 21(10):1199–1205CrossRefGoogle Scholar
  13. 13.
    King A, Houlihan DD, Kavanagh D, Haldar D, Luu N, Owen A et al (2017) Sphingosine-1-phosphate prevents egress of hematopoietic stem cells from liver to reduce fibrosis. Gastroenterology 153(1):233–248 e16CrossRefGoogle Scholar
  14. 14.
    Mohamadnejad M, Namiri M, Bagheri M, Hashemi SM, Ghanaati H, Zare Mehrjardi N et al (2007) Phase 1 human trial of autologous bone marrow-hematopoietic stem cell transplantation in patients with decompensated cirrhosis. World J Gastroenterol 13(24):3359–3363CrossRefGoogle Scholar
  15. 15.
    Peng L, Xie DY, Lin BL, Liu J, Zhu HP, Xie C et al (2011) Autologous bone marrow mesenchymal stem cell transplantation in liver failure patients caused by hepatitis B: short-term and long-term outcomes. Hepatology 54(3):820–828CrossRefGoogle Scholar
  16. 16.
    Sakaida I, Terai S, Yamamoto N, Aoyama K, Ishikawa T, Nishina H et al (2004) Transplantation of bone marrow cells reduces CCl4-induced liver fibrosis in mice. Hepatology 40(6):1304–1311CrossRefGoogle Scholar
  17. 17.
    Salama H, Zekri AR, Medhat E, Al Alim SA, Ahmed OS, Bahnassy AA et al (2014) Peripheral vein infusion of autologous mesenchymal stem cells in Egyptian HCV-positive patients with end-stage liver disease. Stem Cell Res Ther 5(3):70CrossRefGoogle Scholar
  18. 18.
    Si-Tayeb K, Noto FK, Nagaoka M, Li J, Battle MA, Duris C et al (2010) Highly efficient generation of human hepatocyte-like cells from induced pluripotent stem cells. Hepatology 51(1):297–305CrossRefGoogle Scholar
  19. 19.
    Sokal EM, Lombard CA, Roelants V, Najimi M, Varma S, Sargiacomo C et al (2017) Biodistribution of liver-derived mesenchymal stem cells after peripheral injection in a hemophilia a patient. Transplantation 101(8):1845–1851CrossRefGoogle Scholar
  20. 20.
    Spahr L, Chalandon Y, Terraz S, Kindler V, Rubbia-Brandt L, Frossard JL et al (2013) Autologous bone marrow mononuclear cell transplantation in patients with decompensated alcoholic liver disease: a randomized controlled trial. PLoS One 8(1):e53719CrossRefGoogle Scholar
  21. 21.
    Suk KT, Yoon JH, Kim MY, Kim CW, Kim JK, Park H et al (2016) Transplantation with autologous bone marrow-derived mesenchymal stem cells for alcoholic cirrhosis: phase 2 trial. Hepatology 64(6):2185–2197CrossRefGoogle Scholar
  22. 22.
    Terai S, Ishikawa T, Omori K, Aoyama K, Marumoto Y, Urata Y et al (2006) Improved liver function in patients with liver cirrhosis after autologous bone marrow cell infusion therapy. Stem Cells 24(10):2292–2298CrossRefGoogle Scholar
  23. 23.
    Wang L, Li J, Liu H, Li Y, Fu J, Sun Y et al (2013) Pilot study of umbilical cord-derived mesenchymal stem cell transfusion in patients with primary biliary cirrhosis. J Gastroenterol Hepatol 28(Suppl 1):85–92CrossRefGoogle Scholar
  24. 24.
    Xu L, Gong Y, Wang B, Shi K, Hou Y, Wang L et al (2014) Randomized trial of autologous bone marrow mesenchymal stem cells transplantation for hepatitis B virus cirrhosis: regulation of Treg/Th17 cells. J Gastroenterol Hepatol 29(8):1620–1628CrossRefGoogle Scholar
  25. 25.
    Zhang Z, Lin H, Shi M, Xu R, Fu J, Lv J et al (2012) Human umbilical cord mesenchymal stem cells improve liver function and ascites in decompensated liver cirrhosis patients. J Gastroenterol Hepatol 27(Suppl 2):112–120CrossRefGoogle Scholar
  26. 26.
    Shi M, Zhang Z, Xu R, Lin H, Fu J, Zou Z et al (2012) Human mesenchymal stem cell transfusion is safe and improves liver function in acute-on-chronic liver failure patients. Stem Cells Transl Med 1(10):725–731CrossRefGoogle Scholar
  27. 27.
    Jang YO, Kim YJ, Baik SK, Kim MY, Eom YW, Cho MY et al (2014) Histological improvement following administration of autologous bone marrow-derived mesenchymal stem cells for alcoholic cirrhosis: a pilot study. Liver Int 34(1):33–41CrossRefGoogle Scholar
  28. 28.
    Lanthier N, Lin-Marq N, Rubbia-Brandt L, Clement S, Goossens N, Spahr L (2017) Autologous bone marrow-derived cell transplantation in decompensated alcoholic liver disease: what is the impact on liver histology and gene expression patterns? Stem Cell Res Ther 8(1):88CrossRefGoogle Scholar
  29. 29.
    Moore JK, Stutchfield BM, Forbes SJ (2014) Systematic review: the effects of autologous stem cell therapy for patients with liver disease. Aliment Pharmacol Ther 39(7):673–685CrossRefGoogle Scholar
  30. 30.
    Trounson A, McDonald C (2015) Stem cell therapies in clinical trials: progress and challenges. Cell Stem Cell 17(1):11–22CrossRefGoogle Scholar
  31. 31.
    Saito T, Okumoto K, Haga H, Nishise Y, Ishii R, Sato C et al (2011) Potential therapeutic application of intravenous autologous bone marrow infusion in patients with alcoholic liver cirrhosis. Stem Cells Dev 20(9):1503–1510CrossRefGoogle Scholar
  32. 32.
    Newsome PN, Fox R, King AL, Barton D, Than NN, Moore J et al (2018) Granulocyte colony-stimulating factor and autologous CD133-positive stem-cell therapy in liver cirrhosis (REALISTIC): an open-label, randomised, controlled phase 2 trial. Lancet Gastroenterol Hepatol 3(1):25–36CrossRefGoogle Scholar
  33. 33.
    Lanthier N (2018) Haemopoietic stem cell therapy in cirrhosis: the end of the story? Lancet Gastroenterol Hepatol. 3(1):3–5CrossRefGoogle Scholar
  34. 34.
    Takayama K, Morisaki Y, Kuno S, Nagamoto Y, Harada K, Furukawa N et al (2014) Prediction of interindividual differences in hepatic functions and drug sensitivity by using human iPS-derived hepatocytes. Proc Natl Acad Sci USA 111(47):16772–16777CrossRefGoogle Scholar
  35. 35.
    Rashid ST, Corbineau S, Hannan N, Marciniak SJ, Miranda E, Alexander G et al (2010) Modeling inherited metabolic disorders of the liver using human induced pluripotent stem cells. J Clin Invest 120(9):3127–3136CrossRefGoogle Scholar
  36. 36.
    Iwamuro M, Komaki T, Kubota Y, Seita M, Kawamoto H, Yuasa T et al (2010) Hepatic differentiation of mouse iPS cells in vitro. Cell Transplant 19(6):841–847CrossRefGoogle Scholar
  37. 37.
    Normile D (2017) iPS cell therapy reported safe. Science 355(6330):1109–1110CrossRefGoogle Scholar
  38. 38.
    Kuroda Y, Kitada M, Wakao S, Nishikawa K, Tanimura Y, Makinoshima H et al (2010) Unique multipotent cells in adult human mesenchymal cell populations. Proc Natl Acad Sci USA 107(19):8639–8643CrossRefGoogle Scholar
  39. 39.
    Kuroda Y, Wakao S, Kitada M, Murakami T, Nojima M, Dezawa M (2013) Isolation, culture and evaluation of multilineage-differentiating stress-enduring (Muse) cells. Nat Protoc 8(7):1391–1415CrossRefGoogle Scholar
  40. 40.
    Iseki M, Kushida Y, Wakao S, Akimoto T, Mizuma M, Motoi F et al (2017) Muse cells, nontumorigenic pluripotent-like stem cells, have liver regeneration capacity through specific homing and cell replacement in a mouse model of liver fibrosis. Cell Transplant 26(5):821–840CrossRefGoogle Scholar
  41. 41.
    Ogura F, Wakao S, Kuroda Y, Tsuchiyama K, Bagheri M, Heneidi S et al (2014) Human adipose tissue possesses a unique population of pluripotent stem cells with nontumorigenic and low telomerase activities: potential implications in regenerative medicine. Stem Cells Dev 23(7):717–728CrossRefGoogle Scholar
  42. 42.
    Wakao S, Kitada M, Kuroda Y, Shigemoto T, Matsuse D, Akashi H et al (2011) Multilineage-differentiating stress-enduring (Muse) cells are a primary source of induced pluripotent stem cells in human fibroblasts. Proc Natl Acad Sci USA 108(24):9875–9880CrossRefGoogle Scholar
  43. 43.
    Dezawa M (2016) Muse cells provide the pluripotency of mesenchymal stem cells: direct contribution of Muse cells to tissue regeneration. Cell Transplant 25(5):849–861CrossRefGoogle Scholar
  44. 44.
    Tanaka T, Nishigaki K, Minatoguchi S, Nawa T, Yamada Y, Kanamori H et al (2018) Mobilized Muse cells after acute myocardial infarction predict cardiac function and remodeling in the chronic phase. Circ J 82(2):561–571CrossRefGoogle Scholar
  45. 45.
    Uchida N, Kushida Y, Kitada M, Wakao S, Kumagai N, Kuroda Y et al (2017) Beneficial effects of systemically administered human Muse cells in adriamycin nephropathy. J Am Soc Nephrol 28(10):2946–2960CrossRefGoogle Scholar
  46. 46.
    Uchida H, Morita T, Niizuma K, Kushida Y, Kuroda Y, Wakao S et al (2016) Transplantation of unique subpopulation of fibroblasts, Muse cells, ameliorates experimental stroke possibly via robust neuronal differentiation. Stem Cells 34(1):160–173CrossRefGoogle Scholar
  47. 47.
    Katagiri H, Kushida Y, Nojima M, Kuroda Y, Wakao S, Ishida K et al (2016) A distinct subpopulation of bone marrow mesenchymal stem cells, Muse cells, directly commit to the replacement of liver components. Am J Transplant 16(2):468–483CrossRefGoogle Scholar
  48. 48.
    Yamauchi T, Kuroda Y, Morita T, Shichinohe H, Houkin K, Dezawa M et al (2015) Therapeutic effects of human multilineage-differentiating stress enduring (MUSE) cell transplantation into infarct brain of mice. PLoS One 10(3):e0116009CrossRefGoogle Scholar
  49. 49.
    Kinoshita K, Kuno S, Ishimine H, Aoi N, Mineda K, Kato H et al (2015) Therapeutic potential of adipose-derived SSEA-3-positive Muse cells for treating diabetic skin ulcers. Stem Cells Transl Med 4(2):146–155CrossRefGoogle Scholar
  50. 50.
    Life Science Institute, Inc., Press release (Japanese)

Copyright information

© Springer Japan KK, part of Springer Nature 2018

Authors and Affiliations

  • Taketo Nishina
    • 1
  • Kyoko Tomita Hoshikawa
    • 1
    • 2
  • Yoshiyuki Ueno
    • 1
    • 2
  1. 1.Department of GastroenterologyYamagata University Faculty of MedicineYamagataJapan
  2. 2.CRESTYamagataJapan

Personalised recommendations