Advertisement

Experiment of a Resource-Oriented Agro-sanitation System in Sahelian Rural Community: Case of Burkina Faso

  • Mariam Sou/Dakoure
  • Ynoussa Maïga
  • Amadou Hama Maïga
  • Maïmouna Traore Bologo
  • Seyram Sossou
Chapter

Abstract

This case study presents partial results of a research project in agro-sanitation. The study took place in rural area of Burkina Faso, a typical Sahelian country in West Africa. The objectives were (1) to design and implement an agro-sanitation system and (2) assess the willingness of users to reuse the sanitation by-products in small-scale subsistence farming. The sanitation system consists of collecting onsite greywater, urine, and feces which after separated treatment are reused as by-products. The greywater is treated by a slanted soil treatment system. Feces are converted in compost inside a composting toilet and urine treated by solar inactivation. General performances of the sanitation system are in progress at middle stage of the research project. However, the system is already a success in two points: (1) design simple and robust facilities adapted in a context of water shortage and not electricity; (2) better understand the social and economic criteria associated to the acceptability of users.

Keywords

Agro-sanitation Composting toilet Slanted soil treatment system Urine Small farming 

References

  1. Antonini S, Nguyen PT, Arnold U, Eichert T, Clemens J (2012) Solar thermal evaporation of human urine for nitrogen and phosphorus recovery in Vietnam. Sci Total Environ 414(59):2–9.  https://doi.org/10.1016/j.scitotenv.2011.11.055CrossRefGoogle Scholar
  2. Bouju J, Ouattara F (2002) «Une anthropologie politique de la fange. Conceptions culturelles, pratiques sociales et enjeux institutionnels de la propreté urbaine à Ouagadougou et Bobo-Dioulasso (Burkina Faso)». In Programme de recherche Gestion durable des déchets et de l’assainissement urbain, Action de recherche n° 4, SHADYC (Marseille)-GRIL (Ouagadougou)Google Scholar
  3. Cairncross S, Feachem RG (1993, reprinted 1999) Environmental health engineering in the tropics: an introductory text, 2nd edn. Wiley, ChichesterGoogle Scholar
  4. Christensen KK, Carlbaek M, Kron E (2002) Strategies for evaluating the sanitary quality of composting. J Appl Microbiol 92:1143–1158.  https://doi.org/10.1046/j.1365-2672.2002.01648.xCrossRefGoogle Scholar
  5. Del Porto D, Steinfeld C (2000) The composting toilet system book. Centre for Ecological Pollution Prevention, USAGoogle Scholar
  6. ENA (2010) Enquête nationale sur l’accès des ménages aux ouvrages d’assainissement familial. Ministère de l’Agriculture et de l’Hydraulique – Burkina Faso. 4 pp [in french]Google Scholar
  7. Galan DI, Kim S, Graham JP (2013) Exploring changes in open defecation prevalence in sub-Saharan Africa based on national level indices. BMC Public Health 13:527.  https://doi.org/10.1186/1471-2458-13-527CrossRefGoogle Scholar
  8. Gomez-Couso H, Fontan-Sainz M, McGuigan KG, Ares-Mazas E (2009) Effect of the radiation intensity, water turbidity and exposure time on the survival of cryptosporidium during simulated solar disinfection of drinking water. Acta Trop 112:43–48.  https://doi.org/10.1016/j.actatropica.2009.06.004CrossRefGoogle Scholar
  9. Hotta S, Funamizu N (2007) Biodegradability of fecal nitrogen in composting process. Biores Technol 98(17):3412–3414.  https://doi.org/10.1016/j.biortech.2006.10.045CrossRefGoogle Scholar
  10. Jones P, Martin M (2003) A review of the literature on the occurrence and survival of pathogens of animals and humans in green compost. Ed. The waste and resources action programme. The Old Academy, BanburyGoogle Scholar
  11. Kaufmann JC (1997) Le cœur à l’ouvrage: théorie de l’action ménagère. Nathan, ParisGoogle Scholar
  12. Kim J, Shepherd M, Jiang X (2009) Evaluating the effect of environmental factors on pathogen regrowth in compost extract. Microb Ecol 58(3):498–508.  https://doi.org/10.1007/s00248-009-9524-xCrossRefGoogle Scholar
  13. Kitsui T, Terazawa M (1999) Environmentally-friendly toilets for the 21st century, Biotoilet. In: Proceedings of the 10th ISWPC, Yokohama, vol 3, pp 120–121Google Scholar
  14. Lopez Zavala MA, Funamizu N, Takakuwa T (2004) Temperature effect on aerobic biodegradation of feces using sawdust as a matrix. Water Res 38(9):2406–2416.  https://doi.org/10.1016/j.watres.2004.02.026CrossRefGoogle Scholar
  15. Maiga Y, Moyenga D, Nikiema B, Ushijima K, Sou M, Maiga AH (2013) Pilot study of greywater treatment for small communities in rural area: the case of Kologoudiessé. In: 3rd IWA development congress and exhibition. Nairobi, Kenya, 14–17 Oct 2013Google Scholar
  16. Maiga Y, Moyenga D, Ushijima K, Sou M, Maiga AH (2014) Greywater characteristics in rural areas of the Sahelian region for reuse purposes: the case of Burkina Faso. Revue des Sciences de l’Eau [J Water Sci] (in press)CrossRefGoogle Scholar
  17. Maurer M, Pronk W, Larsen TA (2006) Treatment processes for source-separated urine. Water Res 40(3):151–166.  https://doi.org/10.1016/j.watres.2006.07.012CrossRefGoogle Scholar
  18. McGuigan KG, Conroy RM, Mosler H-J, du Preez M, Ubomba-Jaswa E, Fernandez-Ibanez P (2012) Solar water disinfection (SODIS): a review from bench-top to roof-top. J Hazard Mater 235–236:29–46.  https://doi.org/10.1016/j.jhazmat.2012.07.053CrossRefGoogle Scholar
  19. Mehl J, Kaiser J, Hurtado D, Gibson D, Izurieta R, Mihelcic J (2011) Pathogen destruction and solids decomposition in composting latrines: study of fundamental mechanisms and user operation in rural Panama. J Water Health 9(1):187–199.  https://doi.org/10.2166/wh.2010.138CrossRefGoogle Scholar
  20. Ministere des affaires Etrangeres et de la Cooperation Regionale (2011) Population et groupe ethnique du Burkina Faso. http://www.mae.gov.bf/population%20ethnie.html
  21. Pronk W, Koné D (2009) Options for urine treatment in developing countries. Desalination 248:360–368.  https://doi.org/10.1016/j.desal.2008.05.076CrossRefGoogle Scholar
  22. Redlinger T, Graham J, Corella-Barud V, Avitia R (2001) Survival of fecal coliforms in dry-composting toilets. Appl Environ Microbiol 67:4036–4040.  https://doi.org/10.1128/aem.67.9.4036-4040.2001CrossRefGoogle Scholar
  23. Sossou SK, Hijikata N, Sou M, Tezuka R, Maiga AH, Funamizu N (2014) Inactivation mechanisms of pathogenic bacteria in several matrixes during the composting process in a composting toilet. Environ Technol 35(6):674–680.  https://doi.org/10.1080/09593330.2013.841268CrossRefGoogle Scholar
  24. Strauss M, Blumenthal UJ (1990) Use of human wastes in agriculture and aquaculture; utilization practices and health perspectives. IRCWD report, 8Google Scholar
  25. Ushijima K, Yabui K, Hijikata N, Ito R, Funamizu N (2011) Development self-buildable simple composting toilet. In: Proceedings of IWA aspire (USB-memory) conference and exhibition, 2–6 Oct, Tokyo, JapanGoogle Scholar
  26. Winblad U, Hebert MS, Calvert P, Morgan P, Rosemarin A, Sawyer R, Xiao J (2004) Ecological sanitation, revised and enlarged edn. Stockholm Environment Institute, StockholmGoogle Scholar

Copyright information

© Springer Japan KK, part of Springer Nature 2019

Authors and Affiliations

  • Mariam Sou/Dakoure
    • 1
  • Ynoussa Maïga
    • 1
  • Amadou Hama Maïga
    • 1
  • Maïmouna Traore Bologo
    • 1
  • Seyram Sossou
    • 1
  1. 1.International Institute for Water and Environmental Engineering (2iE)OuagadougouBurkina Faso

Personalised recommendations