Biological Mechanisms Underlying Climate Impacts on Population Dynamics of Small Pelagic Fish

  • Akinori TakasukaEmail author
Part of the Fisheries Science Series book series (FISHSS)


Small pelagic fish account for more than 30% by weight of the total landings of marine fisheries in Japan and around the world. Their population dynamics have tended to be dramatic and cyclical in response to climate variability on multi-decadal time scales. However, the biological mechanisms linking climate variability to population dynamics are still unresolved. This chapter reviews the biological mechanisms underlying climate impacts on the population dynamics of small pelagic fish, taking examples from the species alternations between anchovy and sardine in the Kuroshio Current system. First, the chapter examines how environmental variability regulates the survival probability of small pelagic fish, highlighting the role of vital parameters such as growth rate and physiological condition as an amplifier linking subtle changes in environmental variables to dramatic changes in the population dynamics. Then, the chapter introduces hypotheses for the biological mechanism of species alternation, showing how environmental conditions differently affect the population dynamics of different small pelagic fish species. Lastly, recommendations for future research directions are presented.


Growth Population dynamics Small pelagic fish Spawning Species alternation Survival 


  1. Alheit J (2010) SPACC continues under ICES wings. GLOBEC International Newsletter 16:24Google Scholar
  2. Alheit J, Niquen M (2004) Regime shifts in the Humboldt Current ecosystem. Prog Oceanogr 60:201–222CrossRefGoogle Scholar
  3. Anderson JT (1988) A review of size dependent survival during pre-recruit stages of fishes in relation to recruitment. J Northwest Atl Fish Sci 8:55–66CrossRefGoogle Scholar
  4. Bailey KM, Houde ED (1989) Predation on eggs and larvae of marine fishes and the recruitment problem. Adv Mar Biol 25:1–83CrossRefGoogle Scholar
  5. Bakun A, Broad K (2003) Environmental ‘loopholes’ and fish population dynamics: comparative pattern recognition with focus on El Niño effects in the Pacific. Fish Oceanogr 12:458–473CrossRefGoogle Scholar
  6. Bakun A, Cury P (1999) The “school trap”: a mechanism promoting large-amplitude out-of-phase population oscillations of small pelagic fish species. Ecol Lett 2:349–351CrossRefGoogle Scholar
  7. Barange M, Coetzee J, Takasuka A, Hill K, Gutierrez M, Oozeki Y, van der Lingen C, Agostini V (2009) Habitat expansion and contraction in anchovy and sardine populations. Prog Oceanogr 83:251–260CrossRefGoogle Scholar
  8. Brunel T, Piet GJ (2013) Is age structure a relevant criterion for the health of fish stocks? ICES J Mar Sci 70:270–283CrossRefGoogle Scholar
  9. Chambers RC, Leggett WC (1987) Size and age at metamorphosis in marine fishes: an analysis of laboratory-reared winter flounder (Pseudopleuronectes americanus) with a review of variation in other species. Can J Fish Aquat Sci 44:1936–1947CrossRefGoogle Scholar
  10. Chavez FP, Ryan J, Lluch-Cota SE, Ñiquen CM (2003) From anchovies to sardines and back: multidecadal change in the Pacific Ocean. Science 299:217–221CrossRefPubMedGoogle Scholar
  11. Checkley D, Alheit J, Oozeki Y, Roy C (eds) (2009) Climate change and small pelagic fish. Cambridge University Press, CambridgeGoogle Scholar
  12. Chouvelon T, Chappuis A, Bustamante P, Lefebvre S, Mornet F, Guillou G, Violamer L, Dupuy C (2014) Trophic ecology of European sardine Sardina pilchardus and European anchovy Engraulis encrasicolus in the Bay of Biscay (north-east Atlantic) inferred from δ13C and δ15N values of fish and identified mesozooplanktonic organisms. J Sea Res 85:277–291CrossRefGoogle Scholar
  13. Costalago D, Palomera I, Tirelli V (2014) Seasonal comparison of the diets of juvenile European anchovy Engraulis encrasicolus and sardine Sardina pilchardus in the Gulf of Lions. J Sea Res 89:64–72CrossRefGoogle Scholar
  14. Cury P, Roy C (1989) Optimal environmental window and pelagic fish recruitment success in upwelling areas. Can J Fish Aquat Sci 46:670–680CrossRefGoogle Scholar
  15. Cury P, Bakun A, Crawford RJM, Jarre A, Quinones RA, Shannon LJ, Verheye HM (2000) Small pelagics in upwelling systems: patterns of interaction and structural changes in “wasp-waist” ecosystems. ICES J Mar Sci 57:603–618CrossRefGoogle Scholar
  16. Cushing DH (1975) Marine ecology and fisheries. Cambridge University Press, CambridgeGoogle Scholar
  17. de Young B, Barange M, Beaugrand G, Harris R, Perry RI, Scheffer M, Werner F (2008) Regime shifts in marine ecosystems: detection, prediction and management. Trends Ecol Evol 23:402–409CrossRefGoogle Scholar
  18. Duffy-Anderson JT, Bailey K, Ciannelli L, Cury P, Belgrano A, Stenseth NC (2005) Phase transitions in marine fish recruitment processes. Ecol Complex 2:205–218CrossRefGoogle Scholar
  19. Dulvy NK, Sadovy Y, Reynolds JD (2003) Extinction vulnerability in marine populations. Fish Fish 4:25–64CrossRefGoogle Scholar
  20. Frank KT, Petrie B, Choi JS, Leggett WC (2005) Trophic cascades in a formerly cod-dominated ecosystem. Science 308:1621–1623CrossRefPubMedGoogle Scholar
  21. Green BS (2008) Maternal effects in fish populations. Adv Mar Biol 54:1–105CrossRefPubMedGoogle Scholar
  22. Hare JA, Cowen RK (1997) Size, growth, development, and survival of the planktonic larvae of Pomatomus saltatrix (Pisces: Pomatomidae). Ecology 78:2415–2431CrossRefGoogle Scholar
  23. Hare SR, Mantua NJ (2000) Empirical evidence for North Pacific regime shifts in 1977 and 1989. Prog Oceanogr 47:103–145CrossRefGoogle Scholar
  24. Heath MR (1992) Field investigations of the early life stages of marine fish. Adv Mar Biol 28:1–174CrossRefGoogle Scholar
  25. Hixon MA, Johnson DW, Sogard SM (2014) BOFFFFs: on the importance of conserving old-growth age structure in fishery populations. ICES J Mar Sci 71:2171–2185CrossRefGoogle Scholar
  26. Hjort J (1914) Fluctuations in the great fisheries of northern Europe viewed in the light of biological research. Rapp P-V Reun Cons Int Explor Mer 20:1–228Google Scholar
  27. Houde ED (1987) Fish early life dynamics and recruitment variability. Am Fish Soc Symp 2:17–29Google Scholar
  28. Hovenkamp F (1992) Growth-dependent mortality of larval plaice Pleuronectes platessa in the North Sea. Mar Ecol Prog Ser 82:95–101CrossRefGoogle Scholar
  29. Hsieh CH, Reiss CS, Hunter JR, Beddington JR, May RM, Sugihara G (2006) Fishing elevates variability in the abundance of exploited species. Nature 443:859–862CrossRefPubMedGoogle Scholar
  30. Hufnagl M, Peck MA (2011) Physiological individual-based modelling of larval Atlantic herring (Clupea harengus) foraging and growth: insights on climate-driven life-history scheduling. ICES J Mar Sci 68:1170–1188CrossRefGoogle Scholar
  31. Hutchings JA (2014) Renaissance of a caveat: allee effects in marine fish. ICES J Mar Sci 71:2152–2157CrossRefGoogle Scholar
  32. Ito S, Kishi MJ, Kurita Y, Oozeki Y, Yamanaka Y, Megrey BA, Werner FE (2004) Initial design for a fish bioenergetics model of Pacific saury coupled to a lower trophic ecosystem model. Fish Oceanogr 13(Suppl 1):111–124CrossRefGoogle Scholar
  33. Ito S, Kishi MJ, Megrey BA, Rose KA, Werner FE (2006) Workshop on sardine and anchovy fluctuations. PICES Press 14:16–17Google Scholar
  34. Ito S, Rose KA, Miller AJ, Drinkwater K, Brander K, Overland JE, Sundby S, Curchitser E, Hurrell JW, Yamanaka Y (2010) Ocean ecosystem responses to future global change scenarios: a way forward. In: Barange M, Field JG, Harris RP, Hofmann EE, Perry RI, Werner FE (eds) Marine ecosystems and global change. Oxford University Press, New York, pp 287–322CrossRefGoogle Scholar
  35. Itoh S, Yasuda I, Nishikawa H, Sasaki H, Sasai Y (2009) Transport and environmental temperature variability of eggs and larvae of the Japanese anchovy (Engraulis japonicus) and Japanese sardine (Sardinops melanostictus) in the western North Pacific estimated via numerical particle-tracking experiments. Fish Oceanogr 18:118–133CrossRefGoogle Scholar
  36. Itoh S, Saruwatari T, Nishikawa H, Yasuda I, Komatsu K, Tsuda A, Setou T, Shimizu M (2011) Environmental variability and growth histories of larval Japanese sardine (Sardinops melanostictus) and Japanese anchovy (Engraulis japonicus) near the frontal area of the Kuroshio. Fish Oceanogr 20:114–124CrossRefGoogle Scholar
  37. Katsukawa T (2007) Fisheries impact on Japanese sardine. Nippon Suisan Gakkaishi 73:763–766 (in Japanese)CrossRefGoogle Scholar
  38. Kawasaki T (1983) Why do some pelagic fishes have wide fluctuations in their numbers? Biological basis of fluctuation from the viewpoint of evolutionary ecology. In: Sharp GD, Csirke J (eds) Proceedings of the expert consultation to examine changes in abundance and species composition of neritic fish resources, San Jose, 18–29 April 1983. FAO Fish Rep 291:1065–1080Google Scholar
  39. Kawasaki T, Omori M (1995) Possible mechanisms underlying fluctuations in the Far Eastern sardine population inferred from time series of two biological traits. Fish Oceanogr 4:238–242CrossRefGoogle Scholar
  40. Kim JY, Kim S, Choi YM, Lee JB (2006) Evidence of density-dependent effects on population variation of Japanese sardine (Sardinops melanosticta) off Korea. Fish Oceanogr 15:345–349CrossRefGoogle Scholar
  41. Kishi MJ, Kashiwai M, Ware DM, Megrey BA, Eslinger DL, Werner FE, Aita MN, Azumaya T, Fujii M, Hashimoto S, Huang D, Iizumi H, Ishida Y, Kang S, Kantakov GA, Kim HC, Komatsu K, Navrotsky VV, Smith SL, Tadokoro K, Tsuda A, Yamamura O, Yamanaka Y, Yokouchi K, Yoshie N, Zhang J, Zuenko YI, Zvalinsky VI (2007) NEMURO—a lower trophic level model for the North Pacific marine ecosystem. Ecol Model 202:12–25CrossRefGoogle Scholar
  42. Lankford TE, Billerbeck JM, Conover DO (2001) Evolution of intrinsic growth and energy acquisition rates. II. Trade-offs with vulnerability to predation in Menidia menidia. Evolution 55:1873–1881CrossRefPubMedGoogle Scholar
  43. Lasker R (1975) Field criteria for survival of anchovy larvae: the relation between inshore chlorophyll maximum layers and successful first feeding. Fish Bull 73:453–462Google Scholar
  44. Leggett WC, Frank KT (2008) Paradigms in fisheries oceanography. Oceanogr Mar Biol Annu Rev 46:331–363Google Scholar
  45. Lluch-Belda D, Crawford RJM, Kawasaki T, MacCall AD, Parrish RH, Schwartzlose RA, Smith PE (1989) Worldwide fluctuations of sardine and anchovy stocks: the regime problem. S Afr J Mar Sci 8:195–205CrossRefGoogle Scholar
  46. Lluch-Belda D, Lluch-Cota DB, Hernandez-Vazquez S, Salinas-Zavala CA, Schwartzlose RA (1991) Sardine and anchovy spawning as related to temperature and upwelling in the California Current system. Calif Coop Ocean Fish Invest Rep 32:105–111Google Scholar
  47. Louw GG, van der Lingen CD, Gibbons MJ (1998) Differential feeding by sardine Sardinops sagax and anchovy Engraulis capensis recruits in mixed shoals. S Afr J Mar Sci 19:227–232CrossRefGoogle Scholar
  48. Mantua NJ, Hare SR (2002) The Pacific decadal oscillation. J Oceanogr 58:35–44CrossRefGoogle Scholar
  49. Meekan MG, Fortier L (1996) Selection for fast growth during the larval life of Atlantic cod Gadus morhua on the Scotian Shelf. Mar Ecol Prog Ser 137:25–37CrossRefGoogle Scholar
  50. Miller TJ, Crowder LB, Rice JA, Marschall EA (1988) Larval size and recruitment mechanisms in fishes: toward a conceptual framework. Can J Fish Aquat Sci 45:1657–1670CrossRefGoogle Scholar
  51. Munch SB, Conover DO (2003) Rapid growth results in increased susceptibility to predation in Menidia menidia. Evolution 57:2119–2127CrossRefPubMedGoogle Scholar
  52. Myers RA, Barrowman NJ, Hutchings JA, Rosenberg AA (1995) Population dynamics of exploited fish stocks at low population levels. Science 269:1106–1108CrossRefGoogle Scholar
  53. Nash RDM, Dickey-Collas M, Kell LT (2009) Stock and recruitment in North Sea herring (Clupea harengus); compensation and depensation in the population dynamics. Fish Res 95:88–97CrossRefGoogle Scholar
  54. Nikolioudakis N, Isari S, Somarakis S (2014) Trophodynamics of anchovy in a non-upwelling system: direct comparison with sardine. Mar Ecol Prog Ser 500:215–229CrossRefGoogle Scholar
  55. Nishikawa H, Yasuda I (2008) Japanese sardine (Sardinops melanostictus) mortality in relation to the winter mixed layer depth in the Kuroshio Extension region. Fish Oceanogr 17:411–420CrossRefGoogle Scholar
  56. Nishikawa H, Yasuda I, Itoh S (2011) Impact of winter-to-spring environmental variability along the Kuroshio jet on the recruitment of Japanese sardine (Sardinops melanostictus). Fish Oceanogr 20:570–582CrossRefGoogle Scholar
  57. Nishikawa H, Yasuda I, Komatsu K, Sasaki H, Sasai Y, Setou T, Shimizu M (2013) Winter mixed layer depth and spring bloom along the Kuroshio front: implications for the Japanese sardine stock. Mar Ecol Prog Ser 487:217–229CrossRefGoogle Scholar
  58. Noto M, Yasuda I (1999) Population decline of the Japanese sardine, Sardinops melanostictus, in relation to sea surface temperature in the Kuroshio Extension. Can J Fish Aquat Sci 56:973–983CrossRefGoogle Scholar
  59. Okunishi T, Yamanaka Y, Ito S (2009) A simulation model for Japanese sardine (Sardinops melanostictus) migrations in the western North Pacific. Ecol Model 220:462–479CrossRefGoogle Scholar
  60. Okunishi T, Ito S, Ambe D, Takasuka A, Kameda T, Tadokoro K, Setou T, Komatsu K, Kawabata A, Kubota H, Ichikawa T, Sugisaki H, Hashioka T, Yamanaka Y, Yoshie N, Watanabe T (2012a) A modeling approach to evaluate growth and movement for recruitment success of Japanese sardine (Sardinops melanostictus) in the western Pacific. Fish Oceanogr 21:44–57CrossRefGoogle Scholar
  61. Okunishi T, Ito S, Hashioka T, Sakamoto TT, Yoshie N, Sumata H, Yara Y, Okada N, Yamanaka Y (2012b) Impacts of climate change on growth, migration and recruitment success of Japanese sardine (Sardinops melanostictus) in the western North Pacific. Clim Chang 115:485–503CrossRefGoogle Scholar
  62. Oozeki Y, Takasuka A, Kubota H, Barange M (2007) Characterizing spawning habitats of Japanese sardine (Sardinops melanostictus), Japanese anchovy (Engraulis japonicus), and Pacific round herring (Etrumeus teres) in the northwestern Pacific. Calif Coop Ocean Fish Invest Rep 48:191–203Google Scholar
  63. Oozeki Y, Takasuka A, Okamura H, Kubota H, Kimura R (2009) Patchiness structure and mortality of Pacific saury Cololabis saira larvae in the northwestern Pacific. Fish Oceanogr 18:328–345CrossRefGoogle Scholar
  64. Peck MA, Hufnagl M (2012) Can IBMs tell us why most larvae die in the sea? Model sensitivities and scenarios reveal research needs. J Mar Syst 93:77–93CrossRefGoogle Scholar
  65. Peck MA, Neuenfeldt S, Essington TE, Trenkel VM, Takasuka A, Gislason H, Dickey-Collas M, Andersen KH, Ravn-Jonsen L, Vestergaard N, Kvamsdal SF, Gårdmark A, Link J, Rice JC (2014) Forage fish interactions: a symposium on “Creating the tools for ecosystem-based management of marine resources”. ICES J Mar Sci 71:1–4CrossRefGoogle Scholar
  66. Pörtner HO, Peck MA (2010) Climate change effects on fishes and fisheries: towards a cause-and-effect understanding. J Fish Biol 77:1745–1779CrossRefPubMedGoogle Scholar
  67. Robert D, Castonguay M, Fortier L (2007) Early growth and recruitment in Atlantic mackerel Scomber scombrus: discriminating the effects of fast growth and selection for fast growth. Mar Ecol Prog Ser 337:209–219CrossRefGoogle Scholar
  68. Robert D, Takasuka A, Nakatsuka S, Kubota H, Oozeki Y, Nishida H, Fortier L (2010) Predation dynamics of mackerel on larval and juvenile anchovy: is capture success linked to prey condition? Fish Sci 76:183–188CrossRefGoogle Scholar
  69. Rose KA, Cowan JH Jr, Winemiller KO, Myers RA, Hilborn R (2001) Compensatory density dependence in fish populations: importance, controversy, understanding and prognosis. Fish Fish 2:293–327CrossRefGoogle Scholar
  70. Rykaczewski RR, Checkley DM Jr (2008) Influence of ocean winds on the pelagic ecosystem in upwelling regions. Proc Natl Acad Sci USA 105:1965–1970CrossRefPubMedGoogle Scholar
  71. Sakurai Y, Kidokoro H, Yamashita N, Yamamoto J, Uchikawa K, Takahara H (2013) Todarodes pacificus, Japanese common squid. In: Rosa R, O’Dor R, Pierce G (eds) Advances in squid biology, ecology and fisheries. Part II – Oegopsid squids. Nova Science Publishers, New York, pp 249–271Google Scholar
  72. Schwartzlose RA, Alheit J, Bakun A, Baumgartner TR, Cloete R, Crawford RJM, Fletcher WJ, Green-Ruiz Y, Hagen E, Kawasaki T, Lluch-Belda D, Lluch-Cota SE, MacCall AD, Matsuura Y, Nevárez-Martínez MO, Parrish RH, Roy C, Serra R, Shust KV, Ward MN, Zuzunaga JZ (1999) Worldwide large-scale fluctuations of sardine and anchovy populations. S Afr J Mar Sci 21:289–347CrossRefGoogle Scholar
  73. Shelton PA, Sinclair AF, Chouinard GA, Mohn R, Duplisea DE (2006) Fishing under low productivity conditions is further delaying recovery of Northwest Atlantic cod (Gadus morhua). Can J Fish Aquat Sci 63:235–238CrossRefGoogle Scholar
  74. Shoji J, Tanaka M (2006) Growth-selective survival in piscivorous larvae of Japanese Spanish mackerel Scomberomorus niphonius: early selection and significance of ichthyoplankton prey supply. Mar Ecol Prog Ser 321:245–254CrossRefGoogle Scholar
  75. Sirois P, Dodson JJ (2000) Critical periods and growth-dependent survival of larvae of an estuarine fish, the rainbow smelt Osmerus mordax. Mar Ecol Prog Ser 203:233–245CrossRefGoogle Scholar
  76. Suda M, Akamine T, Kishida T (2005) Influence of environment factors, interspecific-relationships and fishing mortality on the stock fluctuation of the Japanese sardine, Sardinops melanostictus, off the Pacific coast of Japan. Fish Res 76:368–378CrossRefGoogle Scholar
  77. Takahashi M, Watanabe Y (2005) Effects of temperature and food availability on growth rate during late larval stage of Japanese anchovy (Engraulis japonicus) in the Kuroshio–Oyashio transition region. Fish Oceanogr 14:223–235CrossRefGoogle Scholar
  78. Takahashi M, Watanabe Y, Yatsu A, Nishida H (2009) Contrasting responses in larval and juvenile growth to a climate-ocean regime shift between anchovy and sardine. Can J Fish Aquat Sci 66:972–982CrossRefGoogle Scholar
  79. Takasuka A, Aoki I, Mitani I (2003) Evidence of growth-selective predation on larval Japanese anchovy Engraulis japonicus in Sagami Bay. Mar Ecol Prog Ser 252:223–238CrossRefGoogle Scholar
  80. Takasuka A, Aoki I, Mitani I (2004a) Three synergistic growth-related mechanisms in the short-term survival of larval Japanese anchovy Engraulis japonicus in Sagami Bay. Mar Ecol Prog Ser 270:217–228CrossRefGoogle Scholar
  81. Takasuka A, Oozeki Y, Kimura R, Kubota H, Aoki I (2004b) Growth-selective predation hypothesis revisited for larval anchovy in offshore waters: cannibalism by juveniles versus predation by skipjack tunas. Mar Ecol Prog Ser 278:297–302CrossRefGoogle Scholar
  82. Takasuka A, Oozeki Y, Aoki I (2007a) Optimal growth temperature hypothesis: why do anchovy flourish and sardine collapse or vice versa under the same ocean regime? Can J Fish Aquat Sci 64:768–776CrossRefGoogle Scholar
  83. Takasuka A, Aoki I, Oozeki Y (2007b) Predator-specific growth-selective predation on larval Japanese anchovy Engraulis japonicus. Mar Ecol Prog Ser 350:99–107CrossRefGoogle Scholar
  84. Takasuka A, Oozeki Y, Kubota H (2008a) Multi-species regime shifts reflected in spawning temperature optima of small pelagic fish in the western North Pacific. Mar Ecol Prog Ser 360:211–217CrossRefGoogle Scholar
  85. Takasuka A, Oozeki Y, Kubota H, Lluch-Cota SE (2008b) Contrasting spawning temperature optima: why are anchovy and sardine regime shifts synchronous across the North Pacific? Prog Oceanogr 77:225–232CrossRefGoogle Scholar
  86. Takasuka A, Kubota H, Oozeki Y (2008c) Spawning overlap of anchovy and sardine in the western North Pacific. Mar Ecol Prog Ser 366:231–244CrossRefGoogle Scholar
  87. Takasuka A, Sakai A, Aoki I (2017) Dynamics of growth-based survival mechanisms in Japanese anchovy (Engraulis japonicus) larvae. Can J Fish Aquat Sci 74:812–823CrossRefGoogle Scholar
  88. Tanaka H, Aoki I, Ohshimo S (2006) Feeding habits and gill raker morphology of three planktivorous pelagic fish species off the coast of northern and western Kyushu in summer. J Fish Biol 68:1041–1061CrossRefGoogle Scholar
  89. van der Lingen CD, Hutchings L, Field JG (2006a) Comparative trophodynamics of anchovy Engraulis encrasicolus and sardine Sardinops sagax in the southern Benguela: are species alternations between small pelagic fish trophodynamically mediated? Afr J Mar Sci 28:465–477CrossRefGoogle Scholar
  90. van der Lingen CD, Fréon P, Fairweather TP, van der Westhuizen JJ (2006b) Density-dependent changes in reproductive parameters and condition of southern Benguela sardine Sardinops sagax. Afr J Mar Sci 28:625–636CrossRefGoogle Scholar
  91. van der Lingen CD, Bertrand A, Bode A, Brodeur R, Cubillos LA, Espinoza P, Friedland K, Garrido S, Irigoien X, Miller T, Möllmann C, Rodriguez-Sanchez R, Tanaka H, Temming A (2009) Trophic dynamics. In: Checkley D, Alheit J, Oozeki Y, Roy C (eds) Climate change and small pelagic fish. Cambridge University Press, Cambridge, pp 112–157CrossRefGoogle Scholar
  92. van der Lingen CD, Lluch-Cota S, Checkley D, Bernal M, Herzka S, Takasuka A (2010) SPACC II planning meeting, 24–26 February 2010, La Paz, Mexico. GLOBEC International Newsletter 16:25–26Google Scholar
  93. Ware DM, Thomson RE (2005) Bottom-up ecosystem trophic dynamics determine fish production in the northeast Pacific. Science 308:1280–1284CrossRefPubMedGoogle Scholar
  94. Werner FE, Ito S, Megrey BA, Kishi MJ (2007) Synthesis of the NEMURO model studies and future directions of marine ecosystem modeling. Ecol Model 202:211–223CrossRefGoogle Scholar
  95. Yamamoto J, Miyanaga S, Fukui S, Sakurai Y (2012) Effect of temperature on swimming behavior of paralarvae of the Japanese common squid Todarodes pacificus. Bull Jpn Soc Fish Oceanogr 76:18–23Google Scholar
  96. Yasue N, Takasuka A, Shirakihara K (2011) Interspecific comparisons of growth and diet among late larvae of three co-occurring clupeoid species in the Kii Channel, Japan. Mar Biol 158:1709–1720CrossRefGoogle Scholar
  97. Yasue N, Doiuchi R, Takasuka A (2014) Trophodynamic similarities of three sympatric clupeoid species throughout their life histories in the Kii Channel as revealed by stable isotope approach. ICES J Mar Sci 71:44–55CrossRefGoogle Scholar
  98. Yatsu A, Watanabe T, Ishida M, Sugisaki H, Jacobson LD (2005) Environmental effects on recruitment and productivity of Japanese sardine Sardinops melanostictus and chub mackerel Scomber japonicus with recommendations for management. Fish Oceanogr 14:263–278CrossRefGoogle Scholar

Copyright information

© Springer Japan KK and the Japanese Society of Fisheries Science 2018

Authors and Affiliations

  1. 1.Japan Fisheries Research and Education AgencyNational Research Institute of Fisheries ScienceYokohamaJapan

Personalised recommendations