Advertisement

The Molecular Basis of the Gastrula Organizer in Amphibians and Cnidarians

  • Yuuri Yasuoka
  • Masanori Taira
Chapter
Part of the Diversity and Commonality in Animals book series (DCA)

Abstract

The gastrula organizer, an embryonic tissue, has a central role in early development of all eumetazoans, from cnidarians to vertebrates. In amphibians, the organizer—also known as the Spemann–Mangold organizer—is located in the dorsal blastopore lip of the gastrula embryo. This organizer is capable of inducing a secondary body axis when transplanted into the ventral region of a blastula embryo. In sea anemone embryos, the organizer has recently been recognized in the blastoporal lip, implying its ancient origin among eumetazoans. Here we review the molecular basis of vertebrate and cnidarian organizers, which have been widely studied using Xenopus, zebrafish, and mice for more than 20 years, and have relatively recently been studied using Nematostella. Recent genome-wide investigations have provided a comprehensive overview of transcription factor (TF) binding sites and regulatory principles of the gene regulatory network (GRN) in the Xenopus organizer. These analyses provide a platform for genome-wide evolutionary study of organizer-equivalent tissues in other organisms, including cnidarians. Here, we discuss an evolutionary prospective for the organizer, focusing on (1) the formation of the organizer by combinatorial signaling pathways such as Wnt, Nodal, and Bmp; and (2) the GRN regulating organizer formation and activity by TFs such as Lim1/Lhx1, Otx, Goosecoid, Brachyury, and FoxA.

Keywords

Evolution Development Genome Spemann-Mangold organizer Gene regulation Transcription factor Gene regulatory network Xenopus Nematostella 

Abbreviations

AZ

1-azakenpaullone

BCNE

blastula chordin- and noggin-expressing

ChIP-seq

chromatin immunoprecipitation sequencing

CRM

cis-regulatory module

DE

distal element

GRN

gene regulatory network

PCR

polymerase chain reaction

PE

proximal element

qPCR

quantitative polymerase chain reaction

RNAPII

RNA polymerase II

RNA-seq

RNA sequencing

RPKM

reads per kilobase of exon per million mapped reads

TF

transcription factor

ZGA

zygotic gene activation

Notes

Acknowledgements

We thank Drs. Hiroshi Watanabe, Hidetoshi Saiga, and Ken C. W. Cho for critical reading of the manuscript, and Dr. Steven D. Aird for technical editing.

References

  1. Aday AW, Zhu LJ, Lakshmanan A, Wang J, Lawson ND (2011) Identification of cis regulatory features in the embryonic zebrafish genome through large-scale profiling of H3K4me1 and H3K4me3 binding sites. Dev Biol 357(2):450–462.  https://doi.org/10.1016/j.ydbio.2011.03.007 CrossRefPubMedPubMedCentralGoogle Scholar
  2. Afouda BA, Ciau-Uitz A, Patient R (2005) GATA4, 5 and 6 mediate TGFbeta maintenance of endodermal gene expression in Xenopus embryos. Development 132(4):763–774.  https://doi.org/10.1242/dev.01647 CrossRefPubMedGoogle Scholar
  3. Agius E, Oelgeschlager M, Wessely O, Kemp C, De Robertis EM (2000) Endodermal nodal-related signals and mesoderm induction in Xenopus. Development 127(6):1173–1183PubMedPubMedCentralGoogle Scholar
  4. Agulnick AD, Taira M, Breen JJ, Tanaka T, Dawid IB, Westphal H (1996) Interactions of the LIM-domain-binding factor Ldb1 with LIM homeodomain proteins. Nature 384(6606):270–272.  https://doi.org/10.1038/384270a0 CrossRefPubMedGoogle Scholar
  5. Akkers RC, van Heeringen SJ, Jacobi UG, Janssen-Megens EM, Francoijs KJ, Stunnenberg HG, Veenstra GJ (2009) A hierarchy of H3K4me3 and H3K27me3 acquisition in spatial gene regulation in Xenopus embryos. Dev Cell 17(3):425–434.  https://doi.org/10.1016/j.devcel.2009.08.005 CrossRefPubMedPubMedCentralGoogle Scholar
  6. Andreazzoli M, Pannese M, Boncinelli E (1997) Activating and repressing signals in head development: the role of Xotx1 and Xotx2. Development 124(9):1733–1743PubMedGoogle Scholar
  7. Ang SL, Jin O, Rhinn M, Daigle N, Stevenson L, Rossant J (1996) A targeted mouse Otx2 mutation leads to severe defects in gastrulation and formation of axial mesoderm and to deletion of rostral brain. Development 122(1):243–252PubMedGoogle Scholar
  8. Arendt D, Nubler-Jung K (1996) Common ground plans in early brain development in mice and flies. Bioessays 18(3):255–259.  https://doi.org/10.1002/bies.950180314 CrossRefPubMedGoogle Scholar
  9. Azuara V, Perry P, Sauer S, Spivakov M, Jorgensen HF, John RM, Gouti M, Casanova M, Warnes G, Merkenschlager M, Fisher AG (2006) Chromatin signatures of pluripotent cell lines. Nat Cell Biol 8(5):532–538.  https://doi.org/10.1038/ncb1403 CrossRefPubMedGoogle Scholar
  10. Baker SC, Bauer SR, Beyer RP, Brenton JD, Bromley B, Burrill J, Causton H, Conley MP, Elespuru R, Fero M, Foy C, Fuscoe J, Gao X, Gerhold DL, Gilles P, Goodsaid F, Guo X, Hackett J, Hockett RD, Ikonomi P, Irizarry RA, Kawasaki ES, Kaysser-Kranich T, Kerr K, Kiser G, Koch WH, Lee KY, Liu C, Liu ZL, Lucas A, Manohar CF, Miyada G, Modrusan Z, Parkes H, Puri RK, Reid L, Ryder TB, Salit M, Samaha RR, Scherf U, Sendera TJ, Setterquist RA, Shi L, Shippy R, Soriano JV, Wagar EA, Warrington JA, Williams M, Wilmer F, Wilson M, Wolber PK, Wu X, Zadro R, External RNACC (2005) The external RNA controls consortium: a progress report. Nat Methods 2(10):731–734.  https://doi.org/10.1038/nmeth1005-731 CrossRefPubMedGoogle Scholar
  11. Ball EE, Hayward DC, Saint R, Miller DJ (2004) A simple plan—cnidarians and the origins of developmental mechanisms. Nat Rev Genet 5(8):567–577.  https://doi.org/10.1038/nrg1402 CrossRefPubMedGoogle Scholar
  12. Barski A, Cuddapah S, Cui K, Roh TY, Schones DE, Wang Z, Wei G, Chepelev I, Zhao K (2007) High-resolution profiling of histone methylations in the human genome. Cell 129(4):823–837.  https://doi.org/10.1016/j.cell.2007.05.009 CrossRefPubMedGoogle Scholar
  13. Bernstein BE, Mikkelsen TS, Xie X, Kamal M, Huebert DJ, Cuff J, Fry B, Meissner A, Wernig M, Plath K, Jaenisch R, Wagschal A, Feil R, Schreiber SL, Lander ES (2006) A bivalent chromatin structure marks key developmental genes in embryonic stem cells. Cell 125(2):315–326.  https://doi.org/10.1016/j.cell.2006.02.041 CrossRefPubMedGoogle Scholar
  14. Bielen H, Oberleitner S, Marcellini S, Gee L, Lemaire P, Bode HR, Rupp R, Technau U (2007) Divergent functions of two ancient Hydra Brachyury paralogues suggest specific roles for their C-terminal domains in tissue fate induction. Development 134(23):4187–4197.  https://doi.org/10.1242/dev.010173 CrossRefPubMedGoogle Scholar
  15. Blitz IL, Cho KW (1995) Anterior neurectoderm is progressively induced during gastrulation: the role of the Xenopus homeobox gene orthodenticle. Development 121(4):993–1004PubMedGoogle Scholar
  16. Blitz IL, Paraiso KD, Patrushev I, Chiu WTY, Cho KWY, Gilchrist MJ (2017) A catalog of Xenopus tropicalis transcription factors and their regional expression in the early gastrula stage embryo. Dev Biol 426(2):409–417.  https://doi.org/10.1016/j.ydbio.2016.07.002 CrossRefPubMedGoogle Scholar
  17. Blow MJ, McCulley DJ, Li Z, Zhang T, Akiyama JA, Holt A, Plajzer-Frick I, Shoukry M, Wright C, Chen F, Afzal V, Bristow J, Ren B, Black BL, Rubin EM, Visel A, Pennacchio LA (2010) ChIP-Seq identification of weakly conserved heart enhancers. Nat Genet 42(9):806–810.  https://doi.org/10.1038/ng.650 CrossRefPubMedPubMedCentralGoogle Scholar
  18. Blumberg B, Wright CV, De Robertis EM, Cho KW (1991) Organizer-specific homeobox genes in Xenopus laevis embryos. Science 253(5016):194–196CrossRefGoogle Scholar
  19. Blythe SA, Cha SW, Tadjuidje E, Heasman J, Klein PS (2010) Beta-catenin primes organizer gene expression by recruiting a histone H3 arginine 8 methyltransferase, Prmt2. Dev Cell 19(2):220–231.  https://doi.org/10.1016/j.devcel.2010.07.007 CrossRefPubMedPubMedCentralGoogle Scholar
  20. Bode HR (2012) The head organizer in Hydra. Int J Dev Biol 56(6–8):473–478.  https://doi.org/10.1387/ijdb.113448hb CrossRefPubMedGoogle Scholar
  21. Bogdanovic O, Fernandez-Minan A, Tena JJ, de la Calle-Mustienes E, Hidalgo C, van Kruysbergen I, van Heeringen SJ, Veenstra GJC, Gomez-Skarmeta JL (2012) Dynamics of enhancer chromatin signatures mark the transition from pluripotency to cell specification during embryogenesis. Genome Res 22(10):2043–2053CrossRefGoogle Scholar
  22. Bogdanovic O, Long SW, van Heeringen SJ, Brinkman AB, Gomez-Skarmeta JL, Stunnenberg HG, Jones PL, Veenstra GJ (2011) Temporal uncoupling of the DNA methylome and transcriptional repression during embryogenesis. Genome Res 21(8):1313–1327.  https://doi.org/10.1101/gr.114843.110 CrossRefPubMedPubMedCentralGoogle Scholar
  23. Bonn S, Zinzen RP, Girardot C, Gustafson EH, Perez-Gonzalez A, Delhomme N, Ghavi-Helm Y, Wilczynski B, Riddell A, Furlong EE (2012) Tissue-specific analysis of chromatin state identifies temporal signatures of enhancer activity during embryonic development. Nat Genet 44(2):148–156.  https://doi.org/10.1038/ng.1064 CrossRefPubMedGoogle Scholar
  24. Bouwmeester T, Kim S, Sasai Y, Lu B, De Robertis EM (1996) Cerberus is a head-inducing secreted factor expressed in the anterior endoderm of Spemann’s organizer. Nature 382(6592):595–601.  https://doi.org/10.1038/382595a0 CrossRefPubMedGoogle Scholar
  25. Broun M, Gee L, Reinhardt B, Bode HR (2005) Formation of the head organizer in hydra involves the canonical Wnt pathway. Development 132(12):2907–2916.  https://doi.org/10.1242/dev.01848 CrossRefPubMedGoogle Scholar
  26. Browne EN (1909) The production of new hydranths in Hydra by the insertion of small grafts. J Exp Zool 7(1):1–U13.  https://doi.org/10.1002/jez.1400070102 CrossRefGoogle Scholar
  27. Chapman JA, Kirkness EF, Simakov O, Hampson SE, Mitros T, Weinmaier T, Rattei T, Balasubramanian PG, Borman J, Busam D, Disbennett K, Pfannkoch C, Sumin N, Sutton GG, Viswanathan LD, Walenz B, Goodstein DM, Hellsten U, Kawashima T, Prochnik SE, Putnam NH, Shu S, Blumberg B, Dana CE, Gee L, Kibler DF, Law L, Lindgens D, Martinez DE, Peng J, Wigge PA, Bertulat B, Guder C, Nakamura Y, Ozbek S, Watanabe H, Khalturin K, Hemmrich G, Franke A, Augustin R, Fraune S, Hayakawa E, Hayakawa S, Hirose M, Hwang JS, Ikeo K, Nishimiya-Fujisawa C, Ogura A, Takahashi T, Steinmetz PR, Zhang X, Aufschnaiter R, Eder MK, Gorny AK, Salvenmoser W, Heimberg AM, Wheeler BM, Peterson KJ, Bottger A, Tischler P, Wolf A, Gojobori T, Remington KA, Strausberg RL, Venter JC, Technau U, Hobmayer B, Bosch TC, Holstein TW, Fujisawa T, Bode HR, David CN, Rokhsar DS, Steele RE (2010) The dynamic genome of Hydra. Nature 464(7288):592–596.  https://doi.org/10.1038/nature08830 CrossRefPubMedPubMedCentralGoogle Scholar
  28. Charney RM, Forouzmand E, Cho JS, Cheung J, Paraiso KD, Yasuoka Y, Takahashi S, Taira M, Blitz IL, Xie X, Cho KW (2017a) Foxh1 occupies cis-regulatory modules prior to dynamic transcription factor interactions controlling the mesendoderm gene program. Dev Cell.  https://doi.org/10.1016/j.devcel.2017.02.017
  29. Charney RM, Paraiso KD, Blitz IL, Cho KWY (2017b) A gene regulatory program controlling early Xenopus mesendoderm formation: network conservation and motifs. Semin Cell Dev Biol.  https://doi.org/10.1016/j.semcdb.2017.03.003
  30. Chiu WT, Charney Le R, Blitz IL, Fish MB, Li Y, Biesinger J, Xie X, Cho KW (2014) Genome-wide view of TGFbeta/Foxh1 regulation of the early mesendoderm program. Development 141(23):4537–4547.  https://doi.org/10.1242/dev.107227 CrossRefPubMedPubMedCentralGoogle Scholar
  31. Cho KW, Blumberg B, Steinbeisser H, De Robertis EM (1991) Molecular nature of Spemann’s organizer: the role of the Xenopus homeobox gene goosecoid. Cell 67(6):1111–1120CrossRefGoogle Scholar
  32. Collart C, Owens ND, Bhaw-Rosun L, Cooper B, De Domenico E, Patrushev I, Sesay AK, Smith JN, Smith JC, Gilchrist MJ (2014) High-resolution analysis of gene activity during the Xenopus mid-blastula transition. Development 141(9):1927–1939.  https://doi.org/10.1242/dev.102012 CrossRefPubMedPubMedCentralGoogle Scholar
  33. Cui M, Siriwon N, Li E, Davidson EH, Peter IS (2014) Specific functions of the Wnt signaling system in gene regulatory networks throughout the early sea urchin embryo. Proc Natl Acad Sci U S A 111(47):E5029–E5038.  https://doi.org/10.1073/pnas.1419141111 CrossRefPubMedPubMedCentralGoogle Scholar
  34. Davidson EH, Rast JP, Oliveri P, Ransick A, Calestani C, Yuh CH, Minokawa T, Amore G, Hinman V, Arenas-Mena C, Otim O, Brown CT, Livi CB, Lee PY, Revilla R, Schilstra MJ, Clarke PJ, Rust AG, Pan Z, Arnone MI, Rowen L, Cameron RA, McClay DR, Hood L, Bolouri H (2002) A provisional regulatory gene network for specification of endomesoderm in the sea urchin embryo. Dev Biol 246(1):162–190.  https://doi.org/10.1006/dbio.2002.0635 CrossRefPubMedGoogle Scholar
  35. de Boer TP, Kok B, Roel G, van Veen TA, Destree OH, Rook MB, Vos MA, de Bakker JM, van der Heyden MA (2006) Cloning, embryonic expression, and functional characterization of two novel connexins from Xenopus laevis. Biochem Biophys Res Commun 349(2):855–862.  https://doi.org/10.1016/j.bbrc.2006.08.121 CrossRefPubMedGoogle Scholar
  36. De Robertis EM (2006) Spemann’s organizer and self-regulation in amphibian embryos. Nat Rev Mol Cell Biol 7(4):296–302.  https://doi.org/10.1038/nrm1855 CrossRefPubMedPubMedCentralGoogle Scholar
  37. De Robertis EM, Kuroda H (2004) Dorsal–ventral patterning and neural induction in Xenopus embryos. Annu Rev Cell Dev Biol 20:285–308.  https://doi.org/10.1146/annurev.cellbio.20.011403.154124 CrossRefPubMedPubMedCentralGoogle Scholar
  38. De Robertis EM, Larrain J, Oelgeschlager M, Wessely O (2000) The establishment of Spemann’s organizer and patterning of the vertebrate embryo. Nat Rev Genet 1(3):171–181.  https://doi.org/10.1038/35042039 CrossRefPubMedPubMedCentralGoogle Scholar
  39. de Souza FS, Gawantka V, Gomez AP, Delius H, Ang SL, Niehrs C (1999) The zinc finger gene Xblimp1 controls anterior endomesodermal cell fate in Spemann’s organizer. EMBO J 18(21):6062–6072.  https://doi.org/10.1093/emboj/18.21.6062 CrossRefPubMedPubMedCentralGoogle Scholar
  40. Deardorff MA, Tan C, Conrad LJ, Klein PS (1998) Frizzled-8 is expressed in the Spemann organizer and plays a role in early morphogenesis. Development 125(14):2687–2700PubMedGoogle Scholar
  41. Demartis A, Maffei M, Vignali R, Barsacchi G, De Simone V (1994) Cloning and developmental expression of LFB3/HNF1 beta transcription factor in Xenopus laevis. Mech Dev 47(1):19–28CrossRefGoogle Scholar
  42. Donaldson IJ, Amin S, Hensman JJ, Kutejova E, Rattray M, Lawrence N, Hayes A, Ward CM, Bobola N (2012) Genome-wide occupancy links Hoxa2 to Wnt-beta-catenin signaling in mouse embryonic development. Nucleic Acids Res 40(9):3990–4001.  https://doi.org/10.1093/nar/gkr1240 CrossRefPubMedPubMedCentralGoogle Scholar
  43. Ecochard V, Cayrol C, Foulquier F, Zaraisky A, Duprat AM (1995) A novel TGF-beta-like gene, fugacin, specifically expressed in the Spemann organizer of Xenopus. Dev Biol 172(2):699–703.  https://doi.org/10.1006/dbio.1995.8052 CrossRefPubMedGoogle Scholar
  44. Essex LJ, Mayor R, Sargent MG (1993) Expression of Xenopus snail in mesoderm and prospective neural fold ectoderm. Dev Dyn 198(2):108–122.  https://doi.org/10.1002/aja.1001980205 CrossRefPubMedGoogle Scholar
  45. Evren S, Wen JW, Luu O, Damm EW, Nagel M, Winklbauer R (2014) EphA4-dependent Brachyury expression is required for dorsal mesoderm involution in the Xenopus gastrula. Development 141(19):3649–3661.  https://doi.org/10.1242/dev.111880 CrossRefPubMedGoogle Scholar
  46. Fan MJ, Gruning W, Walz G, Sokol SY (1998) Wnt signaling and transcriptional control of Siamois in Xenopus embryos. Proc Natl Acad Sci U S A 95(10):5626–5631CrossRefGoogle Scholar
  47. Faucourt M, Houliston E, Besnardeau L, Kimelman D, Lepage T (2001) The pitx2 homeobox protein is required early for endoderm formation and nodal signaling. Dev Biol 229(2):287–306.  https://doi.org/10.1006/dbio.2000.9950 CrossRefPubMedGoogle Scholar
  48. Fletcher RB, Harland RM (2008) The role of FGF signaling in the establishment and maintenance of mesodermal gene expression in Xenopus. Dev Dyn 237(5):1243–1254CrossRefGoogle Scholar
  49. Fletcher G, Jones GE, Patient R, Snape A (2006) A role for GATA factors in Xenopus gastrulation movements. Mech Dev 123(10):730–745.  https://doi.org/10.1016/j.mod.2006.07.007 CrossRefPubMedGoogle Scholar
  50. Fritzenwanker JH, Technau U (2002) Induction of gametogenesis in the basal cnidarian Nematostella vectensis (Anthozoa). Dev Genes Evol 212(2):99–103.  https://doi.org/10.1007/s00427-002-0214-7 CrossRefPubMedGoogle Scholar
  51. Fritzenwanker JH, Saina M, Technau U (2004) Analysis of forkhead and snail expression reveals epithelial–mesenchymal transitions during embryonic and larval development of Nematostella vectensis. Dev Biol 275(2):389–402.  https://doi.org/10.1016/j.ydbio.2004.08.014 CrossRefPubMedGoogle Scholar
  52. Fritzenwanker JH, Genikhovich G, Kraus Y, Technau U (2007) Early development and axis specification in the sea anemone Nematostella vectensis. Dev Biol 310(2):264–279.  https://doi.org/10.1016/j.ydbio.2007.07.029 CrossRefPubMedGoogle Scholar
  53. Genikhovich G, Technau U (2009a) Induction of spawning in the starlet sea anemone Nematostella vectensis, in vitro fertilization of gametes, and dejellying of zygotes. Cold Spring Harb Protoc 2009(9):pdb prot5281.  https://doi.org/10.1101/pdb.prot5281 CrossRefPubMedGoogle Scholar
  54. Genikhovich G, Technau U (2009b) The starlet sea anemone Nematostella vectensis: an anthozoan model organism for studies in comparative genomics and functional evolutionary developmental biology. Cold Spring Harb Protoc 2009(9):pdb emo129.  https://doi.org/10.1101/pdb.emo129 CrossRefPubMedGoogle Scholar
  55. Genikhovich G, Fried P, Prunster MM, Schinko JB, Gilles AF, Fredman D, Meier K, Iber D, Technau U (2015) Axis patterning by BMPs: cnidarian network reveals evolutionary constraints. Cell Rep.  https://doi.org/10.1016/j.celrep.2015.02.035
  56. Gentsch GE, Owens ND, Martin SR, Piccinelli P, Faial T, Trotter MW, Gilchrist MJ, Smith JC (2013) In vivo T-box transcription factor profiling reveals joint regulation of embryonic neuromesodermal bipotency. Cell Rep 4(6):1185–1196.  https://doi.org/10.1016/j.celrep.2013.08.012 CrossRefGoogle Scholar
  57. Glinka A, Wu W, Delius H, Monaghan AP, Blumenstock C, Niehrs C (1998) Dickkopf-1 is a member of a new family of secreted proteins and functions in head induction. Nature 391(6665):357–362.  https://doi.org/10.1038/34848 CrossRefPubMedPubMedCentralGoogle Scholar
  58. Guder C, Philipp I, Lengfeld T, Watanabe H, Hobmayer B, Holstein TW (2006) The Wnt code: cnidarians signal the way. Oncogene 25(57):7450–7460CrossRefGoogle Scholar
  59. Gupta R, Wills A, Ucar D, Baker J (2014) Developmental enhancers are marked independently of zygotic nodal signals in Xenopus. Dev Biol 395(1):38–49.  https://doi.org/10.1016/j.ydbio.2014.08.034 CrossRefPubMedPubMedCentralGoogle Scholar
  60. Harada Y, Okai N, Taguchi S, Tagawa K, Humphreys T, Satoh N (2000) Developmental expression of the hemichordate otx ortholog. Mech Dev 91(1–2):337–339CrossRefGoogle Scholar
  61. Harland R (2000) Neural induction. Curr Opin Genet Dev 10(4):357–362CrossRefGoogle Scholar
  62. Harrison MM, Li XY, Kaplan T, Botchan MR, Eisen MB (2011) Zelda binding in the early Drosophila melanogaster embryo marks regions subsequently activated at the maternal-to-zygotic transition. PLoS Genet 7(10):e1002266.  https://doi.org/10.1371/journal.pgen.1002266 CrossRefPubMedPubMedCentralGoogle Scholar
  63. Hayashi S, Itoh M, Taira S, Agata K, Taira M (2004) Expression patterns of Xenopus FGF receptor-like 1/nou-darake in early Xenopus development resemble those of planarian nou-darake and Xenopus FGF8. Dev Dyn 230(4):700–707.  https://doi.org/10.1002/dvdy.20040 CrossRefPubMedGoogle Scholar
  64. Hayata T, Tanegashima K, Takahashi S, Sogame A, Asashima M (2002) Overexpression of the secreted factor Mig30 expressed in the Spemann organizer impairs morphogenetic movements during Xenopus gastrulation. Mech Dev 112(1–2):37–51CrossRefGoogle Scholar
  65. Hayward DC, Grasso LC, Saint R, Miller DJ, Ball EE (2015) The organizer in evolution-gastrulation and organizer gene expression highlight the importance of Brachyury during development of the coral, Acropora millepora. Dev Biol 399(2):337–347.  https://doi.org/10.1016/j.ydbio.2015.01.006 CrossRefPubMedGoogle Scholar
  66. Heasman J (2006) Patterning the early Xenopus embryo. Development 133(7):1205–1217.  https://doi.org/10.1242/dev.02304 CrossRefPubMedGoogle Scholar
  67. Hejnol A, Martindale MQ (2008) Acoel development indicates the independent evolution of the bilaterian mouth and anus. Nature 456(7220):382–386.  https://doi.org/10.1038/nature07309 CrossRefPubMedGoogle Scholar
  68. Hellsten U, Harland RM, Gilchrist MJ, Hendrix D, Jurka J, Kapitonov V, Ovcharenko I, Putnam NH, Shu S, Taher L, Blitz IL, Blumberg B, Dichmann DS, Dubchak I, Amaya E, Detter JC, Fletcher R, Gerhard DS, Goodstein D, Graves T, Grigoriev IV, Grimwood J, Kawashima T, Lindquist E, Lucas SM, Mead PE, Mitros T, Ogino H, Ohta Y, Poliakov AV, Pollet N, Robert J, Salamov A, Sater AK, Schmutz J, Terry A, Vize PD, Warren WC, Wells D, Wills A, Wilson RK, Zimmerman LB, Zorn AM, Grainger R, Grammer T, Khokha MK, Richardson PM, Rokhsar DS (2010) The genome of the western clawed frog Xenopus tropicalis. Science 328(5978):633–636.  https://doi.org/10.1126/science.1183670 CrossRefPubMedPubMedCentralGoogle Scholar
  69. Hemmati-Brivanlou A, Kelly OG, Melton DA (1994) Follistatin, an antagonist of activin, is expressed in the Spemann organizer and displays direct neuralizing activity. Cell 77(2):283–295CrossRefGoogle Scholar
  70. Hobert O, Westphal H (2000) Functions of LIM-homeobox genes. Trends Genet 16(2):75–83CrossRefGoogle Scholar
  71. Hontelez S, van Kruijsbergen I, Georgiou G, van Heeringen SJ, Bogdanovic O, Lister R, Veenstra GJ (2015) Embryonic transcription is controlled by maternally defined chromatin state. Nat Commun 6:10148.  https://doi.org/10.1038/ncomms10148 CrossRefPubMedPubMedCentralGoogle Scholar
  72. Howe K, Clark MD, Torroja CF, Torrance J, Berthelot C, Muffato M, Collins JE, Humphray S, McLaren K, Matthews L, McLaren S, Sealy I, Caccamo M, Churcher C, Scott C, Barrett JC, Koch R, Rauch GJ, White S, Chow W, Kilian B, Quintais LT, Guerra-Assuncao JA, Zhou Y, Gu Y, Yen J, Vogel JH, Eyre T, Redmond S, Banerjee R, Chi J, Fu B, Langley E, Maguire SF, Laird GK, Lloyd D, Kenyon E, Donaldson S, Sehra H, Almeida-King J, Loveland J, Trevanion S, Jones M, Quail M, Willey D, Hunt A, Burton J, Sims S, McLay K, Plumb B, Davis J, Clee C, Oliver K, Clark R, Riddle C, Elliot D, Threadgold G, Harden G, Ware D, Begum S, Mortimore B, Kerry G, Heath P, Phillimore B, Tracey A, Corby N, Dunn M, Johnson C, Wood J, Clark S, Pelan S, Griffiths G, Smith M, Glithero R, Howden P, Barker N, Lloyd C, Stevens C, Harley J, Holt K, Panagiotidis G, Lovell J, Beasley H, Henderson C, Gordon D, Auger K, Wright D, Collins J, Raisen C, Dyer L, Leung K, Robertson L, Ambridge K, Leongamornlert D, McGuire S, Gilderthorp R, Griffiths C, Manthravadi D, Nichol S, Barker G, Whitehead S, Kay M, Brown J, Murnane C, Gray E, Humphries M, Sycamore N, Barker D, Saunders D, Wallis J, Babbage A, Hammond S, Mashreghi-Mohammadi M, Barr L, Martin S, Wray P, Ellington A, Matthews N, Ellwood M, Woodmansey R, Clark G, Cooper J, Tromans A, Grafham D, Skuce C, Pandian R, Andrews R, Harrison E, Kimberley A, Garnett J, Fosker N, Hall R, Garner P, Kelly D, Bird C, Palmer S, Gehring I, Berger A, Dooley CM, Ersan-Urun Z, Eser C, Geiger H, Geisler M, Karotki L, Kirn A, Konantz J, Konantz M, Oberlander M, Rudolph-Geiger S, Teucke M, Lanz C, Raddatz G, Osoegawa K, Zhu B, Rapp A, Widaa S, Langford C, Yang F, Schuster SC, Carter NP, Harrow J, Ning Z, Herrero J, Searle SM, Enright A, Geisler R, Plasterk RH, Lee C, Westerfield M, de Jong PJ, Zon LI, Postlethwait JH, Nusslein-Volhard C, Hubbard TJ, Roest Crollius H, Rogers J, Stemple DL (2013) The zebrafish reference genome sequence and its relationship to the human genome. Nature 496(7446):498–503.  https://doi.org/10.1038/nature12111 CrossRefPubMedPubMedCentralGoogle Scholar
  73. Inoue J, Sato Y, Sinclair R, Tsukamoto K, Nishida M (2015) Rapid genome reshaping by multiple-gene loss after whole-genome duplication in teleost fish suggested by mathematical modeling. Proc Natl Acad Sci U S A 112(48):14918–14923.  https://doi.org/10.1073/pnas.1507669112 CrossRefPubMedPubMedCentralGoogle Scholar
  74. Itoh K, Jacob J, YS S (1998) A role for Xenopus Frizzled 8 in dorsal development. Mech Dev 74(1–2):145–157CrossRefGoogle Scholar
  75. Jaillon O, Aury JM, Brunet F, Petit JL, Stange-Thomann N, Mauceli E, Bouneau L, Fischer C, Ozouf-Costaz C, Bernot A, Nicaud S, Jaffe D, Fisher S, Lutfalla G, Dossat C, Segurens B, Dasilva C, Salanoubat M, Levy M, Boudet N, Castellano S, Anthouard V, Jubin C, Castelli V, Katinka M, Vacherie B, Biemont C, Skalli Z, Cattolico L, Poulain J, De Berardinis V, Cruaud C, Duprat S, Brottier P, Coutanceau JP, Gouzy J, Parra G, Lardier G, Chapple C, McKernan KJ, McEwan P, Bosak S, Kellis M, Volff JN, Guigo R, Zody MC, Mesirov J, Lindblad-Toh K, Birren B, Nusbaum C, Kahn D, Robinson-Rechavi M, Laudet V, Schachter V, Quetier F, Saurin W, Scarpelli C, Wincker P, Lander ES, Weissenbach J, Roest Crollius H (2004) Genome duplication in the teleost fish Tetraodon nigroviridis reveals the early vertebrate proto-karyotype. Nature 431(7011):946–957.  https://doi.org/10.1038/nature03025 CrossRefPubMedPubMedCentralGoogle Scholar
  76. Johnson DS, Mortazavi A, Myers RM, Wold B (2007) Genome-wide mapping of in vivo protein–DNA interactions. Science 316(5830):1497–1502.  https://doi.org/10.1126/science.1141319 CrossRefPubMedGoogle Scholar
  77. Jones CM, Broadbent J, Thomas PQ, Smith JC, Beddington RS (1999) An anterior signalling centre in Xenopus revealed by the homeobox gene XHex. Curr Biol 9(17):946–954CrossRefGoogle Scholar
  78. Karavanov AA, Saint-Jeannet JP, Karavanova I, Taira M, Dawid IB (1996) The LIM homeodomain protein Lim-1 is widely expressed in neural, neural crest and mesoderm derivatives in vertebrate development. Int J Dev Biol 40(2):453–461PubMedGoogle Scholar
  79. Kimelman D, Griffin KJ (2000) Vertebrate mesendoderm induction and patterning. Curr Opin Genet Dev 10(4):350–356CrossRefGoogle Scholar
  80. Kimura-Yoshida C, Tian E, Nakano H, Amazaki S, Shimokawa K, Rossant J, Aizawa S, Matsuo I (2007) Crucial roles of Foxa2 in mouse anterior–posterior axis polarization via regulation of anterior visceral endoderm-specific genes. Proc Natl Acad Sci U S A 104(14):5919–5924.  https://doi.org/10.1073/pnas.0607779104 CrossRefPubMedPubMedCentralGoogle Scholar
  81. Koide T, Hayata T, Cho KW (2005) Xenopus as a model system to study transcriptional regulatory networks. Proc Natl Acad Sci U S A 102(14):4943–4948.  https://doi.org/10.1073/pnas.0408125102 CrossRefPubMedPubMedCentralGoogle Scholar
  82. Kraus Y, Fritzenwanker JH, Genikhovich G, Technau U (2007) The blastoporal organiser of a sea anemone. Curr Biol 17(20):R874–R876.  https://doi.org/10.1016/j.cub.2007.08.017 CrossRefPubMedGoogle Scholar
  83. Kraus Y, Aman A, Technau U, Genikhovich G (2016) Pre-bilaterian origin of the blastoporal axial organizer. Nat Commun 7:11694.  https://doi.org/10.1038/ncomms11694 CrossRefPubMedPubMedCentralGoogle Scholar
  84. Kuroda H, Hayata T, Eisaki A, Asashima M (2000) Cloning a novel developmental regulating gene, Xotx5: its potential role in anterior formation in Xenopus laevis. Develop Growth Differ 42(2):87–93CrossRefGoogle Scholar
  85. Kuroda H, Wessely O, De Robertis EM (2004) Neural induction in Xenopus: requirement for ectodermal and endomesodermal signals via Chordin, noggin, beta-catenin, and Cerberus. PLoS Biol 2(5):E92.  https://doi.org/10.1371/journal.pbio.0020092 CrossRefPubMedPubMedCentralGoogle Scholar
  86. Kurokawa D, Ohmura T, Ogino H, Takeuchi M, Inoue A, Inoue F, Suda Y, Aizawa S (2010) Evolutionary origin of the Otx2 enhancer for its expression in visceral endoderm. Dev Biol 342(1):110–120.  https://doi.org/10.1016/j.ydbio.2010.03.013 CrossRefPubMedGoogle Scholar
  87. Kusserow A, Pang K, Sturm C, Hrouda M, Lentfer J, Schmidt HA, Technau U, von Haeseler A, Hobmayer B, Martindale MQ, Holstein TW (2005) Unexpected complexity of the Wnt gene family in a sea anemone. Nature 433(7022):156–160.  https://doi.org/10.1038/nature03158 CrossRefPubMedGoogle Scholar
  88. Langeland JA, Holland LZ, Chastain RA, Holland ND (2006) An amphioxus LIM-homeobox gene, AmphiLim1/5, expressed early in the invaginating organizer region and later in differentiating cells of the kidney and central nervous system. Int J Biol Sci 2(3):110–116CrossRefGoogle Scholar
  89. Lapraz F, Besnardeau L, Lepage T (2009) Patterning of the dorsal–ventral axis in echinoderms: insights into the evolution of the BMP-chordin signaling network. PLoS Biol 7(11):e1000248.  https://doi.org/10.1371/journal.pbio.1000248 CrossRefPubMedPubMedCentralGoogle Scholar
  90. Latinkic BV, Umbhauer M, Neal KA, Lerchner W, Smith JC, Cunliffe V (1997) The Xenopus Brachyury promoter is activated by FGF and low concentrations of activin and suppressed by high concentrations of activin and by paired-type homeodomain proteins. Genes Dev 11(23):3265–3276CrossRefGoogle Scholar
  91. Laurent MN, Blitz IL, Hashimoto C, Rothbacher U, Cho KW (1997) The Xenopus homeobox gene twin mediates Wnt induction of goosecoid in establishment of Spemann’s organizer. Development 124(23):4905–4916PubMedPubMedCentralGoogle Scholar
  92. Layden MJ, Rottinger E, Wolenski FS, Gilmore TD, Martindale MQ (2013) Microinjection of mRNA or morpholinos for reverse genetic analysis in the starlet sea anemone, Nematostella vectensis. Nat Protoc 8(5):924–934.  https://doi.org/10.1038/nprot.2013.009 CrossRefPubMedPubMedCentralGoogle Scholar
  93. Lee PN, Pang K, Matus DQ, Martindale MQ (2006) A WNT of things to come: evolution of Wnt signaling and polarity in cnidarians. Semin Cell Dev Biol 17(2):157–167.  https://doi.org/10.1016/j.semcdb.2006.05.002 CrossRefPubMedGoogle Scholar
  94. Lee PN, Kumburegama S, Marlow HQ, Martindale MQ, Wikramanayake AH (2007) Asymmetric developmental potential along the animal–vegetal axis in the anthozoan cnidarian, Nematostella vectensis, is mediated by dishevelled. Dev Biol 310(1):169–186.  https://doi.org/10.1016/j.ydbio.2007.05.040 CrossRefPubMedGoogle Scholar
  95. Lemaire P, Garrett N, Gurdon JB (1995) Expression cloning of Siamois, a Xenopus homeobox gene expressed in dorsal–vegetal cells of blastulae and able to induce a complete secondary axis. Cell 81(1):85–94CrossRefGoogle Scholar
  96. Lengfeld T, Watanabe H, Simakov O, Lindgens D, Gee L, Law L, Schmidt HA, Ozbek S, Bode H, Holstein TW (2009) Multiple Wnts are involved in Hydra organizer formation and regeneration. Dev Biol 330(1):186–199.  https://doi.org/10.1016/j.ydbio.2009.02.004 CrossRefPubMedGoogle Scholar
  97. Leyns L, Bouwmeester T, Kim SH, Piccolo S, De Robertis EM (1997) Frzb-1 is a secreted antagonist of Wnt signaling expressed in the Spemann organizer. Cell 88(6):747–756CrossRefGoogle Scholar
  98. Lowe CJ, Terasaki M, Wu M, Freeman RM Jr, Runft L, Kwan K, Haigo S, Aronowicz J, Lander E, Gruber C, Smith M, Kirschner M, Gerhart J (2006) Dorsoventral patterning in hemichordates: insights into early chordate evolution. PLoS Biol 4(9):e291.  https://doi.org/10.1371/journal.pbio.0040291 CrossRefPubMedPubMedCentralGoogle Scholar
  99. Lowe CJ, Clarke DN, Medeiros DM, Rokhsar DS, Gerhart J (2015) The deuterostome context of chordate origins. Nature 520(7548):456–465.  https://doi.org/10.1038/nature14434 CrossRefPubMedGoogle Scholar
  100. Marlow HQ, Srivastava M, Matus DQ, Rokhsar D, Martindale MQ (2009) Anatomy and development of the nervous system of Nematostella vectensis, an anthozoan cnidarian. Dev Neurobiol 69(4):235–254.  https://doi.org/10.1002/dneu.20698 CrossRefPubMedGoogle Scholar
  101. Martindale MQ, Hejnol A (2009) A developmental perspective: changes in the position of the blastopore during bilaterian evolution. Dev Cell 17(2):162–174.  https://doi.org/10.1016/j.devcel.2009.07.024 CrossRefPubMedGoogle Scholar
  102. Martindale MQ, Pang K, Finnerty JR (2004) Investigating the origins of triploblasty: ‘mesodermal’ gene expression in a diploblastic animal, the sea anemone Nematostella vectensis (phylum, Cnidaria; class, Anthozoa). Development 131(10):2463–2474.  https://doi.org/10.1242/dev.01119 CrossRefPubMedGoogle Scholar
  103. Matus DQ, Thomsen GH, Martindale MQ (2006a) Dorso/ventral genes are asymmetrically expressed and involved in germ-layer demarcation during cnidarian gastrulation. Curr Biol 16(5):499–505.  https://doi.org/10.1016/j.cub.2006.01.052 CrossRefPubMedGoogle Scholar
  104. Matus DQ, Pang K, Marlow H, Dunn CW, Thomsen GH, Martindale MQ (2006b) Molecular evidence for deep evolutionary roots of bilaterality in animal development. Proc Natl Acad Sci U S A 103(30):11195–11200.  https://doi.org/10.1073/pnas.0601257103 CrossRefPubMedPubMedCentralGoogle Scholar
  105. Mazza ME, Pang K, Martindale MQ, Finnerty JR (2007) Genomic organization, gene structure, and developmental expression of three clustered otx genes in the sea anemone Nematostella vectensis. J Exp Zool B Mol Dev Evol 308(4):494–506.  https://doi.org/10.1002/jez.b.21158 CrossRefPubMedGoogle Scholar
  106. McKendry R, Hsu SC, Harland RM, Grosschedl R (1997) LEF-1/TCF proteins mediate wnt-inducible transcription from the Xenopus nodal-related 3 promoter. Dev Biol 192(2):420–431.  https://doi.org/10.1006/dbio.1997.8797 CrossRefPubMedGoogle Scholar
  107. McKenna WL, Betancourt J, Larkin KA, Abrams B, Guo C, Rubenstein JL, Chen B (2011) Tbr1 and Fezf2 regulate alternate corticofugal neuronal identities during neocortical development. J Neurosci 31(2):549–564.  https://doi.org/10.1523/JNEUROSCI.4131-10.2011 CrossRefPubMedPubMedCentralGoogle Scholar
  108. Meinhardt H (2015) Dorsoventral patterning by the Chordin-BMP pathway: a unified model from a pattern-formation perspective for drosophila, vertebrates, sea urchins and Nematostella. Dev Biol 405(1):137–148.  https://doi.org/10.1016/j.ydbio.2015.05.025 CrossRefPubMedGoogle Scholar
  109. Michiue T, Yamamoto T, Yasuoka Y, Goto T, Ikeda T, Nagura K, Nakayama T, Taira M, Kinoshita T (2017) High variability of expression profiles of homeologous genes for Wnt, Hh, notch, and hippo signaling pathways in Xenopus laevis. Dev Biol 426(2):270–290.  https://doi.org/10.1016/j.ydbio.2016.12.006 CrossRefPubMedGoogle Scholar
  110. Mikkelsen TS, Ku M, Jaffe DB, Issac B, Lieberman E, Giannoukos G, Alvarez P, Brockman W, Kim TK, Koche RP, Lee W, Mendenhall E, O’Donovan A, Presser A, Russ C, Xie X, Meissner A, Wernig M, Jaenisch R, Nusbaum C, Lander ES, Bernstein BE (2007) Genome-wide maps of chromatin state in pluripotent and lineage-committed cells. Nature 448(7153):553–560.  https://doi.org/10.1038/nature06008 CrossRefPubMedPubMedCentralGoogle Scholar
  111. Mochizuki T, Karavanov AA, Curtiss PE, Ault KT, Sugimoto N, Watabe T, Shiokawa K, Jamrich M, Cho KW, Dawid IB, Taira M (2000) Xlim-1 and LIM domain binding protein 1 cooperate with various transcription factors in the regulation of the goosecoid promoter. Dev Biol 224(2):470–485.  https://doi.org/10.1006/dbio.2000.9778 CrossRefPubMedGoogle Scholar
  112. Moos M Jr, Wang S, Krinks M (1995) Anti-dorsalizing morphogenetic protein is a novel TGF-beta homolog expressed in the Spemann organizer. Development 121(12):4293–4301PubMedGoogle Scholar
  113. Murgan S, Castro Colabianchi AM, Monti RJ, Boyadjian Lopez LE, Aguirre CE, Stivala EG, Carrasco AE, Lopez SL (2014) FoxA4 favours notochord formation by inhibiting contiguous mesodermal fates and restricts anterior neural development in Xenopus embryos. PLoS One 9(10):e110559.  https://doi.org/10.1371/journal.pone.0110559 CrossRefPubMedPubMedCentralGoogle Scholar
  114. Nakamura R, Tsukahara T, Qu W, Ichikawa K, Otsuka T, Ogoshi K, Saito TL, Matsushima K, Sugano S, Hashimoto S, Suzuki Y, Morishita S, Takeda H (2014) Large hypomethylated domains serve as strong repressive machinery for key developmental genes in vertebrates. Development 141(13):2568–2580.  https://doi.org/10.1242/dev.108548 CrossRefPubMedGoogle Scholar
  115. Nakamura Y, de Paiva Alves E, Veenstra GJ, Hoppler S (2016) Tissue- and stage-specific Wnt target gene expression is controlled subsequent to beta-catenin recruitment to cis-regulatory modules. Development 143(11):1914–1925.  https://doi.org/10.1242/dev.131664 CrossRefPubMedPubMedCentralGoogle Scholar
  116. Nakano T, Murata T, Matsuo I, Aizawa S (2000) OTX2 directly interacts with LIM1 and HNF-3beta. Biochem Biophys Res Commun 267(1):64–70.  https://doi.org/10.1006/bbrc.1999.1872 CrossRefPubMedGoogle Scholar
  117. Neidert AH, Panopoulou G, Langeland JA (2000) Amphioxus goosecoid and the evolution of the head organizer and prechordal plate. Evol Dev 2(6):303–310CrossRefGoogle Scholar
  118. Newman CS, Chia F, Krieg PA (1997) The XHex homeobox gene is expressed during development of the vascular endothelium: overexpression leads to an increase in vascular endothelial cell number. Mech Dev 66(1–2):83–93CrossRefGoogle Scholar
  119. Niehrs C (2004) Regionally specific induction by the Spemann-Mangold organizer. Nat Rev Genet 5(6):425–434.  https://doi.org/10.1038/nrg1347 CrossRefPubMedGoogle Scholar
  120. Nieuwkoop PD, Faber J (1967) Normal table of Xenopus laevis (Daudin): a systematical and chronological survey of the development from the fertilized egg till the end of metamorphosis. North-Holland Publishing Company, AmsterdamGoogle Scholar
  121. Onai T, Lin HC, Schubert M, Koop D, Osborne PW, Alvarez S, Alvarez R, Holland ND, Holland LZ (2009) Retinoic acid and Wnt/beta-catenin have complementary roles in anterior/posterior patterning embryos of the basal chordate amphioxus. Dev Biol 332(2):223–233.  https://doi.org/10.1016/j.ydbio.2009.05.571 CrossRefPubMedGoogle Scholar
  122. Onai T, Yu JK, Blitz IL, Cho KW, Holland LZ (2010) Opposing Nodal/Vg1 and BMP signals mediate axial patterning in embryos of the basal chordate amphioxus. Dev Biol 344(1):377–389.  https://doi.org/10.1016/j.ydbio.2010.05.016 CrossRefPubMedPubMedCentralGoogle Scholar
  123. Onai T, Aramaki T, Inomata H, Hirai T, Kuratani S (2015) Ancestral mesodermal reorganization and evolution of the vertebrate head. Zool Lett 1:29.  https://doi.org/10.1186/s40851-015-0030-3 CrossRefGoogle Scholar
  124. Owens ND, Blitz IL, Lane MA, Patrushev I, Overton JD, Gilchrist MJ, Cho KW, Khokha MK (2016) Measuring absolute RNA copy numbers at high temporal resolution reveals transcriptome kinetics in development. Cell Rep 14(3):632–647.  https://doi.org/10.1016/j.celrep.2015.12.050 CrossRefPubMedPubMedCentralGoogle Scholar
  125. Ozdemir A, Fisher-Aylor KI, Pepke S, Samanta M, Dunipace L, McCue K, Zeng L, Ogawa N, Wold BJ, Stathopoulos A (2011) High resolution mapping of twist to DNA in drosophila embryos: efficient functional analysis and evolutionary conservation. Genome Res 21(4):566–577.  https://doi.org/10.1101/gr.104018.109 CrossRefPubMedPubMedCentralGoogle Scholar
  126. Pannese M, Polo C, Andreazzoli M, Vignali R, Kablar B, Barsacchi G, Boncinelli E (1995) The Xenopus homologue of Otx2 is a maternal homeobox gene that demarcates and specifies anterior body regions. Development 121(3):707–720PubMedGoogle Scholar
  127. Pera EM, De Robertis EM (2000) A direct screen for secreted proteins in Xenopus embryos identifies distinct activities for the Wnt antagonists crescent and Frzb-1. Mech Dev 96(2):183–195CrossRefGoogle Scholar
  128. Plouhinec JL, Zakin L, De Robertis EM (2011) Systems control of BMP morphogen flow in vertebrate embryos. Curr Opin Genet Dev 21(6):696–703.  https://doi.org/10.1016/j.gde.2011.09.001 CrossRefPubMedPubMedCentralGoogle Scholar
  129. Pohl BS, Knochel W (2005) Of fox and frogs: fox (fork head/winged helix) transcription factors in Xenopus development. Gene 344:21–32.  https://doi.org/10.1016/j.gene.2004.09.037 CrossRefPubMedGoogle Scholar
  130. Putnam NH, Srivastava M, Hellsten U, Dirks B, Chapman J, Salamov A, Terry A, Shapiro H, Lindquist E, Kapitonov VV, Jurka J, Genikhovich G, Grigoriev IV, Lucas SM, Steele RE, Finnerty JR, Technau U, Martindale MQ, Rokhsar DS (2007) Sea anemone genome reveals ancestral eumetazoan gene repertoire and genomic organization. Science 317(5834):86–94.  https://doi.org/10.1126/science.1139158 CrossRefPubMedPubMedCentralGoogle Scholar
  131. Range RC, Angerer RC, Angerer LM (2013) Integration of canonical and noncanonical Wnt signaling pathways patterns the neuroectoderm along the anterior–posterior axis of sea urchin embryos. PLoS Biol 11(1):e1001467.  https://doi.org/10.1371/journal.pbio.1001467 CrossRefPubMedPubMedCentralGoogle Scholar
  132. Reber-Muller S, Streitwolf-Engel R, Yanze N, Schmid V, Stierwald M, Erb M, Seipel K (2006) BMP2/4 and BMP5-8 in jellyfish development and transdifferentiation. Int J Dev Biol 50(4):377–384.  https://doi.org/10.1387/ijdb.052085sr CrossRefPubMedGoogle Scholar
  133. Reichert H, Simeone A (2001) Developmental genetic evidence for a monophyletic origin of the bilaterian brain. Philos Trans R Soc Lond Ser B Biol Sci 356(1414):1533–1544.  https://doi.org/10.1098/rstb.2001.0972 CrossRefGoogle Scholar
  134. Rentzsch F, Anton R, Saina M, Hammerschmidt M, Holstein TW, Technau U (2006) Asymmetric expression of the BMP antagonists chordin and gremlin in the sea anemone Nematostella vectensis: implications for the evolution of axial patterning. Dev Biol 296(2):375–387.  https://doi.org/10.1016/j.ydbio.2006.06.003 CrossRefPubMedGoogle Scholar
  135. Reversade B, Kuroda H, Lee H, Mays A, De Robertis EM (2005) Depletion of Bmp2, Bmp4, Bmp7 and Spemann organizer signals induces massive brain formation in Xenopus embryos. Development 132(15):3381–3392.  https://doi.org/10.1242/dev.01901 CrossRefPubMedPubMedCentralGoogle Scholar
  136. Ring C, Ogata S, Meek L, Song J, Ohta T, Miyazono K, Cho KW (2002) The role of a Williams-Beuren syndrome–associated helix-loop-helix domain-containing transcription factor in activin/nodal signaling. Genes Dev 16(7):820–835.  https://doi.org/10.1101/gad.963802 CrossRefPubMedPubMedCentralGoogle Scholar
  137. Robertson G, Hirst M, Bainbridge M, Bilenky M, Zhao Y, Zeng T, Euskirchen G, Bernier B, Varhol R, Delaney A, Thiessen N, Griffith OL, He A, Marra M, Snyder M, Jones S (2007) Genome-wide profiles of STAT1 DNA association using chromatin immunoprecipitation and massively parallel sequencing. Nat Methods 4(8):651–657.  https://doi.org/10.1038/nmeth1068 CrossRefPubMedGoogle Scholar
  138. Rottinger E, Dahlin P, Martindale MQ (2012) A framework for the establishment of a cnidarian gene regulatory network for “endomesoderm” specification: the inputs of ss-catenin/TCF signaling. PLoS Genet 8(12):e1003164.  https://doi.org/10.1371/journal.pgen.1003164 CrossRefPubMedPubMedCentralGoogle Scholar
  139. Rottinger E, DuBuc TQ, Amiel AR, Martindale MQ (2015) Nodal signaling is required for mesodermal and ventral but not for dorsal fates in the indirect developing hemichordate, Ptychodera flava. Biol Open 4(7):830–842.  https://doi.org/10.1242/bio.011809 CrossRefPubMedPubMedCentralGoogle Scholar
  140. Saina M, Genikhovich G, Renfer E, Technau U (2009) BMPs and chordin regulate patterning of the directive axis in a sea anemone. Proc Natl Acad Sci U S A 106(44):18592–18597.  https://doi.org/10.1073/pnas.0900151106 CrossRefPubMedPubMedCentralGoogle Scholar
  141. Sander V, Reversade B, De Robertis EM (2007) The opposing homeobox genes Goosecoid and Vent1/2 self-regulate Xenopus patterning. EMBO J 26(12):2955–2965.  https://doi.org/10.1038/sj.emboj.7601705 CrossRefPubMedPubMedCentralGoogle Scholar
  142. Sasai Y, Lu B, Steinbeisser H, Geissert D, Gont LK, De Robertis EM (1994) Xenopus chordin: a novel dorsalizing factor activated by organizer-specific homeobox genes. Cell 79(5):779–790CrossRefGoogle Scholar
  143. Satoh N, Tagawa K, Takahashi H (2012) How was the notochord born? Evol Dev 14(1):56–75.  https://doi.org/10.1111/j.1525-142X.2011.00522.x CrossRefPubMedGoogle Scholar
  144. Satou Y, Imai KS, Satoh N (2001) Early embryonic expression of a LIM-homeobox gene Cs-lhx3 is downstream of beta-catenin and responsible for the endoderm differentiation in Ciona savignyi embryos. Development 128(18):3559–3570Google Scholar
  145. Saudemont A, Haillot E, Mekpoh F, Bessodes N, Quirin M, Lapraz F, Duboc V, Rottinger E, Range R, Oisel A, Besnardeau L, Wincker P, Lepage T (2010) Ancestral regulatory circuits governing ectoderm patterning downstream of nodal and BMP2/4 revealed by gene regulatory network analysis in an echinoderm. PLoS Genet 6(12):e1001259.  https://doi.org/10.1371/journal.pgen.1001259 CrossRefPubMedPubMedCentralGoogle Scholar
  146. Schneider VA, Mercola M (1999) Spatially distinct head and heart inducers within the Xenopus organizer region. Curr Biol 9(15):800–809CrossRefGoogle Scholar
  147. Scholz CB, Technau U (2003) The ancestral role of Brachyury: expression of NemBra1 in the basal cnidarian Nematostella vectensis (Anthozoa). Dev Genes Evol 212(12):563–570.  https://doi.org/10.1007/s00427-002-0272-x CrossRefPubMedGoogle Scholar
  148. Schwaiger M, Schonauer A, Rendeiro AF, Pribitzer C, Schauer A, Gilles AF, Schinko JB, Renfer E, Fredman D, Technau U (2014) Evolutionary conservation of the eumetazoan gene regulatory landscape. Genome Res 24(4):639–650.  https://doi.org/10.1101/gr.162529.113 CrossRefPubMedPubMedCentralGoogle Scholar
  149. Session AM, Uno Y, Kwon T, Chapman JA, Toyoda A, Takahashi S, Fukui A, Hikosaka A, Suzuki A, Kondo M, van Heeringen SJ, Quigley I, Heinz S, Ogino H, Ochi H, Hellsten U, Lyons JB, Simakov O, Putnam N, Stites J, Kuroki Y, Tanaka T, Michiue T, Watanabe M, Bogdanovic O, Lister R, Georgiou G, Paranjpe SS, van Kruijsbergen I, Shu S, Carlson J, Kinoshita T, Ohta Y, Mawaribuchi S, Jenkins J, Grimwood J, Schmutz J, Mitros T, Mozaffari SV, Suzuki Y, Haramoto Y, Yamamoto TS, Takagi C, Heald R, Miller K, Haudenschild C, Kitzman J, Nakayama T, Izutsu Y, Robert J, Fortriede J, Burns K, Lotay V, Karimi K, Yasuoka Y, Dichmann DS, Flajnik MF, Houston DW, Shendure J, DuPasquier L, Vize PD, Zorn AM, Ito M, Marcotte EM, Wallingford JB, Ito Y, Asashima M, Ueno N, Matsuda Y, Veenstra GJ, Fujiyama A, Harland RM, Taira M, Rokhsar DS (2016) Genome evolution in the allotetraploid frog Xenopus laevis. Nature 538(7625):336–343.  https://doi.org/10.1038/nature19840 CrossRefPubMedPubMedCentralGoogle Scholar
  150. Shibata M, Ono H, Hikasa H, Shinga J, Taira M (2000) Xenopus crescent encoding a frizzled-like domain is expressed in the Spemann organizer and pronephros. Mech Dev 96(2):243–246CrossRefGoogle Scholar
  151. Shinzato C, Shoguchi E, Kawashima T, Hamada M, Hisata K, Tanaka M, Fujie M, Fujiwara M, Koyanagi R, Ikuta T, Fujiyama A, Miller DJ, Satoh N (2011) Using the Acropora digitifera genome to understand coral responses to environmental change. Nature 476(7360):320–323.  https://doi.org/10.1038/nature10249 CrossRefPubMedGoogle Scholar
  152. Shirasaki R, Pfaff SL (2002) Transcriptional codes and the control of neuronal identity. Annu Rev Neurosci 25:251–281.  https://doi.org/10.1146/annurev.neuro.25.112701.142916 CrossRefPubMedGoogle Scholar
  153. Showell C, Binder O, Conlon FL (2004) T-box genes in early embryogenesis. Dev Dyn 229(1):201–218.  https://doi.org/10.1002/dvdy.10480 CrossRefPubMedPubMedCentralGoogle Scholar
  154. Sinner D, Rankin S, Lee M, Zorn AM (2004) Sox17 and beta-catenin cooperate to regulate the transcription of endodermal genes. Development 131(13):3069–3080.  https://doi.org/10.1242/dev.01176 CrossRefPubMedGoogle Scholar
  155. Smith WC, Harland RM (1992) Expression cloning of noggin, a new dorsalizing factor localized to the Spemann organizer in Xenopus embryos. Cell 70(5):829–840CrossRefGoogle Scholar
  156. Smith WC, McKendry R, Ribisi S Jr, Harland RM (1995) A nodal-related gene defines a physical and functional domain within the Spemann organizer. Cell 82(1):37–46CrossRefGoogle Scholar
  157. Spemann H, Mangold H (1924) The induction of embryonic predispositions by implantation of organizers foreign to the species. Arch Mikrosk Anat En 100(3/4):599–638.  https://doi.org/10.1007/Bf02108133 CrossRefGoogle Scholar
  158. Spemann H, Mangold H (2001) Induction of embryonic primordia by implantation of organizers from a different species. 1923. Int J Dev Biol 45(1):13–38PubMedGoogle Scholar
  159. Srivastava M, Larroux C, DR L, Mohanty K, Chapman J, Degnan BM, Rokhsar DS (2010) Early evolution of the LIM homeobox gene family. BMC Biol 8:4.  https://doi.org/10.1186/1741-7007-8-4 CrossRefPubMedPubMedCentralGoogle Scholar
  160. Streit A, Stern CD (1999) Neural induction. A bird’s eye view. Trends Genet 15(1):20–24CrossRefGoogle Scholar
  161. Sudou N, Yamamoto S, Ogino H, Taira M (2012) Dynamic in vivo binding of transcription factors to cis-regulatory modules of cer and gsc in the stepwise formation of the Spemann-Mangold organizer. Development 139(9):1651–1661.  https://doi.org/10.1242/dev.068395 CrossRefPubMedPubMedCentralGoogle Scholar
  162. Suri C, Haremaki T, Weinstein DC (2004) Inhibition of mesodermal fate by Xenopus HNF3beta/FoxA2. Dev Biol 265(1):90–104CrossRefGoogle Scholar
  163. Suzuki A, Yoshida H, van Heeringen SJ, Takebayashi-Suzuki K, Veenstra GJC, Taira M (2017) Genomic organization and modulation of gene expression of the TGF-beta and FGF pathways in the allotetraploid frog Xenopus laevis. Dev Biol 426(2):336–359.  https://doi.org/10.1016/j.ydbio.2016.09.016 CrossRefPubMedGoogle Scholar
  164. Taira M, Jamrich M, Good PJ, Dawid IB (1992) The LIM domain-containing homeo box gene Xlim-1 is expressed specifically in the organizer region of Xenopus gastrula embryos. Genes Dev 6(3):356–366CrossRefGoogle Scholar
  165. Taira M, Otani H, Jamrich M, Dawid IB (1994a) Expression of the LIM class homeobox gene Xlim-1 in pronephros and CNS cell lineages of Xenopus embryos is affected by retinoic acid and exogastrulation. Development 120(6):1525–1536PubMedGoogle Scholar
  166. Taira M, Otani H, Saint-Jeannet JP, Dawid IB (1994b) Role of the LIM class homeodomain protein Xlim-1 in neural and muscle induction by the Spemann organizer in Xenopus. Nature 372(6507):677–679CrossRefGoogle Scholar
  167. Taira M, Saint-Jeannet JP, Dawid IB (1997) Role of the Xlim-1 and Xbra genes in anteroposterior patterning of neural tissue by the head and trunk organizer. Proc Natl Acad Sci U S A 94(3):895–900CrossRefGoogle Scholar
  168. Tan MH, KF A, Yablonovitch AL, Wills AE, Chuang J, Baker JC, Wong WH, Li JB (2013) RNA sequencing reveals a diverse and dynamic repertoire of the Xenopus tropicalis transcriptome over development. Genome Res 23(1):201–216.  https://doi.org/10.1101/gr.141424.112 CrossRefPubMedPubMedCentralGoogle Scholar
  169. Technau U (2001) Brachyury, the blastopore and the evolution of the mesoderm. Bioessays 23(9):788–794.  https://doi.org/10.1002/bies.1114 CrossRefPubMedGoogle Scholar
  170. Technau U, Steele RE (2011) Evolutionary crossroads in developmental biology: Cnidaria. Development 138(8):1447–1458.  https://doi.org/10.1242/dev.048959 CrossRefPubMedPubMedCentralGoogle Scholar
  171. Terazawa K, Satoh N (1997) Formation of the chordamesoderm in the amphioxus embryo: analysis with Brachyury and fork head/HNF-3 genes. Dev Genes Evol 207(1):1–11.  https://doi.org/10.1007/s004270050086 CrossRefPubMedGoogle Scholar
  172. van Heeringen SJ, Akkers RC, van Kruijsbergen I, Arif MA, Hanssen LL, Sharifi N, Veenstra GJ (2014) Principles of nucleation of H3K27 methylation during embryonic development. Genome Res 24(3):401–410.  https://doi.org/10.1101/gr.159608.113 CrossRefPubMedPubMedCentralGoogle Scholar
  173. Vignali R, Colombetti S, Lupo G, Zhang W, Stachel S, Harland RM, Barsacchi G (2000) Xotx5b, a new member of the Otx gene family, may be involved in anterior and eye development in Xenopus laevis. Mech Dev 96(1):3–13CrossRefGoogle Scholar
  174. Visel A, Blow MJ, Li Z, Zhang T, Akiyama JA, Holt A, Plajzer-Frick I, Shoukry M, Wright C, Chen F, Afzal V, Ren B, Rubin EM, Pennacchio LA (2009) ChIP-seq accurately predicts tissue-specific activity of enhancers. Nature 457(7231):854–858.  https://doi.org/10.1038/nature07730 CrossRefPubMedPubMedCentralGoogle Scholar
  175. Vitorino M, Silva AC, Inacio JM, Ramalho JS, Gur M, Fainsod A, Steinbeisser H, Belo JA (2015) Xenopus Pkdcc1 and Pkdcc2 are two new tyrosine kinases involved in the regulation of JNK dependent Wnt/PCP signaling pathway. PLoS One 10(8):e0135504.  https://doi.org/10.1371/journal.pone.0135504 CrossRefPubMedPubMedCentralGoogle Scholar
  176. Vonica A, Gumbiner BM (2002) Zygotic Wnt activity is required for Brachyury expression in the early Xenopus laevis embryo. Dev Biol 250(1):112–127CrossRefGoogle Scholar
  177. Wang S, Krinks M, Lin K, Luyten FP, Moos M Jr (1997) Frzb, a secreted protein expressed in the Spemann organizer, binds and inhibits Wnt-8. Cell 88(6):757–766CrossRefGoogle Scholar
  178. Watabe T, Kim S, Candia A, Rothbacher U, Hashimoto C, Inoue K, Cho KW (1995) Molecular mechanisms of Spemann’s organizer formation: conserved growth factor synergy between Xenopus and mouse. Genes Dev 9(24):3038–3050CrossRefGoogle Scholar
  179. Watanabe H, Schmidt HA, Kuhn A, Hoger SK, Kocagoz Y, Laumann-Lipp N, Ozbek S, Holstein TW (2014a) Nodal signalling determines biradial asymmetry in Hydra. Nature 515(7525):112–115.  https://doi.org/10.1038/nature13666 CrossRefPubMedGoogle Scholar
  180. Watanabe H, Kuhn A, Fushiki M, Agata K, Ozbek S, Fujisawa T, Holstein TW (2014b) Sequential actions of beta-catenin and Bmp pattern the oral nerve net in Nematostella vectensis. Nat Commun 5:5536.  https://doi.org/10.1038/ncomms6536 CrossRefPubMedPubMedCentralGoogle Scholar
  181. Watanabe M, Yasuoka Y, Mawaribuchi S, Kuretani A, Ito M, Kondo M, Ochi H, Ogino H, Fukui A, Taira M, Kinoshita T (2017) Conservatism and variability of gene expression profiles among homeologous transcription factors in Xenopus laevis. Dev Biol 426(2):301–324.  https://doi.org/10.1016/j.ydbio.2016.09.017 CrossRefPubMedGoogle Scholar
  182. Whyte WA, Orlando DA, Hnisz D, Abraham BJ, Lin CY, Kagey MH, Rahl PB, Lee TI, Young RA (2013) Master transcription factors and mediator establish super-enhancers at key cell identity genes. Cell 153(2):307–319.  https://doi.org/10.1016/j.cell.2013.03.035 CrossRefPubMedPubMedCentralGoogle Scholar
  183. Wills AE, Baker JC (2015) E2a is necessary for Smad2/3-dependent transcription and the direct repression of lefty during gastrulation. Dev Cell 32(3):345–357.  https://doi.org/10.1016/j.devcel.2014.11.034 CrossRefPubMedPubMedCentralGoogle Scholar
  184. Xanthos JB, Kofron M, Tao Q, Schaible K, Wylie C, Heasman J (2002) The roles of three signaling pathways in the formation and function of the Spemann organizer. Development 129(17):4027–4043PubMedGoogle Scholar
  185. Yamaguchi TP, Takada S, Yoshikawa Y, Wu N, McMahon AP (1999) T (Brachyury) is a direct target of Wnt3a during paraxial mesoderm specification. Genes Dev 13(24):3185–3190CrossRefGoogle Scholar
  186. Yamamoto S, Hikasa H, Ono H, Taira M (2003) Molecular link in the sequential induction of the Spemann organizer: direct activation of the cerberus gene by Xlim-1, Xotx2, Mix.1, and Siamois, immediately downstream from nodal and Wnt signaling. Dev Biol 257(1):190–204CrossRefGoogle Scholar
  187. Yasui K, Li G, Wang Y, Saiga H, Zhang P, Aizawa S (2002) Beta-catenin in early development of the lancelet embryo indicates specific determination of embryonic polarity. Develop Growth Differ 44(6):467–475CrossRefGoogle Scholar
  188. Yasuoka Y, Kobayashi M, Kurokawa D, Akasaka K, Saiga H, Taira M (2009) Evolutionary origins of blastoporal expression and organizer activity of the vertebrate gastrula organizer gene lhx1 and its ancient metazoan paralog lhx3. Development 136(12):2005–2014.  https://doi.org/10.1242/dev.028530 CrossRefPubMedGoogle Scholar
  189. Yasuoka Y, Suzuki Y, Takahashi S, Someya H, Sudou N, Haramoto Y, Cho KW, Asashima M, Sugano S, Taira M (2014) Occupancy of tissue-specific cis-regulatory modules by Otx2 and TLE/Groucho for embryonic head specification. Nat Commun 5:4322.  https://doi.org/10.1038/ncomms5322 CrossRefPubMedPubMedCentralGoogle Scholar
  190. Yasuoka Y, Shinzato C, Satoh N (2016) The mesoderm-forming gene brachyury regulates ectoderm-endoderm demarcation in the coral Acropora digitifera. Curr Biol 26(21):2885–2892.  https://doi.org/10.1016/j.cub.2016.08.011 CrossRefPubMedGoogle Scholar
  191. Yoon SJ, Wills AE, Chuong E, Gupta R, Baker JC (2011) HEB and E2A function as SMAD/FOXH1 cofactors. Genes Dev 25(15):1654–1661.  https://doi.org/10.1101/gad.16800511 CrossRefPubMedPubMedCentralGoogle Scholar
  192. Yu JK, Satou Y, Holland ND, Shin IT, Kohara Y, Satoh N, Bronner-Fraser M, Holland LZ (2007) Axial patterning in cephalochordates and the evolution of the organizer. Nature 445(7128):613–617.  https://doi.org/10.1038/nature05472 CrossRefPubMedGoogle Scholar
  193. Zhang X, Abreu JG, Yokota C, MacDonald BT, Singh S, Coburn KL, Cheong SM, Zhang MM, Ye QZ, Hang HC, Steen H, He X (2012) Tiki1 is required for head formation via Wnt cleavage–oxidation and inactivation. Cell 149(7):1565–1577.  https://doi.org/10.1016/j.cell.2012.04.039 CrossRefPubMedPubMedCentralGoogle Scholar
  194. Zheng X, Suzuki T, Takahashi C, Nishida E, Kusakabe M (2015) cnrip1 is a regulator of eye and neural development in Xenopus laevis. Genes Cells 20(4):324–339.  https://doi.org/10.1111/gtc.12225 CrossRefPubMedGoogle Scholar
  195. Zorn AM, Butler K, Gurdon JB (1999) Anterior endomesoderm specification in Xenopus by Wnt/beta-catenin and TGF-beta signalling pathways. Dev Biol 209(2):282–297.  https://doi.org/10.1006/dbio.1999.9257 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Japan KK, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Marine Genomics UnitOkinawa Institute of Science and Technology Graduate UniversityOkinawaJapan
  2. 2.Department of Biological Sciences, Faculty of ScienceThe University of TokyoTokyoJapan

Personalised recommendations