Left–Right Specification in the Embryonic and Larval Development of Amphibians

  • Ryuji Toyoizumi
  • Kazue Mogi
Part of the Diversity and Commonality in Animals book series (DCA)


Biomolecules in living organisms, such as amino acids and double-stranded DNA, show left–right asymmetry. Even unicellular organisms, such as ciliates, have species-specific left- or right-handedness. Such molecular chiral asymmetry and cellular left–right asymmetry have likely provided a basis for the evolution of genetically determined left–right asymmetry of organ situs and the morphology of the heart, visceral organs, and central nervous system in eumetazoans. To study left–right asymmetry of the body plan, we believe that Xenopus laevis is a valuable model organism. The early Xenopus larva forms a transparent epidermis in the ventral abdominal region; thus organ development and morphology can be easily observed without dissection.

Genetic cascades involved in left–right specification during the phylotypic somite stage are conserved among vertebrates. Key left-handed genes such as nodal, lefty, and pitx2 have been cloned and functionally characterized in Xenopus embryos. Here, we review advances over the last two decades of molecular embryology research on left–right specification in visceral organs. Despite this extensive research, Xenopus brain laterality is still elusive. This is partially explained by a lack of useful molecular markers showing left- or right-handed expression in the embryonic or larval brain in Xenopus, although in teleosts such as zebrafish, medaka, and flounder, several genes—including nodal, lefty, pitx2, otx5, and leftover—show temporary left- or right-handed expression in the epithalamic region. Prominent morphological left–right differences in the dorsal diencephalic habenular nuclei have been described in both anuran species (except for Xenopus) and urodelan species since the early twentieth century. Accordingly, it is necessary to establish a new model organism to shed light on brain laterality in amphibians.


Laterality nodal otx5 leftover Anura Urodela Tadpole Habenula Spiracle Brain asymmetry 


  1. Aizawa H, Bianco IH, Hamaoka T, Miyashita T, Uemura O, Concha ML, Russell C, Wilson SW, Okamoto H (2005) Laterotopic representation of left-right information onto the dorso-ventral axis of a zebrafish midbrain target nucleus. Curr Biol 15(3):238–243PubMedPubMedCentralCrossRefGoogle Scholar
  2. Aizawa H, Goto M, Sato T, Okamoto H (2007) Temporally regulated asymmetric neurogenesis causes left-right difference in the zebrafish habenular structures. Dev Cell 12(1):87–98PubMedCrossRefGoogle Scholar
  3. Benowitz LI, Bear DM, Rosenthal R, Mesulam MM, Zaidel E, Sperry RW (1983) Hemispheric specialization in nonverbal communication. Cortex 19(1):5–11PubMedCrossRefGoogle Scholar
  4. Berg DA, Kirkham M, Beljajeva A, Knapp D, Habermann B, Ryge J, Tanaka EM, Simon A (2010) Efficient regeneration by activation of neurogenesis in homeostatically quiescent regions of the adult vertebrate brain. Development 137(24):4127–4134; Erratum in: Development 138(1):180PubMedCrossRefGoogle Scholar
  5. Blackiston DJ, Levin M (2013) Inversion of left–right asymmetry alters performance of Xenopus tadpoles in nonlateralized cognitive tasks. Anim Behav 86(2):459–466PubMedPubMedCentralCrossRefGoogle Scholar
  6. Blum M, Andre P, Muders K, Schweickert A, Fischer A, Bitzer E, Bogusch S, Beyer T, van Straaten HW, Viebahn C (2007) Ciliation and gene expression distinguish between node and posterior notochord in the mammalian embryo. Differentiation 75(2):133–146PubMedCrossRefPubMedCentralGoogle Scholar
  7. Boettger T, Wittler L, Kessel M (1999) FGF8 functions in the specification of the right body side of the chick. Curr Biol 9(5):277–280PubMedCrossRefGoogle Scholar
  8. Branford WW, Yost HJ (2002) Lefty-dependent inhibition of Nodal- and Wnt-responsive organizer gene expression is essential for normal gastrulation. Curr Biol 12(24):2136–2141PubMedCrossRefGoogle Scholar
  9. Branford WW, Yost HJ (2004) Nodal signaling: CrypticLefty mechanism of antagonism decoded. Curr Biol 14(9):341–343CrossRefGoogle Scholar
  10. Brennan J, Norris DP, Robertson EJ (2002) Nodal activity in the node governs left-right asymmetry. Genes Dev 16(18):2339–2344PubMedPubMedCentralCrossRefGoogle Scholar
  11. Chang H, Zwijsen A, Vogel H, Huylebroeck D, Matzuk MM (2000) Smad5 is essential for left-right asymmetry in mice. Dev Biol 219(1):71–78PubMedCrossRefGoogle Scholar
  12. Cheng AM, Thisse B, Thisse C, Wright CV (2000) The lefty-related factor Xatv acts as a feedback inhibitor of nodal signaling in mesoderm induction and L-R axis development in Xenopus. Development 127(5):1049–1061PubMedGoogle Scholar
  13. Clanton JA, Hope KD, Gamse JT (2013) Fgf signaling governs cell fate in the zebrafish pineal complex. Development 140(2):323–332PubMedPubMedCentralCrossRefGoogle Scholar
  14. Collignon J, Varlet I, Robertson EJ (1996) Relationship between asymmetric nodal expression and the direction of embryonic turning. Nature 381:155–158PubMedCrossRefGoogle Scholar
  15. Concha ML, Wilson SW (2001) Asymmetry in the epithalamus of vertebrates. J Anat 199:63–84PubMedCrossRefGoogle Scholar
  16. Concha ML, Burdine RD, Russell C, Schier AF, Wilson SW (2000) A nodal signaling pathway regulates the laterality of neuroanatomical asymmetries in the zebrafish forebrain. Neuron 28(2):399–409PubMedCrossRefGoogle Scholar
  17. Concha ML, Russell C, Regan JC, Tawk M, Sidi S, Gilmour DT, Kapsimali M, Sumoy L, Goldstone K, Amaya E, Kimelman D, Nicolson T, Gründer S, Gomperts M, Clarke JD, Wilson SW (2003) Local tissue interactions across the dorsal midline of the forebrain establish CNS laterality. Neuron 39(3):423–438PubMedCrossRefGoogle Scholar
  18. Cronin JR, Pizzarello S (1997) Enantiomeric excesses in meteoritic amino acids. Science 275(5302):951–955PubMedCrossRefGoogle Scholar
  19. Cronin JR, Pizzarello S (1999) Amino acid enantiomer excesses in meteorites: origin and significance. Adv Space Res 23(2):293–299CrossRefGoogle Scholar
  20. Dadda M, Domenichini A, Piffer L, Argenton F, Bisazza A (2010) Early differences in epithalamic left-right asymmetry influence lateralization and personality of adult zebrafish. Behav Brain Res 206(2):208–215PubMedCrossRefGoogle Scholar
  21. Deglincerti A, Haremaki T, Warmflash A, Sorre B, Brivanlou AH (2015) Coco is a dual activity modulator of TGFβ signaling. Development 142(15):2678–2685PubMedPubMedCentralCrossRefGoogle Scholar
  22. Duboc V, Röttinger E, Lapraz F, Besnardeau L, Lepage T (2005) Left–right asymmetry in the sea urchin embryo is regulated by nodal signaling on the right side. Dev Cell 9(1):147–158PubMedCrossRefGoogle Scholar
  23. Endo T, Yoshino J, Kado K, Tochinai S (2007) Brain regeneration in anuran amphibians. Develop Growth Differ 49(2):121–129CrossRefGoogle Scholar
  24. Essner JJ, Vogan KJ, Wagner MK, Tabin CJ, Yost HJ, Brueckner M (2002) Conserved function for embryonic nodal cilia. Nature 418(6893):37–38PubMedCrossRefGoogle Scholar
  25. Facchin L, Duboué ER, Halpern ME (2015) Disruption of epithalamic left-right asymmetry increases anxiety in zebrafish. J Neurosci 35(48):15847–15859PubMedPubMedCentralCrossRefGoogle Scholar
  26. Feistel K, Blum M (2008) Gap junctions relay FGF8-mediated right-sided repression of nodal in rabbit. Dev Dyn 237(12):3516–3527PubMedCrossRefGoogle Scholar
  27. Fischer A, Viebahn C, Blum M (2002) FGF8 acts as a right determinant during establishment of the left-right axis in the rabbit. Curr Biol 12(21):1807–1816PubMedCrossRefPubMedCentralGoogle Scholar
  28. Footz T, Idrees F, Acharya M, Kozlowski K, Walter MA (2009) Analysis of mutations of the PITX2 transcription factor found in patients with Axenfeld–Rieger syndrome. Invest Ophthalmol Vis Sci 50(6):2599–2606PubMedCrossRefGoogle Scholar
  29. Frontera JG (1952) A study of the anuran diencephalon. J Comp Neurol 96:1–69PubMedCrossRefGoogle Scholar
  30. Fujinaga M, Lowe LA, Kuehn MR (2000) Alpha(1)-adrenergic stimulation perturbs the left-right asymmetric expression pattern of nodal during rat embryogenesis. Teratology 62(5):317–324PubMedCrossRefGoogle Scholar
  31. Funnell MG, Colvin MK, Gazzaniga MS (2007) The calculating hemispheres: studies of a split-brain patient. Neuropsychologia 45(10):2378–2386PubMedCrossRefGoogle Scholar
  32. Gamse JT, Shen YC, Thisse C, Thisse B, Raymond PA, Halpern ME, Liang JO (2002) Otx5 regulates genes that show circadian expression in the zebrafish pineal complex. Nat Genet 30(1):117–121PubMedCrossRefGoogle Scholar
  33. Gamse JT, Thisse C, Thisse B, Halpern ME (2003) The parapineal mediates left-right asymmetry in the zebrafish diencephalon. Development 130(6):1059–1068PubMedCrossRefGoogle Scholar
  34. Gamse JT, Kuan YS, Macurak M, Brösamle C, Thisse B, Thisse C, Halpern ME (2005) Directional asymmetry of the zebrafish epithalamus guides dorsoventral innervation of the midbrain target. Development 132(21):4869–4881PubMedCrossRefGoogle Scholar
  35. Grande C, Patel NH (2009) Nodal signalling is involved in left-right asymmetry in snails. Nature 457(7232):1007–1011PubMedCrossRefGoogle Scholar
  36. Halpern ME, Liang JO, Gamse JT (2003) Leaning to the left: laterality in the zebrafish forebrain. Trends Neurosci 26(6):308–313PubMedCrossRefGoogle Scholar
  37. Hamada H, Meno C, Watanabe D, Saijoh Y (2002) Establishment of vertebrate left-right asymmetry. Nat Rev Genet 3:103–113PubMedCrossRefGoogle Scholar
  38. Hashimoto H, Rebagliati M, Ahmad N, Muraoka O, Kurokawa T, Hibi M, Suzuki T (2004) The Cerberus/Dan-family protein Charon is a negative regulator of Nodal signaling during left-right patterning in zebrafish. Development 131(8):1741–1753PubMedCrossRefGoogle Scholar
  39. Hashimoto H, Aritaki M, Uozumi K, Uji S, Kurokawa T, Suzuki T (2007) Embryogenesis and expression profiles of charon and nodal-pathway genes in sinistral (Paralichthys olivaceus) and dextral (Verasper variegatus) flounders. Zool Sci 24(2):137–146PubMedCrossRefGoogle Scholar
  40. Hatori R, Ando T, Sasamura T, Nakazawa N, Nakamura M, Taniguchi K, Hozumi S, Kikuta J, Ishii M, Matsuno K (2014) Left-right asymmetry is formed in individual cells by intrinsic cell chirality. Mech Dev 133:146–162PubMedCrossRefGoogle Scholar
  41. Hecksher-Sørensen J, Watson RP, Lettice LA, Serup P, Eley L, De Angelis C, Ahlgren U, Hill RE (2004) The splanchnic mesodermal plate directs spleen and pancreatic laterality, and is regulated by Bapx1/Nkx3.2. Development 131(19):4665–4675PubMedCrossRefGoogle Scholar
  42. Hirokawa N, Tanaka Y, Okada Y, Takeda S (2006) Nodal flow and the generation of left-right asymmetry. Cell 125(1):33–45PubMedCrossRefGoogle Scholar
  43. Hojo M, Takashima S, Kobayashi D, Sumeragi A, Shimada A, Tsukahara T, Yokoi H, Narita T, Jindo T, Kage T, Kitagawa T, Kimura T, Sekimizu K, Miyake A, Setiamarga D, Murakami R, Tsuda S, Ooki S, Kakihara K, Naruse K, Takeda H (2007) Right-elevated expression of charon is regulated by fluid flow in medaka Kupffer’s vesicle. Develop Growth Differ 49(5):395–405CrossRefGoogle Scholar
  44. Hong SK, Dawid IB (2009) FGF-dependent left–right asymmetry patterning in zebrafish is mediated by Ier2 and Fibp1. Proc Natl Acad Sci U S A 106(7):2230–2235PubMedPubMedCentralCrossRefGoogle Scholar
  45. Hummel KP, Chapman DB (1959) Visceral inversion and associated anomalies in the mouse. J Hered 50:9–13CrossRefGoogle Scholar
  46. Hüsken U, Stickney HL, Gestri G, Bianco IH, Faro A, Young RM, Roussigne M, Hawkins TA, Beretta CA, Brinkmann I, Paolini A, Jacinto R, Albadri S, Dreosti E, Tsalavouta M, Schwarz Q, Cavodeassi F, Barth AK, Wen L, Zhang B, Blader P, Yaksi E, Poggi L, Zigman M, Lin S, Wilson SW, Carl M (2014) Tcf7l2 is required for left-right asymmetric differentiation of habenular neurons. Curr Biol 24(19):2217–2227PubMedPubMedCentralCrossRefGoogle Scholar
  47. Irie N, Kuratani S (2011) Comparative transcriptome analysis reveals vertebrate phylotypic period during organogenesis. Nat Commun 2:248; Erratum in: Nat Commun 2014. 5:3366PubMedPubMedCentralCrossRefGoogle Scholar
  48. Irie N, Kuratani S (2014) The developmental hourglass model: a predictor of the basic body plan? Development 141(24):4649–4655PubMedCrossRefGoogle Scholar
  49. Ishikawa Y, Inohaya K, Yamamoto N, Maruyama K, Yoshimoto M, Iigo M, Oishi T, Kudo A, Ito H (2015) The parapineal is incorporated into the habenula during ontogenesis in the medaka fish. Brain Behav Evol 85(4):257–270PubMedCrossRefGoogle Scholar
  50. Ito Y, Oinuma T, Takano K, Komazaki S, Obata S, Asashima M (2006) CyNodal, the Japanese newt nodal-related gene, is expressed in the left side of the lateral plate mesoderm and diencephalon. Gene Expr Patterns 6(3):294–298PubMedCrossRefGoogle Scholar
  51. Jones CM, Kuehn MR, Hogan BL, Smith JC, Wright CV (1995) Nodal-related signals induce axial mesoderm and dorsalize mesoderm during gastrulation. Development 121:3651–3662PubMedGoogle Scholar
  52. Joseph EM, Melton DA (1997) Xnr4: a Xenopus nodal-related gene expressed in the Spemann organizer. Dev Biol 184(2):367–372PubMedCrossRefGoogle Scholar
  53. Juan H, Hamada H (2001) Roles of nodal-lefty regulatory loops in embryonic patterning of vertebrates. Genes Cells 6(11):923–930PubMedCrossRefGoogle Scholar
  54. Kablar B, Vignali R, Menotti L, Pannese M, Andreazzoli M, Polo C, Giribaldi MG, Boncinelli E, Barsacchi G (1996) Xotx genes in the developing brain of Xenopus laevis. Mech Dev 55(2):145–158PubMedCrossRefGoogle Scholar
  55. Kawakami R, Shinohara Y, Kato Y, Sugiyama H, Shigemoto R, Ito I (2003) Asymmetrical allocation of NMDA receptor epsilon2 subunits in hippocampal circuitry. Science 300(5621):990–994PubMedCrossRefGoogle Scholar
  56. Kawasumi A, Nakamura T, Iwai N, Yashiro K, Saijoh Y, Belo JA, Shiratori H, Hamada H (2011) Left-right asymmetry in the level of active Nodal protein produced in the node is translated into left-right asymmetry in the lateral plate of mouse embryos. Dev Biol 353(2):321–330PubMedPubMedCentralCrossRefGoogle Scholar
  57. Kemali M, Guglielmotti V (1977) An electron microscope observation of the right and the two left portions of the habenular nuclei of the frog. J Comp Neurol 176:133–148PubMedCrossRefGoogle Scholar
  58. Kemali M, Guglielmotti V, Fiorino L (1990) The asymmetry of the habenular nuclei of female and male frogs in spring and in winter. Brain Res 517:251–255PubMedCrossRefGoogle Scholar
  59. Kosslyn SM, Holtzman JD, Farah MJ, Gazzaniga MS (1985) A computational analysis of mental image generation: evidence from functional dissociations in split-brain patients. J Exp Psychol Gen 114(3):311–341PubMedCrossRefGoogle Scholar
  60. Kuan YS, Gamse JT, Schreiber AM, Halpern ME (2007) Selective asymmetry in a conserved forebrain to midbrain projection. J Exp Zool B Mol Dev Evol 308(5):669–678PubMedCrossRefGoogle Scholar
  61. Kumar A, Lualdi M, Lewandoski M, Kuehn MR (2008) Broad mesodermal and endodermal deletion of Nodal at postgastrulation stages results solely in left/right axial defects. Dev Dyn 237(12):3591–3601PubMedPubMedCentralCrossRefGoogle Scholar
  62. Kuroda H, Hayata T, Eisaki A, Asashima M (2000) Cloning a novel developmental regulating gene, Xotx5: its potential role in anterior formation in Xenopus laevis. Develop Growth Differ 42(2):87–93CrossRefGoogle Scholar
  63. Levin M, Johnson RL, Stern CD, Kuehn M, Tabin C (1995) A molecular pathway determining left-right asymmetry in chick embryogenesis. Cell 82(5):803–814PubMedCrossRefGoogle Scholar
  64. Logan M, Pagan-Westphal SM, Smith DM, Paganessi L, Tabin CJ (1998) The transcription factor Pitx2 mediates situs-specific morphogenesis in response to left-right asymmetric signals. Cell 94:307–317PubMedCrossRefGoogle Scholar
  65. Lohr JL, Danos MC, Yost HJ (1997) Left-right asymmetry of a nodal-related gene is regulated by dorsoanterior midline structures during Xenopus development. Development 124(8):1465–1472PubMedGoogle Scholar
  66. Long S, Ahmad N, Rebagliati M (2003) The zebrafish nodal-related gene southpaw is required for visceral and diencephalic left-right asymmetry. Development 130:2303–2316PubMedCrossRefGoogle Scholar
  67. Lowe LA, Supp DM, Sampath K, Yokoyama T, Wright CV, Potter SS, Overbeek P, Kuehn MR (1996) Conserved left-right asymmetry of nodal expression and alterations in murine situs inversus. Nature 381(6578):158–161PubMedCrossRefGoogle Scholar
  68. Lowe LA, Yamada S, Kuehn MR (2001) Genetic dissection of nodal function in patterning the mouse embryo. Development 128(10):1831–1843PubMedGoogle Scholar
  69. Luo YJ, Su YH (2012) Opposing nodal and BMP signals regulate left-right asymmetry in the sea urchin larva. PLoS Biol 10(10):e1001402. CrossRefPubMedPubMedCentralGoogle Scholar
  70. Malashichev YB (2002) Asymmetries in amphibians: a review of morphology and behaviour. Laterality 7(3):197–217PubMedCrossRefGoogle Scholar
  71. Mangold O (1921) Situs inversus bei Triton. Roux’ Arch Entwicklungsmech 48:505–516CrossRefGoogle Scholar
  72. Matsui M (1996) 「両生類の進化」(Evolution of the Amphibia (natural history)). Tokyo University Press, Tokyo, pp 58–64 (in Japanese)Google Scholar
  73. McDiarmid RW, Altig R (1999) Tadpoles: the biology of anuran larvae, 1st edn. University of Chicago Press, Chicago, pp 31–33Google Scholar
  74. Meno C, Saijoh Y, Fujii H, Ikeda M, Yokoyama T, Yokoyama M, Toyoda Y, Hamada H (1996) Left-right asymmetric expression of the TGF-β-family member lefty in mouse embryos. Nature 381:151–155PubMedCrossRefGoogle Scholar
  75. Meno C, Ito Y, Saijoh Y, Matsuda Y, Tashiro K, Kuhara S, Hamada H (1997) Two closely-related left-right asymmetrically expressed genes, lefty-1 and lefty-2: their distinct expression domains, chromosomal linkage and direct neuralizing activity in Xenopus embryos. Genes Cells 2:513–524PubMedCrossRefGoogle Scholar
  76. Meno C, Shimono A, Saijoh Y, Yashiro K, Mochida K, Ohishi S, Noji S, Kondoh H, Hamada H (1998) lefty-1 is required for left-right determination as a regulator of lefty-2 and nodal. Cell 94:287–297PubMedCrossRefGoogle Scholar
  77. Meno C, Gritsman K, Ohishi S, Ohfuji Y, Heckscher E, Mochida K, Shimono A, Kondoh H, Talbot WS, Robertson EJ, Schier AF, Hamada H (1999) Mouse Lefty2 and zebrafish antivin are feedback inhibitors of nodal signaling during vertebrate gastrulation. Mol Cell 4:287–298PubMedCrossRefGoogle Scholar
  78. Meno C, Takeuchi J, Sakuma R, Koshiba-Takeuchi K, Ohishi S, Saijoh Y, Miyazaki J, ten Dijke P, Ogura T, Hamada H (2001) Diffusion of nodal signaling activity in the absence of the feedback inhibitor Lefty2. Dev Cell 1:127–138PubMedCrossRefGoogle Scholar
  79. Meyers EN, Martin GR (1999) Differences in left-right axis pathways in mouse and chick: functions of FGF8 and SHH. Science 285(5426):403–406PubMedCrossRefGoogle Scholar
  80. Miyasaka N, Morimoto K, Tsubokawa T, Higashijima S, Okamoto H, Yoshihara Y (2009) From the olfactory bulb to higher brain centers: genetic visualization of secondary olfactory pathways in zebrafish. J Neurosci 29(15):4756–4767PubMedCrossRefGoogle Scholar
  81. Mochizuki T, Saijoh Y, Tsuchiya K, Shirayoshi Y, Takai S, Taya C, Yonekawa H, Yamada K, Nihei H, Nakatsuji N, Overbeek PA, Hamada H, Yokoyama T (1998) Cloning of inv, a gene that controls left/right asymmetry and kidney development. Nature 395:177–181PubMedCrossRefGoogle Scholar
  82. Mogi K, Goto M, Ohno E, Azumi Y, Takeuchi S, Toyoizumi R (2003) Xenopus neurula left-right asymmetry is respeficied by microinjecting TGF-β5 protein. Int J Dev Biol 47(1):15–29PubMedCrossRefGoogle Scholar
  83. Morgan M (1977) Embryology and inheritance of asymmetry. In: Harnad S, Doty RW, Goldstein L, Jaynes J, Krauthamer G (eds) Lateralization in the nervous system. Academic Press, New York, pp 173–194CrossRefGoogle Scholar
  84. Morgan M (1991) The asymmetrical genetic determination of laterality: flatfish, frog and human handedness. In: Bock FR, Marsh J (eds) Biological asymmetry and handedness, Ciba Foundation Symposium,162. Wiley, Chichester, pp 234–250Google Scholar
  85. Morgan MJ, O'Donnell JM, Oliver RF (1973) Development of left-right asymmetry in the habenular nuclei of Rana temporaria. J Comp Neurol 149:203–214PubMedCrossRefGoogle Scholar
  86. Morgan D, Turnpenny L, Goodship J, Dai W, Majumder K, Matthews L, Gardner A, Schuster G, Vien L, Harrison W et al (1998) Inversin, a novel gene in the vertebrate left-right axis pathway, is partially deleted in the inv mouse. Nat Genet 20:149–156PubMedCrossRefGoogle Scholar
  87. Morgan D, Goodship J, Essner JJ, Vogan KJ, Turnpenny L, Yost HJ, Tabin CJ, Strachan T (2002) The left-right determinant inversin has highly conserved ankyrin repeat and IQ domains and interacts with calmodulin. Hum Genet 110:377–384PubMedCrossRefGoogle Scholar
  88. Morokuma J, Ueno M, Kawanishi H, Saiga H, Nishida H (2002) HrNodal, the ascidian nodal-related gene, is expressed in the left side of the epidermis, and lies upstream of HrPitx. Dev Genes Evol 212:439–446CrossRefPubMedGoogle Scholar
  89. Müller P, Rogers KW, Jordan BM, Lee JS, Robson D, Ramanathan S, Schier AF (2012) Differential diffusivity of Nodal and Lefty underlies a reaction-diffusion patterning system. Science 336(6082):721–724PubMedPubMedCentralCrossRefGoogle Scholar
  90. Nomura M, Li E (1998) Smad2 role in mesoderm formation, left-right patterning and craniofacial development. Nature 393:786–790PubMedCrossRefGoogle Scholar
  91. Nonaka S, Shiratori H, Saijoh Y, Hamada H (2002) Determination of left-right patterning of the mouse embryo by artificial nodal flow. Nature 418(6893):96–99PubMedCrossRefGoogle Scholar
  92. Nonaka S, Yoshiba S, Watanabe D, Ikeuchi S, Goto T, Marshall WF, Hamada H (2005) De novo formation of left-right asymmetry by posterior tilt of nodal cilia. PLoS Biol 3(8):e268PubMedPubMedCentralCrossRefGoogle Scholar
  93. Norris DP, Brennan J, Bikoff EK, Robertson EJ (2002) The Foxh1-dependent autoregulatory enhancer controls the level of Nodal signals in the mouse embryo. Development 129:3455–3468Google Scholar
  94. Okamoto M, Ohsawa H, Hayashi T, Owaribe K, Tsonis PA (2007) Regeneration of retinotectal projections after optic tectum removal in adult newts. Mol Vis 13:2112–2118PubMedGoogle Scholar
  95. Onai T, Yu JK, Blitz IL, Cho KW, Holland LZ (2010) Opposing Nodal/Vg1 and BMP signals mediate axial patterning in embryos of the basal chordate amphioxus. Dev Biol 344(1):377–389; Erratum in: Dev Biol 2011. 352(1):179Google Scholar
  96. Pai VP, Vandenberg LN, Blackiston D, Levin M (2012) Neurally derived tissues in Xenopus laevis embryos exhibit a consistent bioelectrical left-right asymmetry. Stem Cells Int 2012:1. CrossRefGoogle Scholar
  97. Párducz B (1967) Ciliary movement and coordination in ciliates. Int Rev Cytol 21:91–128PubMedCrossRefGoogle Scholar
  98. Piedra ME, Ros MA (2002) BMP signaling positively regulates nodal expression during left right specification in the chick embryo. Development 129(14):3431–3440PubMedGoogle Scholar
  99. Piedra ME, Icardo JM, Albajar M, Rodriguez-Rey JC, Ros MA (1998) Pitx2 participates in the late phase of the pathway controlling left-right asymmetry. Cell 94:319–324PubMedCrossRefGoogle Scholar
  100. Pizzarello S, Zolensky M, Turk KA (2003) Nonracemic isovaline in the Murchison meteorite: chiral distribution and mineral association. Geochim Cosmochim Acta 67(8):1589–1595CrossRefGoogle Scholar
  101. Plageman TF Jr, Zacharias AL, Gage PJ, Lang RA (2011) Shroom3 and a Pitx2-N-cadherin pathway function cooperatively to generate asymmetric cell shape changes during gut morphogenesis. Dev Biol 357(1):227–234PubMedPubMedCentralCrossRefGoogle Scholar
  102. Rebagliati MR, Toyama R, Fricke C, Haffter P, Dawid IB (1998a) Zebrafish nodal-related genes are implicated in axial patterning and establishing left-right asymmetry. Dev Biol 199:261–272PubMedCrossRefGoogle Scholar
  103. Rebagliati MR, Toyama R, Haffter P, Dawid IB (1998b) cyclops encodes a nodal-related factor involved in midline signaling. Proc Natl Acad Sci U S A 95:9932–9937PubMedPubMedCentralCrossRefGoogle Scholar
  104. Rodríguez-Esteban C, Capdevila J, Economides AN, Pascual J, Ortiz A, Izpisúa Belmonte JC (1999) The novel Cer–like protein Caronte mediates the establishment of embryonic left-right asymmetry. Nature 401(6750):243–251PubMedCrossRefGoogle Scholar
  105. Röttinger E, DuBuc TQ, Amiel AR, Martindale MQ (2015) Nodal signaling is required for mesodermal and ventral but not for dorsal fates in the indirect developing hemichordate, Ptychodera flava. Biol Open 4(7):830–842PubMedPubMedCentralCrossRefGoogle Scholar
  106. Saijoh Y, Adachi H, Sakuma R, Yeo CY, Yashiro K, Watanabe M, Hashiguchi H, Mochida K, Ohishi S, Kawabata M et al (2000) Left-right asymmetric expression of lefty2 and nodal is induced by a signaling pathway that includes the transcription factor FAST2. Mol Cell 5:35–47PubMedCrossRefGoogle Scholar
  107. Saijoh Y, Oki S, Ohishi S, Hamada H (2003) Left-right patterning of the mouse lateral plate requires nodal produced in the node. Dev Biol 256(1):160–172PubMedCrossRefGoogle Scholar
  108. Schlueter J, Brand T (2009) A right-sided pathway involving FGF8/Snai1 controls asymmetric development of the proepicardium in the chick embryo. Proc Natl Acad Sci U S A 106(18):7485–7490PubMedPubMedCentralCrossRefGoogle Scholar
  109. Schneider A, Mijalski T, Schlange T, Dai W, Overbeek P, Arnold HH, Brand T (1999) The homeobox gene NKX3.2 is a target of left-right signaling and is expressed on opposite sides in chick and mouse embryos. Curr Biol 9(16):911–914PubMedCrossRefGoogle Scholar
  110. Schweickert A, Weber T, Beyer T, Vick P, Bogusch S, Feistel K, Blum M (2007) Cilia-driven leftward flow determines laterality in Xenopus. Curr Biol 17(1):60–66PubMedCrossRefGoogle Scholar
  111. Signore IA, Guerrero N, Loosli F, Colombo A, Villalón A, Wittbrodt J, Concha ML (2009) Zebrafish and medaka: model organisms for a comparative developmental approach of brain asymmetry. Philos Trans R Soc Lond Ser B Biol Sci 364(1519):991–1003CrossRefGoogle Scholar
  112. Soroldoni D, Bajoghli B, Aghaallaei N, Czerny T (2007) Dynamic expression pattern of nodal-related genes during left-right development in medaka. Gene Expr Patterns 7(1–2):93–101PubMedCrossRefGoogle Scholar
  113. Soukup V, Yong LW, Lu TM, Huang SW, Kozmik Z, Yu JK (2015) The nodal signaling pathway controls left-right asymmetric development in amphioxus. EvoDevo 6:5. PubMedPubMedCentralCrossRefGoogle Scholar
  114. Supp DM, Witte DP, Potter SS, Brueckner M (1997) Mutation of an axonemal dynein affects left-right asymmetry in inversus viscerum mice. Nature 389:963–966PubMedPubMedCentralCrossRefGoogle Scholar
  115. Swiers G, Chen YH, Johnson AD, Loose M (2010) A conserved mechanism for vertebrate mesoderm specification in urodele amphibians and mammals. Dev Biol 343(1–2):138–152PubMedCrossRefGoogle Scholar
  116. Tanaka Y, Okada Y, Hirokawa N (2005) FGF-induced vesicular release of Sonic hedgehog and retinoic acid in leftward nodal flow is critical for left-right determination. Nature 435(7039):172–177PubMedCrossRefGoogle Scholar
  117. Taniguchi K, Maeda R, Ando T, Okumura T, Nakazawa N, Hatori R, Nakamura M, Hozumi S, Fujiwara H, Matsuno K (2011) Chirality in planar cell shape contributes to left-right asymmetric epithelial morphogenesis. Science 333(6040):339–341PubMedCrossRefGoogle Scholar
  118. Toga AW, Thompson PM (2003) Mapping brain asymmetry. Nat Rev Neurosci 4(1):37–48PubMedCrossRefGoogle Scholar
  119. Toyoizumi R (2005) 「両生類胚の左右性決定の分子機構の研究 –左側特異的に発現するnodal遺伝子の発現調節機構を中心として–」. Doctoral thesis, pp 189–208 (in Japanese)Google Scholar
  120. Toyoizumi R, Mogi K, Takeuchi S (2000) More than 95% reversal of left-right axis induced by right-sided hypodermic microinjection of activin into Xenopus neurula embryos. Dev Biol 221(2):321–336PubMedCrossRefGoogle Scholar
  121. Toyoizumi R, Ogasawara T, Takeuchi S, Mogi K (2005) Xenopus nodal related-1 is indispensable only for left-right axis determination. Int J Dev Biol 49(8):923–938PubMedCrossRefGoogle Scholar
  122. Toyoizumi R, Takeuchi S, Mogi K (2006) Subtilisin-like proprotein convertase activity is necessary for left-right axis determination in Xenopus neurula embryos. Dev Genes Evol 216(10):607–622PubMedCrossRefGoogle Scholar
  123. Tsukui T, Delapena J, Sabbagh W, Greenwald J, Choe S, Norris DP, Robertson EJ, Evans RM, Rosenfeld MG, Belmonte JCI (1998) Pitx2 determines left-right asymmetry of internal organs in vertebrates. Nature 394:545–551PubMedCrossRefGoogle Scholar
  124. Turk DJ, Heatherton TF, Kelley WM, Funnell MG, Gazzaniga MS, Macrae CN (2002) Mike or me? Self-recognition in a split-brain patient. Nat Neurosci 5(9):841–842PubMedCrossRefGoogle Scholar
  125. Vignali R, Colombetti S, Lupo G, Zhang W, Stachel S, Harland RM, Barsacchi G (2000) Xotx5b, a new member of the Otx gene family, may be involved in anterior and eye development in Xenopus laevis. Mech Dev 96(1):3–13PubMedCrossRefGoogle Scholar
  126. Villalón A, Sepúlveda M, Guerrero N, Meynard MM, Palma K, Concha ML (2012) Evolutionary plasticity of habenular asymmetry with a conserved efferent connectivity pattern. PLoS One 7(4):e35329. CrossRefPubMedPubMedCentralGoogle Scholar
  127. Vonica A, Brivanlou AH (2007) The left–right axis is regulated by the interplay of Coco, Xnr1 and derrière in Xenopus embryos. Dev Biol 303(1):281–294PubMedCrossRefGoogle Scholar
  128. Welsh IC, Thomsen M, Gludish DW, Alfonso-Parra C, Bai Y, Martin JF, Kurpios NA (2013) Integration of left–right Pitx2 transcription and Wnt signaling drives asymmetric gut morphogenesis via Daam2. Dev Cell 26(6):629–644PubMedPubMedCentralCrossRefGoogle Scholar
  129. Welsh IC, Kwak H, Chen FL, Werner M, Shopland LS, Danko CG, Lis JT, Zhang M, Martin JF, Kurpios NA (2015) Chromatin architecture of the Pitx2 locus requires CTCF- and Pitx2-dependent asymmetry that mirrors embryonic gut laterality. Cell Rep 13(2):337–349PubMedPubMedCentralCrossRefGoogle Scholar
  130. Wichterman R (1986) Movement, behavior, and motor response. In: The biology of Paramecium, 2nd edn. Springer, New York, p 45, 211–238CrossRefGoogle Scholar
  131. Wöellwarth C (1950) Experimentelle Untersuchungen über den Situs inversus der Eingeweide und der Habenula des Zwischenhirns bei Amphibien. Wilhelm Roux Arch Entwickl Mech Org 144(2):178–256CrossRefGoogle Scholar
  132. Yasuhiko Y, Imai F, Ookubo K, Takakuwa Y, Shiokawa K, Yokoyama T (2001) Calmodulin binds to inv protein: implication for the regulation of inv function. Develop Growth Differ 43(6):671–681CrossRefGoogle Scholar
  133. Yasuhiko Y, Shiokawa K, Mochizuki T, Asashima M, Yokoyama T (2006) Isolation and characterization of Xenopus laevis homologs of the mouse inv gene and functional analysis of the conserved calmodulin binding sites. Cell Res 16(4):337–346PubMedCrossRefGoogle Scholar
  134. Yoshino J, Tochinai S (2004) Successful reconstitution of the non-regenerating adult telencephalon by cell transplantation in Xenopus laevis. Develop Growth Differ 46(6):523–534CrossRefGoogle Scholar
  135. Yoshino J, Tochinai S (2006) Functional regeneration of the olfactory bulb requires reconnection to the olfactory nerve in Xenopus larvae. Develop Growth Differ 48(1):15–24CrossRefGoogle Scholar
  136. Yoshioka H, Meno C, Koshiba K, Sugihara M, Itoh H, Ishimaru Y, Inoue T, Ohuchi H, Semina EV, Murray JC, Hamada H, Noji S (1998) Pitx2, a bicoid-type homeobox gene, is involved in a lefty-signaling pathway in determination of left-right asymmetry. Cell 94:299–305PubMedCrossRefGoogle Scholar
  137. Yu JK, Holland LZ, Holland ND (2002) An amphioxus nodal gene (AmphiNodal) with early symmetrical expression in the organizer and mesoderm and later asymmetrical expression associated with left-right axis formation. Evol Dev 4:418–425PubMedCrossRefGoogle Scholar
  138. Zaidel E, Zaidel DW, Sperry RW (1981) Left and right intelligence: case studies of Raven's progressive matrices following brain bisection and hemidecortication. Cortex 17(2):167–185PubMedCrossRefGoogle Scholar
  139. Zhou X, Sasaki H, Lowe L, Hogan BL, Kuehn MR (1993) Nodal is a novel TGF-β-like gene expressed in the mouse node during gastrulation. Nature 361:543–547PubMedCrossRefGoogle Scholar
  140. Zhu L, Marvin MJ, Gardiner A, Lassar AB, Mercola M, Stern CD, Levin M (1999) Cerberus regulates left–right asymmetry of the embryonic head and heart. Curr Biol 9(17):931–938PubMedCrossRefGoogle Scholar

Copyright information

© Springer Japan KK, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Biological Sciences, Faculty of ScienceKanagawa UniversityHiratsuka CityJapan
  2. 2.Research Institute for Integrated SciencesKanagawa UniversityHiratsuka CityJapan

Personalised recommendations