Advertisement

Recent Advances in Hagfish Developmental Biology in a Historical Context: Implications for Understanding the Evolution of the Vertebral Elements

Chapter
Part of the Diversity and Commonality in Animals book series (DCA)

Abstract

Hagfish have been recognized as important for investigating the evolution of vertebral elements, because of their crucial phylogenetic position; however, the deep-sea habitat of most hagfish species limits the number of available embryos, thus impeding studies of their embryology in general and of their axial skeletogenesis in particular. This paucity of hagfish embryos has long impeded attempts to determine whether the absence of vertebral elements in this animal represents the ancestral morphological state. However, embryonic materials recently obtained from the Japanese inshore hagfish (Eptatretus burgeri) have provided an opportunity to investigate the fine histology of the embryonic somite and gene expression patterns of somite derivatives. These approaches identified segmentally arranged mesenchyme-derived nodules of cartilage at the ventral aspect of the notochord. On the basis of the clear gene expression patterns of Twist and Pax1/9 (known as sclerotomal markers in gnathostomes), it is presumed that hagfish and gnathostomes share similar molecular developmental mechanisms for the vertebral elements. In sum, the common ancestor of all vertebrates likely possessed the developmental mechanisms that control expression of Twist and Pax1/9 and the formation of segmentally arranged vertebral elements. Thus, it is reasonable to assume that the hagfish vertebral elements, like the rest of the skeleton, represent a secondary degenerated condition.

Keywords

Vertebrates Vertebra Axial skeleton Pax1/9 Twist Cyclostomes Extracellular matrix 

References

  1. Ayers H, Jackson C (1900) Morphology of the myxinoidei. I. Skeleton and musculature. J Morphol 17:185–226CrossRefGoogle Scholar
  2. Bardack D (1991) First fossil hagfish (Myxinoidea): a record from the Pennsylvanian of Illinois. Science 254(5032):701–703CrossRefGoogle Scholar
  3. Buckingham M, Bajard L, Daubas P, Esner M, Lagha M, Relaix F, Rocancourt D (2006) Myogenic progenitor cells in the mouse embryo are marked by the expression of Pax3/7 genes that regulate their survival and myogenic potential. Anat Embryol (Berl) 211(Suppl 1):51–56.  https://doi.org/10.1007/s00429-006-0122-0 CrossRefGoogle Scholar
  4. Christ B, Schmidt C, Huang R, Wilting J, Brand-Saberi B (1997) Segmentation of the vertebrate body. Anat Embryol (Berl) 197(1):1–8.  https://doi.org/10.1007/s004290050116 CrossRefGoogle Scholar
  5. Christ B, Schmidt C, Huang R, Wilting J, Brand-Saberi B (1998) Segmentation of the vertebrate body. Anat Embryol (Berl) 197(1):1–8CrossRefGoogle Scholar
  6. Christ B, Huang R, Wilting J (2000) The development of the avian vertebral column. Anat Embryol (Berl) 202(3):179–194CrossRefGoogle Scholar
  7. Christ B, Huang R, Scaal M (2004) Formation and differentiation of the avian sclerotome. Anat Embryol (Berl) 208(5):333–350CrossRefGoogle Scholar
  8. Cole FJ (1905) A monograph on the general morphology of myxinoid fishes, based on a study of Myxine. Part 1. The anatomy of the skeleton. Trans R Soc Edin XLI (Part III (No. 30)749–791Google Scholar
  9. Cole F (1906) A monograph on the general morphology of the Myxinoid fishes, based on a study of Myxine. Part II. The anatomy of the muscles. Trans R Soc Edin 45:683–755CrossRefGoogle Scholar
  10. Conel JL (1929) The development of the brain of Bdellostoma stouti. I. External growth changes. J Comp Neurol 47:343–403CrossRefGoogle Scholar
  11. Conel JL (1931a) The development of the brain of Bdellostoma stouti II. Internal growth changes. J Comp Neurol 52:365–499CrossRefGoogle Scholar
  12. Conel JL (1931b) The genital system of the Myxinoidea: a study based on notes and drawing of these organs in Bedellostomata made by Bashford Dean, The Bashford Dean Memorial Volume: Archaic Fishes 67–102Google Scholar
  13. Conel JL (1942) The origin of the neural crest. J Comp Neurol 76:191–215CrossRefGoogle Scholar
  14. Conway Morris S, Caron JB (2014) A primitive fish from the Cambrian of North America. Nature 512(7515):419–422.  https://doi.org/10.1038/nature13414 CrossRefGoogle Scholar
  15. Cunningham B (1886) On the structure and development of the reproductive elements in Myxine glutinosa. Q J Microsc Sci 27:49–76Google Scholar
  16. Dean B (1897) The Columbia university zoological expedition of 1896 with a brief account of sound and on the Pacific coast. N Y Acad Sci XVI:33–43Google Scholar
  17. Dean B (1898) On the development of the Californian hag-fish, Bdellostoma stouti. Lockington. Q J Microsc Sci 40:269–279Google Scholar
  18. Dean B (1899) On the embryology of Bdellostoma stouti. A genera account of myxinoid development from the egg and segmentation to hatching. Festschrift zum 70ten Geburststag Carl von Kupffer. Gustav Fischer Verlag, Jena, pp 220–276Google Scholar
  19. Dean B (1904) Notes on Japanese Myxinoides. Jour College of Sci, Imperial University, Tokyo 19Google Scholar
  20. Dean B, Harrington NR, Calkins GN, Griffin BB (1896) Transactions of the New York Academy of Sciences. The Columbia University zoological expedition of 1896 with a brief account of the work of collecting in Puget Sound and on the Pacific coast 9:33–43Google Scholar
  21. Delarbre C, Gallut C, Barriel V, Janvier P, Gachelin G (2002) Complete mitochondrial DNA of the hagfish, Eptatretus burgeri: the comparative analysis of mitochondrial DNA sequences strongly supports the cyclostome monophyly. Mol Phylogenet Evol 22(2):184–192.  https://doi.org/10.1006/mpev.2001.1045 CrossRefPubMedGoogle Scholar
  22. Doflein F (1899) Zur Entwicklungsgeschichte von Bdellostoma stouti Lock. Verhandl Deutsche zool Gesellsch Hamburg:21–30Google Scholar
  23. Donoghue PC, Forey PL, Aldridge RJ (2000) Conodont affinity and chordate phylogeny. Biol Rev Camb Philos 75(2):191–251.  https://doi.org/10.1111/j.1469-185X.1999.tb00045.x CrossRefGoogle Scholar
  24. Fernholm B (1969) A third embryo of Myxine: considerations on hypophyseal ontogeny and phylogeny. Acta Zool-Stockholm 50:169–177CrossRefGoogle Scholar
  25. Fernholm B (1974) Diurnal variations in behaviour of the hagfish Eptatretus burgeri. Mar Biol 27:351–356CrossRefGoogle Scholar
  26. Fleming A, Kishida MG, Kimmel CB, Keynes RJ (2015) Building the backbone: the development and evolution of vertebral patterning. Development 142(10):1733–1744.  https://doi.org/10.1242/dev.118950142/10/1733[pii] CrossRefPubMedGoogle Scholar
  27. Forey P, Janvier P (1993) Agnathans and the origin of jawed vertebrates. Nature 361:129–134CrossRefGoogle Scholar
  28. Foss G (1962) Some observations on the ecology of Myxine glutinosa L. Sarsia 7:17–22CrossRefGoogle Scholar
  29. Foss G (1968) Behavior of Myxine glutinosa L. Sarsia 31:1–14CrossRefGoogle Scholar
  30. Gadow H (1895) On the evolution of the vertebral column of fishes. Philos Trans R Soc B 56:163–221CrossRefGoogle Scholar
  31. Gadow H (1933) The evolution of the vertebral column. Cambridge University Press, CambridgeGoogle Scholar
  32. Gai Z, Donoghue PCJ, Zhu M, Janvier P, Stampanoni M (2011) Fossil jawless fish from China foreshadows early jawed vertebrate anatomy. Nature 476(7360):324–327.  https://doi.org/10.1038/nature10276 CrossRefPubMedGoogle Scholar
  33. Gess RW, Coates MI, Rubidge BS (2006) A lamprey from the Devonian period of South Africa. Nature 443(7114):981–984.  https://doi.org/10.1038/nature05150 CrossRefPubMedGoogle Scholar
  34. Gilchrist J (1918) Note on eggs and embryos of the South African myxinoid, Bdellostoma (Heptatretus) hexatrema, Müll. Q J Microsc Sci s2-63:141–159Google Scholar
  35. Goodrich ES (1930) Studies on the structure and development of vertebrates. Macmillan, LondonCrossRefGoogle Scholar
  36. Gorbman A (1958) Comparative anatomy of the hypophysis and observations on the mechanism of neurosecretion. In: Endocrinology, pp 368–392Google Scholar
  37. Goulding MD, Chalepakis G, Deutsch U, Erselius JR, Gruss P (1991) Pax-3, a novel murine DNA binding protein expressed during early neurogenesis. EMBO J 10(5):1135–1147PubMedPubMedCentralGoogle Scholar
  38. Gregory WK (1930) Memorial of Bashford Dean. In: Gudger EW (ed) The Bashford Dean memorial volume archaic fishes. Order of the Trustees, New YorkGoogle Scholar
  39. Holland ND (2007) Hagfish embryos again: the end of a long drought. BioEssays 29(9):833–836CrossRefGoogle Scholar
  40. Holmgren N (1946) On two embryos of Myxine glutinosa. Acta Zool-Stockholm:1–90CrossRefGoogle Scholar
  41. Huang R, Christ B (2000) Origin of the epaxial and hypaxial myotome in avian embryos. Anat Embryol (Berl) 202(5):369–374.  https://doi.org/10.1007/s004290000130 CrossRefGoogle Scholar
  42. Janvier P (1996) Early vertebrates. Clarendon Press, OxfordGoogle Scholar
  43. Janvier P (2008) Early jawless vertebrates and cyclostome origins. Zool Sci 25(10):1045–1056.  https://doi.org/10.2108/zsj.25.1045 CrossRefPubMedGoogle Scholar
  44. Janvier P (2011) Comparative anatomy: all vertebrates do have vertebrae. Curr Biol 21(17):R661–R663.  https://doi.org/10.1016/j.cub.2011.07.014 CrossRefPubMedGoogle Scholar
  45. Janvier P (2015) Facts and fancies about early fossil chordates and vertebrates. Nature 520(7548):483–489.  https://doi.org/10.1038/nature14437 CrossRefPubMedGoogle Scholar
  46. Kalamajski S, Oldberg A (2010) The role of small leucine-rich proteoglycans in collagen fibrillogenesis. Matrix Biol 29(4):248–253. https://doi.org/10.1016/j.matbio.2010.01.001S0945-053X(10)00005-3 CrossRefPubMedGoogle Scholar
  47. Kardong K (2011) Vertebrates: comparative anatomy, function, evolution, 6th edn. McGraw-Hill, New YorkGoogle Scholar
  48. Kobayashi HIT, Suzuki H, Sekimoto M (1972) Seasonal migration of the hagfish Eptatretus burgeri. Jpn J Ichthyol 19:191–194Google Scholar
  49. Kupffer Cv (1899) Zur Kopfentwicklung von BdellostomaGoogle Scholar
  50. Kuraku S, Hoshiyama D, Katoh K, Suga H, Miyata T (1999) Monophyly of lampreys and hagfishes supported by nuclear DNA-coded genes. J Mol Evol 49(6):729–735CrossRefGoogle Scholar
  51. Kuratani S, Nobusada Y, Horigome N, Shigetani Y (2001) Embryology of the lamprey and evolution of the vertebrate jaw: insights from molecular and developmental perspectives. Philos Trans R Soc B 356(1414):1615–1632CrossRefGoogle Scholar
  52. Kuratani S, Kuraku S, Murakami Y (2002) Lamprey as an evo-devo model: lessons from comparative embryology and molecular phylogenetics. Genesis 34(3):175–183CrossRefGoogle Scholar
  53. Kuratani S, Murakami Y, Nobusada Y, Kusakabe R, Hirano S (2004) Developmental fate of the mandibular mesoderm in the lamprey, Lethenteron japonicum: comparative morphology and development of the gnathostome jaw with special reference to the nature of the trabecula cranii. J Exp Zool Part B 302(5):458–468CrossRefGoogle Scholar
  54. Kusakabe R, Kuratani S (2005) Evolution and developmental patterning of the vertebrate skeletal muscles: perspectives from the lamprey. Dev Dyn 234(4):824–834.  https://doi.org/10.1002/dvdy.20587 CrossRefPubMedGoogle Scholar
  55. Liem KF, Bemis WE, Walker WF, Kabce G (2001) Functional anatomy of the vertebrates: an evolutionary perspective. 3rd revised edition edn. Brooks Cole, BelmontGoogle Scholar
  56. Løvtrup S (1977) The phylogeny of vertebrata. Wiley, New YorkGoogle Scholar
  57. Lydon S (1985) Chinese gold: the Chinese in the Monterey Bay Region. Capitola Book Co, CapitolaGoogle Scholar
  58. Mallatt J, Holland N (2013) Pikaia gracilens Walcott: stem chordate, or already specialized in the Cambrian? J Exp Zool Part B 320(4):247–271.  https://doi.org/10.1002/jez.b.22500 CrossRefGoogle Scholar
  59. Mallatt J, Sullivan J (1998) 28S and 18S rDNA sequences support the monophyly of lampreys and hagfishes. Mol Biol Evol 15(12):1706–1718CrossRefGoogle Scholar
  60. McCauley DW, Bronner-Fraser M (2004) Conservation and divergence of BMP2/4 genes in the lamprey: expression and phylogenetic analysis suggest a single ancestral vertebrate gene. Evol Dev 6(6):411–422.  https://doi.org/10.1111/j.1525-142X.2004.04054.x CrossRefPubMedGoogle Scholar
  61. McCauley DW, Bronner-Fraser M (2006) Importance of SoxE in neural crest development and the evolution of the pharynx. Nature 441(7094):750–752.  https://doi.org/10.1038/nature04691 CrossRefPubMedGoogle Scholar
  62. Morin-Kensicki EM, Melancon E, Eisen JS (2002) Segmental relationship between somites and vertebral column in zebrafish. Development 129(16):3851–3860PubMedGoogle Scholar
  63. Müller J (1835) Veigleichende Anatomie der Myxinoiden, der Cyclostomen mit durchbohrtem Gaumen. Part 1. Osteologie und Myologie. Abhandlungen der Königlichen Akademie der Wissenschaften zu Berlin: 65–340Google Scholar
  64. Murakami Y, Ogasawara M, Sugahara F, Hirano S, Satoh N, Kuratani S (2001) Identification and expression of the lamprey Pax6 gene: evolutionary origin of the segmented brain of vertebrates. Development 128(18):3521–3531PubMedGoogle Scholar
  65. Murakami Y, Pasqualetti M, Takio Y, Hirano S, Rijli FM, Kuratani S (2004) Segmental development of reticulospinal and branchiomotor neurons in lamprey: insights into the evolution of the vertebrate hindbrain. Development 131(5):983–995.  https://doi.org/10.1242/dev.00986 CrossRefPubMedGoogle Scholar
  66. Nansen F (1887) A protandric hermmaphrodite (Myxine glutinosa, L., amongst the vertebrates. Bergens Museums Aarsbertning for 1887Google Scholar
  67. Neidert AH, Virupannavar V, Hooker GW, Langeland JA (2001) Lamprey Dlx genes and early vertebrate evolution. Proc Natl Acad Sci U S A 98(4):1665–1670.  https://doi.org/10.1073/pnas.98.4.1665 CrossRefPubMedPubMedCentralGoogle Scholar
  68. Neumayer L (1938) Die Entwichlung des Kopfskelettes von Bdellostoma. Arch Ital Anat Embriol 40:1–222Google Scholar
  69. Ogasawara M, Shigetani Y, Hirano S, Satoh N, Kuratani S (2000) Pax1/Pax9-related genes in an Agnathan vertebrate, Lampetra japonica: expression pattern of LjPax9 implies sequential evolutionary events toward the gnathostome body plan. Dev Biol 223(2):399–410.  https://doi.org/10.1006/dbio.2000.9756 CrossRefPubMedGoogle Scholar
  70. Ohtani K, Yao T, Kobayashi M, Kusakabe R, Kuratani S, Wada H (2008) Expression of Sox and fibrillar collagen genes in lamprey larval chondrogenesis with implications for the evolution of vertebrate cartilage. J Exp Zool Part B 310(7):596–607.  https://doi.org/10.1002/jez.b.21231 CrossRefGoogle Scholar
  71. Oisi Y, Ota KG, Fujimoto S, Kuratani S (2013a) Development of the chondrocranium in hagfishes, with special reference to the early evolution of vertebrates. Zool Sci 30(11):944–961.  https://doi.org/10.2108/zsj.30.944 CrossRefPubMedGoogle Scholar
  72. Oisi Y, Ota KG, Kuraku S, Fujimoto S, Kuratani S (2013b) Craniofacial development of hagfishes and the evolution of vertebrates. Nature 493(7431):175–180.  https://doi.org/10.1038/nature11794 CrossRefPubMedGoogle Scholar
  73. Oisi Y, Kakitani O, Kuratani S, Ota K (2015) Analysis of embryonic gene expression patterns in the Hagfish. In: Hauptmann G (ed) In situ hybridization methods, Neuromethods, vol 99. Springer, New York, pp 249–262.  https://doi.org/10.1007/978-1-4939-2303-8_12 CrossRefGoogle Scholar
  74. Ota KG, Kuratani S (2006) The history of scientific endeavors towards understanding hagfish embryology. Zool Sci 23(5):403–418CrossRefGoogle Scholar
  75. Ota KG, Kuratani S (2008) Developmental biology of hagfishes, with a report on newly obtained embryos of the Japanese inshore hagfish, Eptatretus burgeri. Zool Sci 25(10):999–1011.  https://doi.org/10.2108/zsj.25.999 CrossRefPubMedGoogle Scholar
  76. Ota KG, Kuraku S, Kuratani S (2007) Hagfish embryology with reference to the evolution of the neural crest. Nature 446(7136):672–675.  https://doi.org/10.1038/nature05633 CrossRefPubMedGoogle Scholar
  77. Ota KG, Fujimoto S, Oisi Y, Kuratani S (2011) Identification of vertebra-like elements and their possible differentiation from sclerotomes in the hagfish. Nat Commun 2:373.  https://doi.org/10.1038/ncomms1355 CrossRefPubMedPubMedCentralGoogle Scholar
  78. Ota KG, Fujimoto S, Oisi Y, Kuratani S (2013) Late development of hagfish vertebral elements. J Exp Zool Part B 320B(3):129–139.  https://doi.org/10.1002/jez.b.22489 CrossRefGoogle Scholar
  79. Ota KG, Oisi Y, Fujimoto S, Kuratani S (2014) The origin of developmental mechanisms underlying vertebral elements: implications from hagfish evo-devo. Zoology 117(1):77–80.  https://doi.org/10.1016/j.zool.2013.10.010 CrossRefPubMedGoogle Scholar
  80. Parker KW (1883) On the skeleton of the marsipobranch fishes. Part I. The myxinoids (Myxine, and Bdellostoma). Philos Trans R Soc Lond 174:373–409CrossRefGoogle Scholar
  81. Price G (1896a) Some points in the development of a myxinoid (Bdellostoma stouti Lockington). Anat Anz 12(Suppl):81–86Google Scholar
  82. Price G (1896b) Zur Ontogenie eines Myxinoiden (Bdellostoma stouti Lockington). Sitzungsberichte der Mathematisch-Physikalischen Classe der K.B. Akademie der Wissenschaften zu München, Bd 36. Heft 1:67–74Google Scholar
  83. Price G (1897) Development of the excretory organs of a myxioid, Bdellostoma stoutii Lockington. Zool Jahrb Abt Anat Ontogen 10:205–226Google Scholar
  84. Price G (1904) A further study of the excretory organs of a myxioid, Bdellostoma stouti. Am J Anat 4:117–138CrossRefGoogle Scholar
  85. Relaix F, Rocancourt D, Mansouri A, Buckingham M (2005) A Pax3/Pax7-dependent population of skeletal muscle progenitor cells. Nature 435(7044):948–953.  https://doi.org/10.1038/nature03594 CrossRefPubMedGoogle Scholar
  86. Schaefer L, Iozzo RV (2008) Biological functions of the small leucine-rich proteoglycans: from genetics to signal transduction. J Biol Chem 283(31):21305–21309.  https://doi.org/10.1074/jbc.R800020200 CrossRefPubMedPubMedCentralGoogle Scholar
  87. Schaffer J (1897) Bemerkungen uber die Histologie und Histogenese des Knorpels der Cyclostomen. Archiv fur mikroskopische Anatomie 50:170–188CrossRefGoogle Scholar
  88. Shu D (2003) A paleontological perspective of vertebrate origin. Chin Sci Bull 48:725–735CrossRefGoogle Scholar
  89. Shu DG, Luo HL, Conway Morris S, Zhang XL, Hu SX, Chen L, Han J, Zhu M, Li Y, Chen LZ (1999) Lower Cambrian vertebrates from South China. Nature 402(6757):42–46.  https://doi.org/10.1038/46965 CrossRefGoogle Scholar
  90. Steenstrup (1863) Oversigt. Dansk. Vidensk. Selsk. Forhandl.1863Google Scholar
  91. Stock DW, Whitt GS (1992) Evidence from 18S ribosomal RNA sequences that lampreys and hagfishes form a natural group. Science 257(5071):787–789CrossRefGoogle Scholar
  92. Stockard CR (1906a) The development of the mouth and gills in Bdellostoma stoutii. Am J Anat 5:481–517CrossRefGoogle Scholar
  93. Stockard CR (1906b) The development of the thyroid gland in Bdellostoma stoutii. Anat Anz 29:91–99Google Scholar
  94. Studnicka FK (1896) Ueber die Histologie und Histogenese des Knorpels der Cyclostomen. Arch Mikrosk Anat 48:463–606CrossRefGoogle Scholar
  95. Takechi M, Takeuchi M, Ota KG, Nishimura O, Mochii M, Itomi K, Adachi N, Takahashi M, Fujimoto S, Tarui H, Okabe M, Aizawa S, Kuratani S (2011) Overview of the transcriptome profiles identified in hagfish, shark, and bichir: current issues arising from some nonmodel vertebrate taxa. J Exp Zool B 316(7):526–546.  https://doi.org/10.1002/jez.b.21427 CrossRefGoogle Scholar
  96. Takezaki N, Figueroa F, Zaleska-Rutczynska Z, Klein J (2003) Molecular phylogeny of early vertebrates: monophyly of the agnathans as revealed by sequences of 35 genes. Mol Biol Evol 20(2):287–292.  https://doi.org/10.1093/molbev/msg040 CrossRefPubMedGoogle Scholar
  97. Tretjakoff D (1926) Die Wirbeläule des Neunauges. Anat Anz 61:387–396Google Scholar
  98. Wake BD (1992) The endoskeleton: the comparative anatomy of the vertebral column and ribs. Hyman’s comparative vertebrate anatomy, 3rd edn. University of Chicago Press, ChicagoGoogle Scholar
  99. Worthington J (1905) Contribution to our knowledge of the myxinoids. Am Nat 39:625–662CrossRefGoogle Scholar
  100. Yalden (1985) Feeding mechanisms as evidence for cyclosome monophyly. Zool J Linn Soc-Lond 84:291–300CrossRefGoogle Scholar
  101. Zhang G, Miyamoto MM, Cohn MJ (2006) Lamprey type II collagen and Sox9 reveal an ancient origin of the vertebrate collagenous skeleton. Proc Natl Acad Sci U S A 103(9):3180–3185.  https://doi.org/10.1073/pnas.0508313103 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Japan KK, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Laboratory of Aquatic Zoology, Marine Research StationInstitute of Cellular and Organismic Biology, Academia SinicaYilanTaiwan

Personalised recommendations