Advertisement

Modulation of Sperm Motility and Function Prior to Fertilization

  • Manabu Yoshida
  • Kaoru Yoshida
Chapter
Part of the Diversity and Commonality in Animals book series (DCA)

Abstract

Spermatozoa are generated in the testis but have neither motility nor fertility. They gain these abilities while approaching eggs. During this process, spermatozoa control their motility, swimming direction, and structure to approach their final destination. Previously, these modulations of sperm motility and function in the fertilization process have been investigated mainly in marine animals with external fertilization. Recently, intensive work on mammalian fertilization has partly revealed the molecular mechanisms of sperm events. In this chapter, we first introduce features of sperm events in the process of fertilization, including initiation and activation of flagellar motility, chemotaxis, capacitation, hyperactivation, and the acrosome reaction. We then discuss the molecular mechanisms of these sperm events, specifically focusing on the main characters: Ca2+, cyclic nucleotides, phosphorylation, membrane potential, pH, and lipid components.

Keywords

Sperm motility Capacitation Acrosome reaction Calcium cAMP pH Cholesterol 

Notes

Acknowledgements

The authors would like to thank Dr. Masaaki Morisawa for providing unpublished data and for helpful discussion.

Supplementary material

Movie 21.1

Motility initiation of flatfish (Pleuronectes yokohamae) sperm. The spermatozoa are suspended in an isotonic medium and stimulated by seawater (MOV 1397 kb)

References

  1. Aitken RJ (2011) The capacitation–apoptosis highway: oxysterols and mammalian sperm function. Biol Reprod 85(1):9–12.  https://doi.org/10.1095/biolreprod.111.092528 CrossRefPubMedGoogle Scholar
  2. Aitken RJ, Nixon B (2013) Sperm capacitation: a distant landscape glimpsed but unexplored. Mol Hum Reprod 19(12):785–793.  https://doi.org/10.1093/molehr/gat067 CrossRefPubMedGoogle Scholar
  3. Alasmari W, Costello S, Correia J, Oxenham SK, Morris J, Fernandes L, Ramalho-Santos J, Kirkman-Brown J, Michelangeli F, Publicover S, Barratt CL (2013) Ca2+ signals generated by CatSper and Ca2+ stores regulate different behaviors in human sperm. J Biol Chem 288(9):6248–6258.  https://doi.org/10.1074/jbc.M112.439356 CrossRefPubMedPubMedCentralGoogle Scholar
  4. Alavi SM, Cosson J (2005) Sperm motility in fishes. I. Effects of temperature and pH: a review. Cell Biol Int 29(2):101–110.  https://doi.org/10.1016/j.cellbi.2004.11.021 CrossRefPubMedGoogle Scholar
  5. Araki N, Trencsényi G, Krasznai ZT, Nizsalóczki E, Sakamoto A, Kawano N, Miyado K, Yoshida K, Yoshida M (2015) Seminal vesicle secretion 2 acts as a protectant of sperm sterols and prevents ectopic sperm capacitation in mice. Biol Reprod 92(1):8, 1–10.  https://doi.org/10.1095/biolreprod.114.120642
  6. Arnoult C, Kazam IG, Visconti PE, Kopf GS, Villaz M, Florman HM (1999) Control of the low voltage–activated calcium channel of mouse sperm by egg ZP3 and by membrane hyperpolarization during capacitation. Proc Natl Acad Sci U S A 96(12):6757–6762PubMedPubMedCentralCrossRefGoogle Scholar
  7. Austin CR (1952) The ‘capacitation’ of the mammalian sperm. Nature 170:326PubMedCrossRefGoogle Scholar
  8. Babcock DF, Bosma MM, Battaglia DE, Darszon A (1992) Early persistent activation of sperm K+ channels by the egg peptide speract. Proc Natl Acad Sci U S A 89:6001–6005PubMedPubMedCentralCrossRefGoogle Scholar
  9. Baker MA, Hetherington L, Aitken RJ (2006) Identification of SRC as a key PKA-stimulated tyrosine kinase involved in the capacitation-associated hyperactivation of murine spermatozoa. J Cell Sci 119:3182–3192PubMedCrossRefGoogle Scholar
  10. Baker MA, Hetherington L, Curry B, Aitken RJ (2009) Phosphorylation and consequent stimulation of the tyrosine kinase c-Abl by PKA in mouse spermatozoa; its implications during capacitation. Dev Biol 333(1):57–66.  https://doi.org/10.1016/j.ydbio.2009.06.022 CrossRefPubMedGoogle Scholar
  11. Barratt CL, Publicover SJ (2001) Interaction between sperm and zona pellucida in male fertility. Lancet 358(9294):1660–1662PubMedCrossRefGoogle Scholar
  12. Baxendale RW, Fraser LR (2003) Evidence for multiple distinctly localized adenylyl cyclase isoforms in mammalian spermatozoa. Mol Reprod Dev 66(2):181–189.  https://doi.org/10.1002/mrd.10344 CrossRefPubMedGoogle Scholar
  13. Bedford JM, Chang MC (1962) Removal of decapacitation factor from seminal plasma by high-speed centrifugation. Am J Phys 202:179–181Google Scholar
  14. Beltrán C, Rodríguez-Miranda E, Granados-González G, García de De la Torre L, Nishigaki T, Darszon A (2014) Zn induces hyperpolarization by activation of a K channel and increases intracellular Ca and pH in sea urchin spermatozoa. Dev Biol 394(1):15–23.  https://doi.org/10.1016/j.ydbio.2014.07.017 CrossRefPubMedPubMedCentralGoogle Scholar
  15. Bentley JK, Tubb DJ, Garbers DL (1986) Receptor-mediated activation of spermatozoan guanylate cyclase. J Biol Chem 261:14859–14862PubMedGoogle Scholar
  16. Bentley JK, Khatra AS, Garbers DL (1988) Receptor-mediated activation of detergent-solubilized guanylate cyclase. Biol Reprod 39(3):639–647PubMedCrossRefGoogle Scholar
  17. Berridge MJ (1993) Inositol trisphosphate and calcium signalling. Nature 361:315–325PubMedCrossRefGoogle Scholar
  18. Björkgren I, Gylling H, Turunen H, Huhtaniemi I, Strauss L, Poutanen M, Sipilä P (2015) Imbalanced lipid homeostasis in the conditional Dicer1 knockout mouse epididymis causes instability of the sperm membrane. FASEB J 29(2):433–442.  https://doi.org/10.1096/fj.14-259382 CrossRefPubMedGoogle Scholar
  19. Boatman DE, Robbins RS (1991) Bicarbonate: carbon-dioxide regulation of sperm capacitation, hyperactivated motility, and acrosome reactions. Biol Reprod 44(5):806–813.  https://doi.org/10.1095/biolreprod44.5.806 CrossRefPubMedGoogle Scholar
  20. Böhmer M, Van Q, Weyand I, Hagen V, Beyermann M, Matsumoto M, Hoshi M, Hildebrand E, Kaupp UB (2005) Ca2+ spikes in the flagellum control chemotactic behavior of sperm. EMBO J 24(15):2741–2752PubMedPubMedCentralCrossRefGoogle Scholar
  21. Bönigk W, Loogen A, Seifert R, Kashikar N, Klemm C, Krause E, Hagen V, Kremmer E, Strünker T, Kaupp UB (2009) An atypical CNG channel activated by a single cGMP molecule controls sperm chemotaxis. Sci Signal 2(94):ra68.  https://doi.org/10.1126/scisignal.2000516 CrossRefPubMedGoogle Scholar
  22. Brenker C, Goodwin N, Weyand I, Kashikar ND, Naruse M, Krähling M, Müller A, Kaupp UB, Strünker T (2012) The CatSper channel: a polymodal chemosensor in human sperm. EMBO J 31:1654–1665.  https://doi.org/10.1038/emboj.2012.30 CrossRefPubMedPubMedCentralGoogle Scholar
  23. Brenker C, Zhou Y, Müller A, Echeverry FA, Trötschel C, Poetsch A, Xia XM, Bönigk W, Lingle CJ, Kaupp UB, Strünker T (2014) The Ca -activated K current of human sperm is mediated by Slo3. Elife 3:e01438.  https://doi.org/10.7554/eLife.01438 CrossRefPubMedPubMedCentralGoogle Scholar
  24. Brouwers JF, Boerke A, Silva PF, Garcia-Gil N, van Gestel RA, Helms JB, van de Lest CH, Gadella BM (2011) Mass spectrometric detection of cholesterol oxidation in bovine sperm. Biol Reprod 85(1):128–136.  https://doi.org/10.1095/biolreprod.111.091207 CrossRefPubMedGoogle Scholar
  25. Buck J, Sinclair ML, Schapal L, Cann MJ, Levin LR (1999) Cytosolic adenylyl cyclase defines a unique signaling molecule in mammals. Proc Natl Acad Sci U S A 96(1):79–84PubMedPubMedCentralCrossRefGoogle Scholar
  26. Busso D, Onate-Alvarado MJ, Balboa E, Castro J, Lizama C, Morales G, Vargas S, Hartel S, Moreno RD, Zanlungo S (2014) Spermatozoa from mice deficient in Niemann–Pick disease type C2 (NPC2) protein have defective cholesterol content and reduced in vitro fertilising ability. Reprod Fertil Dev 26(4):609–621.  https://doi.org/10.1071/RD12059 CrossRefPubMedGoogle Scholar
  27. Cahalan MD (2009) STIMulating store-operated Ca2+ entry. Nat Cell Biol 11(6):669–677.  https://doi.org/10.1038/ncb0609-669 CrossRefPubMedPubMedCentralGoogle Scholar
  28. Cai X, Clapham DE (2008) Evolutionary genomics reveals lineage-specific gene loss and rapid evolution of a sperm-specific ion channel complex: CatSpers and CatSperbeta. PLoS One 3(10):e3569.  https://doi.org/10.1371/journal.pone.0003569 CrossRefPubMedPubMedCentralGoogle Scholar
  29. Carlson AE, Westenbroek RE, Quill T, Ren D, Clapham DE, Hille B, Garbers DL, Babcock DF (2003) CatSper1 required for evoked Ca2+ entry and control of flagellar function in sperm. Proc Natl Acad Sci U S A 100(25):14864–14868.  https://doi.org/10.1073/pnas.2536658100 CrossRefPubMedPubMedCentralGoogle Scholar
  30. Castellano LE, Trevino CL, Rodriguez D, Serrano CJ, Pacheco J, Tsutsumi V, Felix R, Darszon A (2003) Transient receptor potential (TRPC) channels in human sperm: expression, cellular localization and involvement in the regulation of flagellar motility. FEBS Lett 541(1-3):69–74PubMedCrossRefGoogle Scholar
  31. Chang MC (1951) Fertilizing capacity of spermatozoa deposited into the fallopian tubes. Nature 168(4277):697–698PubMedCrossRefGoogle Scholar
  32. Chang MC (1957) A detrimental effect of seminal plasma on the fertilizing capacity of sperm. Nature 179(4553):258–259PubMedCrossRefGoogle Scholar
  33. Chávez JC, Ferreira JJ, Butler A, De La Vega-Beltran JL, Trevino CL, Darszon A, Salkoff L, Santi CM (2014) SLO3 K+ channels control calcium entry through CATSPER channels in sperm. J Biol Chem 289(46):32266–32275.  https://doi.org/10.1074/jbc.M114.607556 CrossRefPubMedPubMedCentralGoogle Scholar
  34. Choi YH, Landim-Alvarenga FC, Seidel GE Jr, Squires EL (2003) Effect of capacitation of stallion sperm with polyvinylalcohol or bovine serum albumin on penetration of bovine zona-free or partially zona-removed equine oocytes. J Anim Sci 81(8):2080–2087PubMedCrossRefGoogle Scholar
  35. Chung JJ, Navarro B, Krapivinsky G, Krapivinsky L, Clapham DE (2011) A novel gene required for male fertility and functional CATSPER channel formation in spermatozoa. Nat Commun 2:153.  https://doi.org/10.1038/ncomms1153 CrossRefPubMedPubMedCentralGoogle Scholar
  36. Chung JJ, Shim SH, Everley RA, Gygi SP, Zhuang X, Clapham DE (2014) Structurally distinct Ca2+ signaling domains of sperm flagella orchestrate tyrosine phosphorylation and motility. Cell 157(4):808–822.  https://doi.org/10.1016/j.cell.2014.02.056 CrossRefPubMedPubMedCentralGoogle Scholar
  37. Clapper DL, Brown GG (1980) Sperm motility in the horseshoe crab, Limulus polyphemus L. I. Sperm behavior near eggs and motility initiation by egg extracts. Dev Biol 76(2):341–349PubMedCrossRefGoogle Scholar
  38. Clapper DL, Epel D (1982) Sperm motility in the horseshoe crab. III. Isolation and characterization of a sperm motility initiating peptide. Gamete Res 6:315–326CrossRefGoogle Scholar
  39. Cohen R, Buttke DE, Asano A, Mukai C, Nelson JL, Ren D, Miller RJ, Cohen-Kutner M, Atlas D, Travis AJ (2014) Lipid modulation of calcium flux through CaV2.3 regulates acrosome exocytosis and fertilization. Dev Cell 28(3):310–321.  https://doi.org/10.1016/j.devcel.2014.01.005 CrossRefPubMedPubMedCentralGoogle Scholar
  40. Coll JC, Bowden BF, Clayton MN (1990) Chemistry and coral reproduction. Chem Br 26:761–763Google Scholar
  41. Coll JC, Bowden BF, Meehan GV, Konig GM, Carroll AR, Tapiolas DM, Alino PM, Heaton A, De Nys R, Leone PA, Maida M, Aceret TL, Willis RH, Babcock RC, Willis BL, Florian Z, Clayton MN, Miller RL (1994) Chemical aspects of mass spawning in corals. I. Sperm-attractant molecules in the eggs of the scleractinian coral Montipora digitata. Mar Biol 118:177–182CrossRefGoogle Scholar
  42. Correia J, Michelangeli F, Publicover S (2015) Regulation and roles of Ca2+ stores in human sperm. Reproduction 150(2):R65–R76.  https://doi.org/10.1530/REP-15-0102 CrossRefPubMedPubMedCentralGoogle Scholar
  43. Costello S, Michelangeli F, Nash K, Lefievre L, Morris J, Machado-Oliveira G, Barratt C, Kirkman-Brown J, Publicover S (2009) Ca2+-stores in sperm: their identities and functions. Reproduction 138(3):425–437.  https://doi.org/10.1530/rep-09-0134 CrossRefPubMedPubMedCentralGoogle Scholar
  44. Dangott LJ, Garbers DL (1984) Identification and partial characterization of the receptor for speract. J Biol Chem 259(22):13712–13716PubMedGoogle Scholar
  45. Dangott LJ, Jordan JE, Bellet RA, Garbers DL (1989) Cloning of the mRNA for the protein that crosslinks to the egg peptide speract. Proc Natl Acad Sci U S A 86(7):2128–2132PubMedPubMedCentralCrossRefGoogle Scholar
  46. Darszon A, Nishigaki T, Wood C, Treviño CL, Felix R, Beltrán C (2005) Calcium channels and Ca fluctuations in sperm physiology. Int Rev Cytol 243:79–172PubMedCrossRefGoogle Scholar
  47. Darszon A, Guerrero A, Galindo BE, Nishigaki T, Wood CD (2008) Sperm-activating peptides in the regulation of ion fluxes, signal transduction and motility. Int J Dev Biol 52(5–6):595–606.  https://doi.org/10.1387/ijdb.072550ad CrossRefPubMedGoogle Scholar
  48. Darszon A, Sánchez-Cárdenas C, Orta G, Sánchez-Tusie AA, Beltrán C, López-González I, Granados-González G, Treviño CL (2012) Are TRP channels involved in sperm development and function? Cell Tissue Res 349(3):749–764.  https://doi.org/10.1007/s00441-012-1397-5 CrossRefPubMedGoogle Scholar
  49. Davis BK (1974) Decapacitation and recapacitation of rabbit spermatozoa treated with membrane vesicles from seminal plasma. J Reprod Fertil 41(1):241–244PubMedCrossRefGoogle Scholar
  50. Davis BK, Byrne R, Hungund B (1979) Studies on the mechanism of capacitation. II. Evidence for lipid transfer between plasma membrane of rat sperm and serum albumin during capacitation in vitro. Biochim Biophys Acta 558(3):257–266PubMedCrossRefGoogle Scholar
  51. Davis BK, Byrne R, Bedigian K (1980) Studies on the mechanism of capacitation: albumin-mediated changes in plasma membrane lipids during in vitro incubation of rat sperm cells. Proc Natl Acad Sci U S A 77(3):1546–1550PubMedPubMedCentralCrossRefGoogle Scholar
  52. De La Vega-Beltrán JL, Sánchez-Cárdenas C, Krapf D, Hernandez-González EO, Wertheimer E, Treviño CL, Visconti PE, Darszon A (2012) Mouse sperm membrane potential hyperpolarization is necessary and sufficient to prepare sperm for the acrosome reaction. J Biol Chem 287(53):44384–44393.  https://doi.org/10.1074/Jbc.M112.393488 CrossRefGoogle Scholar
  53. de Lamirande E, Gagnon C (1993) Human sperm hyperactivation and capacitation as parts of an oxidative process. Free Radic Biol Med 14(2):157–166PubMedCrossRefGoogle Scholar
  54. de Lamirande E, Lamothe G (2010) Levels of semenogelin in human spermatozoa decrease during capacitation: involvement of reactive oxygen species and zinc. Hum Reprod 25(7):1619–1630.  https://doi.org/10.1093/humrep/deq110 CrossRefPubMedGoogle Scholar
  55. de Lamirande E, Yoshida K, Yoshiike TM, Iwamoto T, Gagnon C (2001) Semenogelin, the main protein of semen coagulum, inhibits human sperm capacitation by interfering with the superoxide anion generated during this process. J Androl 22(4):672–679PubMedGoogle Scholar
  56. Dukelow WR, Chernoff HN, Williams WL (1966) Enzymatic characterization of decapacitation factor. Proc Soc Exp Biol Med 121(2):396–398PubMedCrossRefGoogle Scholar
  57. Dzyuba V, Cosson J (2014) Motility of fish spermatozoa: from external signaling to flagella response. Reprod Biol 14(3):165–175.  https://doi.org/10.1016/j.repbio.2013.12.005 CrossRefPubMedGoogle Scholar
  58. Escoffier J, Boisseau S, Serres C, Chen CC, Kim D, Stamboulian S, Shin HS, Campbell KP, De Waard M, Arnoult C (2007) Expression, localization and functions in acrosome reaction and sperm motility of Ca(V)3.1 and Ca(V)3.2 channels in sperm cells: an evaluation from CaV3.1 and CaV3.2 deficient mice. J Cell Physiol 212(3):753–763.  https://doi.org/10.1002/jcp.21075 CrossRefPubMedGoogle Scholar
  59. Florman HM (1994) Sequential focal global elevations of sperm intracellular Ca2+ are initiated by the zona pellucida during acrosomal exocytosis. Dev Biol 165:152–164PubMedCrossRefGoogle Scholar
  60. Fukami K, Nakao K, Inoue T, Kataoka Y, Kurokawa M, Fissore RA, Nakamura K, Katsuki M, Mikoshiba K, Yoshida N, Takenawa T (2001) Requirement of phospholipase Cδ4 for the zona pellucida-induced acrosome reaction. Science 292(5518):920–923PubMedCrossRefGoogle Scholar
  61. Fukami K, Yoshida M, Inoue T, Kurokawa M, Fissore RA, Yoshida N, Mikoshiba K, Takenawa T (2003) Phospholipase Cδ4 is required for Ca2+ mobilization essential for acrosome reaction in sperm. J Cell Biol 161(1):79–88PubMedPubMedCentralCrossRefGoogle Scholar
  62. Fukuda N, Yomogida K, Okabe M, Touhara K (2004) Functional characterization of a mouse testicular olfactory receptor and its role in chemosensing and in regulation of sperm motility. J Cell Sci 117(Pt 24):5835–5845PubMedCrossRefGoogle Scholar
  63. Galindo BE, de la Vega-Beltrán JL, Labarca P, Vacquier VD, Darszon A (2007) Sp-tetraKCNG: a novel cyclic nucleotide gated K channel. Biochem Biophys Res Commun 354(3):668–675.  https://doi.org/10.1016/j.bbrc.2007.01.035 CrossRefPubMedGoogle Scholar
  64. Gibbons IR, Fronk E (1972) Some properties of bound and soluble dynein from sea urchin sperm flagella. J Cell Biol 54(2):365–381PubMedPubMedCentralCrossRefGoogle Scholar
  65. Gllles R, Delpire E (2011) Variations in salinity, osmolarity, and water availability: vertebrates and invertebrates. Comprehensive physiology handbook of physiology – Comparative Physiology (Suppl 30):1523–1586.  https://doi.org/10.1002/cphy.cp130222
  66. Guerrero A, Nishigaki T, Carneiro J, Tatsu Y, Wood CD, Darszon A (2010) Tuning sperm chemotaxis by calcium burst timing. Dev Biol 344(1):52–65.  https://doi.org/10.1016/j.ydbio.2010.04.013 CrossRefPubMedGoogle Scholar
  67. Guidobaldi HA, Teves ME, Unates DR, Anastasia A, Giojalas LC (2008) Progesterone from the cumulus cells is the sperm chemoattractant secreted by the rabbit oocyte cumulus complex. PLoS One 3(8):e3040.  https://doi.org/10.1371/journal.pone.0003040 CrossRefPubMedPubMedCentralGoogle Scholar
  68. Hansbrough JR, Garbers DL (1981) Speract. Purification and characterization of a peptide associated with eggs that activates spermatozoa. J Biol Chem 256:1447–1452PubMedGoogle Scholar
  69. Hayashi H, Yamamoto K, Yonekawa H, Morisawa M (1987) Involvement of tyrosine protein kinase in the initiation of flagellar movement in rainbow trout spermatozoa. J Biol Chem 262:16692–16698PubMedGoogle Scholar
  70. Herrick SB, Schweissinger DL, Kim SW, Bayan KR, Mann S, Cardullo RA (2005) The acrosomal vesicle of mouse sperm is a calcium store. J Cell Physiol 202(3):663–671.  https://doi.org/10.1002/jcp.20172 CrossRefPubMedGoogle Scholar
  71. Hirohashi N, Alvarez L, Shiba K, Fujiwara E, Iwata Y, Mohri T, Inaba K, Chiba K, Ochi H, Supuran CT, Kotzur N, Kakiuchi Y, Kaupp UB, Baba SA (2013) Sperm from sneaker male squids exhibit chemotactic swarming to CO2. Curr Biol 23(9):775–781.  https://doi.org/10.1016/j.cub.2013.03.040 CrossRefPubMedGoogle Scholar
  72. Ho HC, Suarez SS (2001) An inositol 1,4,5-trisphosphate receptor-gated intracellular Ca2+ store is involved in regulating sperm hyperactivated motility. Biol Reprod 65(5):1606–1615PubMedCrossRefGoogle Scholar
  73. Ho HC, Suarez SS (2003) Characterization of the intracellular calcium store at the base of the sperm flagellum that regulates hyperactivated motility. Biol Reprod 68(5):1590–1596PubMedCrossRefGoogle Scholar
  74. Huang YH, Chu ST, Chen YH (1999) Seminal vesicle autoantigen, a novel phospholipid-binding protein secreted from luminal epithelium of mouse seminal vesicle, exhibits the ability to suppress mouse sperm motility. Biochem J 343:241–248PubMedPubMedCentralCrossRefGoogle Scholar
  75. Inaba K, Kagami O, Ogawa K (1999) Tctex2-related outer arm dynein light chain is phosphorylated at activation of sperm motility. Biochem Biophys Res Commun 256(1):177–183.  https://doi.org/10.1006/bbrc.1999.0309 CrossRefPubMedGoogle Scholar
  76. Iqbal M, Shivaji S, Vijayasarathy S, Balaram P (1980) Synthetic peptides as chemoattractants for bull spermatozoa structure activity correlations. Biochem Biophys Res Commun 96:235–242PubMedCrossRefGoogle Scholar
  77. Ishijima S (2011) Dynamics of flagellar force generated by a hyperactivated spermatozoon. Reproduction 142(3):409–415.  https://doi.org/10.1530/REP-10-0445 CrossRefPubMedGoogle Scholar
  78. Jin ZX, Inaba K, Manaka K, Morisawa M, Hayashi H (1994) Monoclonal antibodies against the protein complex that contains the flagellar movement-initiating phosphoprotein of Oncorhynchus keta. J Biochem 115(5):885–890PubMedCrossRefGoogle Scholar
  79. Johnson CH, Clapper DL, Winkler MM, Lee HC, Epel D (1983) A volatile inhibitor immobilizes sea urchin sperm in semen by depressing the intracellular pH. Dev Biol 98(2):493–501PubMedCrossRefGoogle Scholar
  80. Jungnickel MK, Marrero H, Birnbaumer L, Lemos JR, Florman HM (2001) Trp2 regulates entry of Ca2+ into mouse sperm triggered by egg ZP3. Nat Cell Biol 3(5):499–502PubMedCrossRefGoogle Scholar
  81. Kaupp UB, Solzin J, Hildebrand E, Brown JE, Helbig A, Hagen V, Beyermann M, Pampaloni F, Weyand I (2003) The signal flow and motor response controlling chemotaxis of sea urchin sperm. Nat Cell Biol 5(2):109–117PubMedCrossRefGoogle Scholar
  82. Kawano N, Yoshida M (2007) Semen-coagulating protein, SVS2, in mouse seminal plasma controls sperm fertility. Biol Reprod 76:353–361PubMedCrossRefGoogle Scholar
  83. Kawano N, Araki N, Yoshida K, Hibino T, Ohnami N, Makino M, Kanai S, Hasuwa H, Yoshida M, Miyado K, Umezawa A (2014) Seminal vesicle protein SVS2 is required for sperm survival in the uterus. Proc Natl Acad Sci U S A 111(11):4145–4150.  https://doi.org/10.1073/pnas.1320715111 CrossRefPubMedPubMedCentralGoogle Scholar
  84. Kirichok Y, Navarro B, Clapham DE (2006) Whole-cell patch-clamp measurements of spermatozoa reveal an alkaline-activated Ca2+ channel. Nature 439(7077):737–740PubMedCrossRefGoogle Scholar
  85. Krapf D, Arcelay E, Wertheimer EV, Sanjay A, Pilder SH, Salicioni AM, Visconti PE (2010) Inhibition of Ser/Thr phosphatases induces capacitation-associated signaling in the presence of Src kinase inhibitors. J Biol Chem 285(11):7977–7985.  https://doi.org/10.1074/jbc.M109.085845 CrossRefPubMedPubMedCentralGoogle Scholar
  86. Langlais J, Zollinger M, Plante L, Chapdelaine A, Bleau G, Roberts KD (1981) Localization of cholesteryl sulfate in human spermatozoa in support of a hypothesis for the mechanism of capacitation. Proc Natl Acad Sci U S A 78(12):7266–7270PubMedPubMedCentralCrossRefGoogle Scholar
  87. Lawson C, Goupil S, Leclerc P (2008) Increased activity of the human sperm tyrosine kinase SRC by the cAMP-dependent pathway in the presence of calcium. Biol Reprod 79(4):657–666.  https://doi.org/10.1095/biolreprod.108.070367 CrossRefPubMedGoogle Scholar
  88. Leclerc P, Kopf GS (1999) Evidence for the role of heterotrimeric guanine nucleotide-binding regulatory proteins in the regulation of the mouse sperm adenylyl cyclase by the egg’s zona pellucida. J Androl 20(1):126–134PubMedGoogle Scholar
  89. Lee HC, Garbers DL (1986) Modulation of the voltage-sensitive Na+/H+ exchange in sea urchin spermatozoa through membrane potential changes induced by the egg peptide speract. J Biol Chem 261:16026–16032PubMedGoogle Scholar
  90. Lee HC, Johnson C, Epel D (1983) Changes in internal pH associated with initiation of motility and acrosome reaction of sea urchin sperm. Dev Biol 95(1):31–45PubMedCrossRefGoogle Scholar
  91. Lefievre L, Nash K, Mansell S, Costello S, Punt E, Correia J, Morris J, Kirkman-Brown J, Wilson SM, Barratt CL, Publicover S (2012) 2-APB-potentiated channels amplify CatSper-induced Ca2+ signals in human sperm. Biochem J 448(2):189–200.  https://doi.org/10.1042/BJ20120339 CrossRefPubMedPubMedCentralGoogle Scholar
  92. Liao Y, Erxleben C, Abramowitz J, Flockerzi V, Zhu MX, Armstrong DL, Birnbaumer L (2008) Functional interactions among Orai1, TRPCs, and STIM1 suggest a STIM-regulated heteromeric Orai/TRPC model for SOCE/Icrac channels. Proc Natl Acad Sci U S A 105(8):2895–2900.  https://doi.org/10.1073/pnas.0712288105 CrossRefPubMedPubMedCentralGoogle Scholar
  93. Liao Y, Plummer NW, George MD, Abramowitz J, Zhu MX, Birnbaumer L (2009) A role for Orai in TRPC-mediated Ca2+ entry suggests that a TRPC:Orai complex may mediate store and receptor operated Ca2+ entry. Proc Natl Acad Sci U S A 106(9):3202–3206.  https://doi.org/10.1073/pnas.0813346106 CrossRefPubMedPubMedCentralGoogle Scholar
  94. Lishko PV, Botchkina IL, Fedorenko A, Kirichok Y (2010) Acid extrusion from human spermatozoa is mediated by flagellar voltage-gated proton channel. Cell 140(3):327–337.  https://doi.org/10.1016/j.cell.2009.12.053 CrossRefPubMedGoogle Scholar
  95. Lishko PV, Botchkina IL, Kirichok Y (2011) Progesterone activates the principal Ca2+ channel of human sperm. Nature 471(7338):387–391.  https://doi.org/10.1038/nature09767 CrossRefPubMedGoogle Scholar
  96. Lishko PV, Kirichok Y, Ren D, Navarro B, Chung JJ, Clapham DE (2012) The control of male fertility by spermatozoan ion channels. Annu Rev Physiol 74:453–475.  https://doi.org/10.1146/annurev-physiol-020911-153258 CrossRefPubMedGoogle Scholar
  97. Liu Y, Wang DK, Chen LM (2012) The physiology of bicarbonate transporters in mammalian reproduction. Biol Reprod 86(4):99.  https://doi.org/10.1095/biolreprod.111.096826 CrossRefPubMedGoogle Scholar
  98. Livera G, Xie F, Garcia MA, Jaiswal B, Chen J, Law E, Storm DR, Conti M (2005) Inactivation of the mouse adenylyl cyclase 3 gene disrupts male fertility and spermatozoon function. Mol Endocrinol 19(5):1277–1290.  https://doi.org/10.1210/me.2004-0318 CrossRefPubMedGoogle Scholar
  99. López-González I, Torres-Rodríguez P, Sánchez-Carranza O, Solís-López A, Santi CM, Darszon A, Treviño CL (2014) Membrane hyperpolarization during human sperm capacitation. Mol Hum Reprod 20(7):619–629.  https://doi.org/10.1093/molehr/gau029 CrossRefPubMedPubMedCentralGoogle Scholar
  100. Lu CH, Lee RK, Hwu YM, Chu SL, Chen YJ, Chang WC, Lin SP, Li SH (2011) SERPINE2, a serine protease inhibitor extensively expressed in adult male mouse reproductive tissues, may serve as a murine sperm decapacitation factor. Biol Reprod 84(3):514–525.  https://doi.org/10.1095/biolreprod.110.085100 CrossRefPubMedGoogle Scholar
  101. Marquez B, Ignotz G, Suarez SS (2007) Contributions of extracellular and intracellular Ca2+ to regulation of sperm motility: release of intracellular stores can hyperactivate CatSper1 and CatSper2 null sperm. Dev Biol 303(1):214–221.  https://doi.org/10.1016/j.ydbio.2006.11.007 CrossRefPubMedGoogle Scholar
  102. Matsumori N, Hiradate Y, Shibata H, Oishi T, Simma S, Toyoda M, Hayashi F, Yoshida M, Murata M, Morisawa M (2013) A novel sperm-activating and attracting factor from the ascidian Ascidia sydneiensis. Org Lett 15(2):294–297.  https://doi.org/10.1021/ol303172n CrossRefPubMedGoogle Scholar
  103. Matsumoto M, Solzin J, Helbig A, Hagen V, Ueno S, Kawase O, Maruyama Y, Ogiso M, Godde M, Minakata H, Kaupp UB, Hoshi M, Weyand I (2003) A sperm-activating peptide controls a cGMP-signaling pathway in starfish sperm. Dev Biol 260(2):314–324PubMedCrossRefGoogle Scholar
  104. Miller RL (1979) Sperm chemotaxis in the hydromedusae. I. Species-specificity and sperm behavior. Mar Biol 53:99–114CrossRefGoogle Scholar
  105. Miller RL (1982) Sperm chemotaxis in ascidians. Am Zool 22:827–840CrossRefGoogle Scholar
  106. Miller RL (1985) Sperm chemo-orientation in metazoa. In: Metz CB, Monroy A (eds) Biology of fertilization, vol 2. Academic, New York, pp 275–337CrossRefGoogle Scholar
  107. Miller MR, Mansell SA, Meyers SA, Lishko PV (2015) Flagellar ion channels of sperm: similarities and differences between species. Cell Calcium 58(1):105–113.  https://doi.org/10.1016/j.ceca.2014.10.009 CrossRefPubMedGoogle Scholar
  108. Mitchell LA, Nixon B, Baker MA, Aitken RJ (2008) Investigation of the role of SRC in capacitation-associated tyrosine phosphorylation of human spermatozoa. Mol Hum Reprod 14(4):235–243.  https://doi.org/10.1093/molehr/gan007 CrossRefPubMedGoogle Scholar
  109. Miyata H, Satouh Y, Mashiko D, Muto M, Nozawa K, Shiba K, Fujihara Y, Isotani A, Inaba K, Ikawa M (2015) Sperm calcineurin inhibition prevents mouse fertility with implications for male contraceptive. Science 350:442–445.  https://doi.org/10.1126/science.aad0836 CrossRefPubMedGoogle Scholar
  110. Mizuno K, Padma P, Konno A, Satouh Y, Ogawa K, Inaba K (2009) A novel neuronal calcium sensor family protein, calaxin, is a potential Ca2+-dependent regulator for the outer arm dynein of metazoan cilia and flagella. Biol Cell 101(2):91–103.  https://doi.org/10.1042/BC20080032 CrossRefPubMedGoogle Scholar
  111. Mizuno K, Shiba K, Okai M, Takahashi Y, Shitaka Y, Oiwa K, Tanokura M, Inaba K (2012) Calaxin drives sperm chemotaxis by Ca2+-mediated direct modulation of a dynein motor. Proc Natl Acad Sci U S A 109(50):20497–20502.  https://doi.org/10.1073/pnas.1217018109 CrossRefPubMedPubMedCentralGoogle Scholar
  112. Morales CR, Ni X, Smith CE, Inagaki N, Hermo L (2012) ABCA17 mediates sterol efflux from mouse spermatozoa plasma membranes. Histol Histopathol 27(3):317–328PubMedGoogle Scholar
  113. Morisawa M (1994) Cell signaling mechanisms for sperm motility. Zool Sci 11:647–662PubMedGoogle Scholar
  114. Morisawa M, Hayashi H (1985) Phosphorylation of a 15 K axonemal protein is the trigger initiation trout sperm motility. Biomed Res 6:181–184CrossRefGoogle Scholar
  115. Morisawa M, Ishida K (1987) Short-term changes in levels of cyclic AMP, adenylate cyclase, and phosphodiesterase during the initiation of sperm motility in rainbow trout. J Exp Zool 242(2):199–204.  https://doi.org/10.1002/jez.1402420211 CrossRefPubMedGoogle Scholar
  116. Morisawa M, Suzuki K (1980) Osmolality and potassium ion: their roles in initiation of sperm motility in teleosts. Science 210:1145–1147PubMedCrossRefGoogle Scholar
  117. Morisawa M, Yoshida M (2005) Activation of motility and chemotaxis in the spermatozoa: from invertebrates to humans. Reprod Med Biol 4:101–114PubMedPubMedCentralCrossRefGoogle Scholar
  118. Morita M, Takemura A, Okuno M (2004) Acclimation of sperm motility apparatus in seawater-acclimated euryhaline tilapia Oreochromis mossambicus. J Exp Biol 207(Pt 2):337–345PubMedCrossRefGoogle Scholar
  119. Navarro B, Kirichok Y, Clapham DE (2007) KSper, a pH-sensitive K+ current that controls sperm membrane potential. Proc Natl Acad Sci U S A 104(18):7688–7692.  https://doi.org/10.1073/pnas.0702018104 CrossRefPubMedPubMedCentralGoogle Scholar
  120. Nishigaki T, Chiba K, Miki W, Hoshi M (1996) Structure and function of asterosaps, sperm-activating peptides from the jelly coat of starfish eggs. Zygote 4(3):237–245PubMedCrossRefGoogle Scholar
  121. Nishigaki T, Chiba K, Hoshi M (2000) A 130-kDa membrane protein of sperm flagella is the receptor for asterosaps, sperm-activating peptides of starfish Asterias amurensis. Dev Biol 219(1):154–162PubMedCrossRefGoogle Scholar
  122. Nishigaki T, Zamudio FZ, Possani LD, Darszon A (2001) Time-resolved sperm responses to an egg peptide measured by stopped-flow fluorometry. Biochem Biophys Res Commun 284(2):531–535.  https://doi.org/10.1006/bbrc.2001.5000 CrossRefPubMedGoogle Scholar
  123. Nishigaki T, José O, González-Cota AL, Romero F, Treviño CL, Darszon A (2014) Intracellular pH in sperm physiology. Biochem Biophys Res Commun 450(3):1149–1158.  https://doi.org/10.1016/j.bbrc.2014.05.100 CrossRefPubMedPubMedCentralGoogle Scholar
  124. Nomura M, Vacquier VD (2006) Proteins associated with soluble adenylyl cyclase in sea urchin sperm flagella. Cell Motil Cytoskeleton 63(9):582–590.  https://doi.org/10.1002/cm.20147 CrossRefPubMedGoogle Scholar
  125. Nomura M, Yoshida M, Inaba K, Morisawa M (2000) Purification and identification of 26kDa axonemal phosphoprotein regulating SAAF-induced sperm activation in ascidian, Ciona intestinalis. Zool Sci (Tokyo) 17(Supplement):34Google Scholar
  126. Nomura M, Yoshida M, Morisawa M (2004) Calmodulin/calmodulin-dependent protein kinase II mediates SAAF-induced motility activation of ascidian sperm. Cell Motil Cytoskeleton 59(1):28–37PubMedCrossRefGoogle Scholar
  127. O’Brien ED, Krapf D, Cabada MO, Visconti PE, Arranz SE (2011) Transmembrane adenylyl cyclase regulates amphibian sperm motility through protein kinase A activation. Dev Biol 350(1):80–88.  https://doi.org/10.1016/j.ydbio.2010.11.019 CrossRefPubMedGoogle Scholar
  128. O’Toole CM, Arnoult C, Darszon A, Steinhardt RA, Florman HM (2000) Ca2+ entry through store-operated channels in mouse sperm is initiated by egg ZP3 and drives the acrosome reaction. Mol Biol Cell 11(5):1571–1584PubMedPubMedCentralCrossRefGoogle Scholar
  129. Oda S, Igarashi Y, Manaka K, Koibuchi N, Sakai-Sawada M, Sakai K, Morisawa M, Ohtake H, Shimizu N (1998) Sperm-activating proteins obtained from the herring eggs are homologous to trypsin inhibitors and synthesized in follicle cells. Dev Biol 204(1):55–63PubMedCrossRefGoogle Scholar
  130. Ohta K, Sato C, Matsuda T, Toriyama M, Vacquier VD, Lennarz WJ, Kitajima K (2000) Co-localization of receptor and transducer proteins in the glycosphingolipid-enriched, low density, detergent-insoluble membrane fraction of sea urchin sperm. Glycoconj J 17(3–4):205–214PubMedCrossRefGoogle Scholar
  131. Ohtake H (1976) Respiratory behaviour of sea-urchin spermatozoa. I. Effect of pH and egg water on the respiratory rate. J Exp Zool 198(3):303–311PubMedCrossRefGoogle Scholar
  132. Okamura N, Tajima Y, Soejima A, Masuda H, Sugita Y (1985) Sodium bicarbonate in seminal plasma stimulates the motility of mammalian spermatozoa through direct activation of adenylate cyclase. J Biol Chem 260(17):9699–9705PubMedGoogle Scholar
  133. Olson JH, Xiang X, Ziegert T, Kittelson A, Rawls A, Bieber AL, Chandler DE (2001) Allurin, a 21-kDa sperm chemoattractant from Xenopus egg jelly, is related to mammalian sperm-binding proteins. Proc Natl Acad Sci U S A 98(20):11205–11210PubMedPubMedCentralCrossRefGoogle Scholar
  134. Oren-Benaroya R, Orvieto R, Gakamsky A, Pinchasov M, Eisenbach M (2008) The sperm chemoattractant secreted from human cumulus cells is progesterone. Hum Reprod 23(10):2339–2345.  https://doi.org/10.1093/humrep/den265 CrossRefPubMedGoogle Scholar
  135. Patrat C, Serres C, Jouannet P (2000) The acrosome reaction in human spermatozoa. Biol Cell 92(3–4):255–266PubMedCrossRefGoogle Scholar
  136. Pillai MC, Shields TS, Yanagimachi R, Cherr GN (1993) Isolation and partial characterization of the sperm motility initiation factor from eggs of the Pacific herring, Clupea pallasii. J Exp Zool 265:336–342CrossRefGoogle Scholar
  137. Prakriya M, Feske S, Gwack Y, Srikanth S, Rao A, Hogan PG (2006) Orai1 is an essential pore subunit of the CRAC channel. Nature 443(7108):230–233.  https://doi.org/10.1038/nature05122 CrossRefPubMedGoogle Scholar
  138. Publicover S, Harper CV, Barratt C (2007) [Ca2+]i signalling in sperm—making the most of what you’ve got. Nat Cell Biol 9(3):235–242PubMedCrossRefGoogle Scholar
  139. Putney JW Jr, Broad LM, Braun F-J, Lievremont J-P, Bird GSJ (2001) Mechanisms of capacitative calcium entry. J Cell Sci 114:2223–2229PubMedGoogle Scholar
  140. Qi H, Moran MM, Navarro B, Chong JA, Krapivinsky G, Krapivinsky L, Kirichok Y, Ramsey IS, Quill TA, Clapham DE (2007) All four CatSper ion channel proteins are required for male fertility and sperm cell hyperactivated motility. Proc Natl Acad Sci U S A 104(4):1219–1223.  https://doi.org/10.1073/pnas.0610286104 CrossRefPubMedPubMedCentralGoogle Scholar
  141. Quill TA, Ren D, Clapham DE, Garbers DL (2001) A voltage-gated ion channel expressed specifically in spermatozoa. Proc Natl Acad Sci U S A 98(22):12527–12531PubMedPubMedCentralCrossRefGoogle Scholar
  142. Ralt D, Goldenberg M, Fetterolf P, Thompson D, Dor J, Mashiach S, Garbers DL, Eisenbach M (1991) Sperm attraction to a follicular factor(s) correlates with human egg fertilizability. Proc Natl Acad Sci U S A 88:2840–2844PubMedPubMedCentralCrossRefGoogle Scholar
  143. Ramsey IS, Moran MM, Chong JA, Clapham DE (2006) A voltage-gated proton-selective channel lacking the pore domain. Nature 440(7088):1213–1216.  https://doi.org/10.1038/nature04700 CrossRefPubMedPubMedCentralGoogle Scholar
  144. Ren D, Navarro B, Perez G, Jackson AC, Hsu S, Shi Q, Tilly JL, Clapham DE (2001) A sperm ion channel required for sperm motility and male fertility. Nature 413(6856):603–609PubMedCrossRefGoogle Scholar
  145. Reyes A, Oliphant G, Brackett BG (1975) Partial purification and identification of a reversible decapacitation factor from rabbit seminal plasma. Fertil Steril 26(2):148–157PubMedCrossRefGoogle Scholar
  146. Riffell JA, Krug PJ, Zimmer RK (2002) Fertilization in the sea: the chemical identity of an abalone sperm attractant. J Exp Biol 205(Pt 10):1439–1450PubMedGoogle Scholar
  147. Robert M, Gagnon C (1999) Semenogelin I: a coagulum forming, multifunctional seminal vesicle protein. Cell Mol Life Sci 55(6–7):944–960PubMedCrossRefGoogle Scholar
  148. Roldan ER, Murase T, Shi QX (1994) Exocytosis in spermatozoa in response to progesterone and zona pellucida. Science 266(5190):1578–1581PubMedCrossRefGoogle Scholar
  149. Rossato M, Di Virgilio F, Rizzuto R, Galeazzi C, Foresta C (2001) Intracellular calcium store depletion and acrosome reaction in human spermatozoa: role of calcium and plasma membrane potential. Mol Hum Reprod 7:119–128PubMedCrossRefGoogle Scholar
  150. Santi CM, Martínez-López P, de la Vega-Beltrán JL, Butler A, Alisio A, Darszon A, Salkoff L (2010) The SLO3 sperm-specific potassium channel plays a vital role in male fertility. FEBS Lett 584(5):1041–1046.  https://doi.org/10.1016/j.febslet.2010.02.005 CrossRefPubMedPubMedCentralGoogle Scholar
  151. Sasaki M, Takagi M, Okamura Y (2006) A voltage sensor-domain protein is a voltage-gated proton channel. Science 312(5773):589–592.  https://doi.org/10.1126/science.1122352 CrossRefPubMedGoogle Scholar
  152. Seifert R, Flick M, Bönigk W, Alvarez L, Trötschel C, Poetsch A, Müller A, Goodwin N, Pelzer P, Kashikar ND, Kremmer E, Jikeli J, Timmermann B, Kuhl H, Fridman D, Windler F, Kaupp UB, Strünker T (2015) The CatSper channel controls chemosensation in sea urchin sperm. EMBO J 34(3):379–392.  https://doi.org/10.15252/embj.201489376 CrossRefPubMedGoogle Scholar
  153. Shadan S, James PS, Howes EA, Jones R (2004) Cholesterol efflux alters lipid raft stability and distribution during capacitation of boar spermatozoa. Biol Reprod 71(1):253–265PubMedCrossRefGoogle Scholar
  154. Shiba K, Inaba K (2014) Distinct roles of soluble and transmembrane adenylyl cyclases in the regulation of flagellar motility in Ciona sperm. Int J Mol Sci 15(8):13192–13208.  https://doi.org/10.3390/ijms150813192 CrossRefPubMedPubMedCentralGoogle Scholar
  155. Shimomura H, Dangott LJ, Garbers DL (1986) Covalent coupling of a resact analogue to guanylate cyclase. J Biol Chem 261(33):15778–15782PubMedGoogle Scholar
  156. Signorelli J, Diaz ES, Morales P (2012) Kinases, phosphatases and proteases during sperm capacitation. Cell Tissue Res 349(3):765–782.  https://doi.org/10.1007/s00441-012-1370-3 CrossRefPubMedGoogle Scholar
  157. Singh S, Lowe DG, Thorpe DS, Rodriguez H, Kuang W-J, Dangott LJ, Chinkers M, Goeddel DV, Garbers DL (1988) Membrane guanylate cyclase is a cell-surface receptor with homology to protein kinases. Nature 334:708–712PubMedCrossRefGoogle Scholar
  158. Sion B, Grizard G, Boucher D (2001) Quantitative analysis of desmosterol, cholesterol and cholesterol sulfate in semen by high-performance liquid chromatography. J Chromatogr A 935(1-2):259–265PubMedCrossRefGoogle Scholar
  159. Spehr M, Gisselmann G, Poplawski A, Riffell JA, Wetzel CH, Zimmer RK, Hatt H (2003) Identification of a testicular odorant receptor mediating human sperm chemotaxis. Science 299(5615):2054–2058PubMedCrossRefGoogle Scholar
  160. Spehr M, Schwane K, Riffell JA, Barbour J, Zimmer RK, Neuhaus EM, Hatt H (2004) Particulate adenylate cyclase plays a key role in human sperm olfactory receptor-mediated chemotaxis. J Biol Chem 279(38):40194–40203PubMedCrossRefGoogle Scholar
  161. Stamboulian S, Kim D, Shin HS, Ronjat M, De Waard M, Arnoult C (2004) Biophysical and pharmacological characterization of spermatogenic T-type calcium current in mice lacking the CaV3.1 (α1G) calcium channel: CaV3.2 (α1H) is the main functional calcium channel in wild-type spermatogenic cells. J Cell Physiol 200(1):116–124.  https://doi.org/10.1002/jcp.10480 CrossRefPubMedGoogle Scholar
  162. Stival C, La Spina FA, Baro Graf C, Arcelay E, Arranz SE, Ferreira JJ, Le Grand S, Dzikunu VA, Santi CM, Visconti PE, Buffone MG, Krapf D (2015) Src kinase is the connecting player between protein kinase A (PKA) activation and hyperpolarization through SLO3 potassium channel regulation in mouse sperm. J Biol Chem 290(30):18855–18864.  https://doi.org/10.1074/jbc.M115.640326 CrossRefPubMedPubMedCentralGoogle Scholar
  163. Strünker T, Weyand I, Bonigk W, Van Q, Loogen A, Brown JE, Kashikar N, Hagen V, Krause E, Kaupp UB (2006) A K -selective cGMP-gated ion channel controls chemosensation of sperm. Nat Cell Biol 8(10):1149–1154PubMedCrossRefGoogle Scholar
  164. Strünker T, Goodwin N, Brenker C, Kashikar ND, Weyand I, Seifert R, Kaupp UB (2011) The CatSper channel mediates progesterone-induced Ca2+ influx in human sperm. Nature 471(7338):382–386.  https://doi.org/10.1038/nature09769 CrossRefPubMedGoogle Scholar
  165. Suarez SS (2008) Control of hyperactivation in sperm. Hum Reprod Update 14(6):647–657.  https://doi.org/10.1093/humupd/dmn029 CrossRefPubMedGoogle Scholar
  166. Suzuki N (1990) Structure and function of sea urchin egg jelly molecules. Zool Sci 7:355–370Google Scholar
  167. Takeo T, Hoshii T, Kondo Y, Toyodome H, Arima H, Yamamura K, Irie T, Nakagata N (2008) Methyl-beta-cyclodextrin improves fertilizing ability of C57BL/6 mouse sperm after freezing and thawing by facilitating cholesterol efflux from the cells. Biol Reprod 78(3):546–551.  https://doi.org/10.1095/biolreprod.107.065359 CrossRefPubMedGoogle Scholar
  168. Tall AR, Yvan-Charvet L, Terasaka N, Pagler T, Wang N (2008) HDL, ABC transporters, and cholesterol efflux: implications for the treatment of atherosclerosis. Cell Metab 7(5):365–375.  https://doi.org/10.1016/j.cmet.2008.03.001 CrossRefPubMedGoogle Scholar
  169. Tash JH, Means AR (1983) Cyclic adenosine 3′,5′ monophosphate, calcium and protein phosphorylation in flagellar motility. Biol Reprod 28(1):75–104PubMedCrossRefGoogle Scholar
  170. Tash JS, Krinks M, Patel J, Means RL, Klee CB, Means AR (1988) Identification, characterization, and functional correlation of calmodulin-dependent protein phosphatase in sperm. J Cell Biol 106:1625–1633PubMedCrossRefGoogle Scholar
  171. Teves ME, Barbano F, Guidobaldi HA, Sanchez R, Miska W, Giojalas LC (2006) Progesterone at the picomolar range is a chemoattractant for mammalian spermatozoa. Fertil Steril 86(3):745–749.  https://doi.org/10.1016/j.fertnstert.2006.02.080 CrossRefPubMedGoogle Scholar
  172. Teves ME, Guidobaldi HA, Unates DR, Sanchez R, Miska W, Publicover SJ, Morales Garcia AA, Giojalas LC (2009) Molecular mechanism for human sperm chemotaxis mediated by progesterone. PLoS One 4(12):e8211.  https://doi.org/10.1371/journal.pone.0008211 CrossRefPubMedPubMedCentralGoogle Scholar
  173. Tresguerres M, Levin LR, Buck J (2011) Intracellular cAMP signaling by soluble adenylyl cyclase. Kidney Int 79(12):1277–1288.  https://doi.org/10.1038/ki.2011.95 CrossRefPubMedPubMedCentralGoogle Scholar
  174. Treviño CL, Serrano CJ, Beltran C, Felix R, Darszon A (2001) Identification of mouse trp homologs and lipid rafts from spermatogenic cells and sperm. FEBS Lett 509(1):119–125PubMedCrossRefGoogle Scholar
  175. Tseng HC, Lee RK, Hwu YM, CH L, Lin MH, Li SH (2013) Mechanisms underlying the inhibition of murine sperm capacitation by the seminal protein, SPINKL. J Cell Biochem 114(4):888–898.  https://doi.org/10.1002/jcb.24428 CrossRefPubMedGoogle Scholar
  176. Villanueva-Diaz C, Arias-Martinez J, Bermejo-Martinez L, Vadillo-Ortega F (1995) Progesterone induces human sperm chemotaxis. Fertil Steril 64:1183–1188PubMedCrossRefGoogle Scholar
  177. Visconti PE, Moore GD, Bailey JL, Leclerc P, Connors SA, Pan D, Olds-Clarke P, Kopf GS (1995) Capacitation of mouse spermatozoa. II. Protein tyrosine phosphorylation and capacitation are regulated by a cAMP-dependent pathway. Development 121:1139–1150PubMedGoogle Scholar
  178. Visconti PE, Krapf D, de la Vega-Beltran JL, Acevedo JJ, Darszon A (2011) Ion channels, phosphorylation and mammalian sperm capacitation. Asian J Androl 13(3):395–405.  https://doi.org/10.1038/aja.2010.69 CrossRefPubMedPubMedCentralGoogle Scholar
  179. Walensky LD, Snyder SH (1995) Inositol 1,4,5-trisphosphate receptors selectively localized to the acrosomes of mammalian sperm. J Cell Biol 130:857–869PubMedCrossRefGoogle Scholar
  180. Wang D, King SM, Quill TA, Doolittle LK, Garbers DL (2003) A new sperm-specific Na+/H+ exchanger required for sperm motility and fertility. Nat Cell Biol 5(12):1117–1122.  https://doi.org/10.1038/ncb1072 CrossRefPubMedGoogle Scholar
  181. Wang D, Hu J, Bobulescu IA, Quill TA, McLeroy P, Moe OW, Garbers DL (2007) A sperm-specific Na+/H+ exchanger (sNHE) is critical for expression and in vivo bicarbonate regulation of the soluble adenylyl cyclase (sAC). Proc Natl Acad Sci U S A 104(22):9325–9330.  https://doi.org/10.1073/pnas.0611296104 CrossRefPubMedPubMedCentralGoogle Scholar
  182. Ward GE, Brokaw CJ, Garbers DL, Vacquier VD (1985) Chemotaxis of Arbacia punctulata spermatozoa to resact, a peptide from the egg jelly layer. J Cell Biol 101:2324–2329PubMedCrossRefGoogle Scholar
  183. Watanabe T, Kubo H, Takeshima S, Nakagawa M, Ohta M, Kamimura S, Takayama-Watanabe E, Watanabe A, Onitake K (2010) Identification of the sperm motility–initiating substance in the newt, Cynops pyrrhogaster, and its possible relationship with the acrosome reaction during internal fertilization. Int J Dev Biol 54(4):591–597.  https://doi.org/10.1387/ijdb.092894tw CrossRefPubMedGoogle Scholar
  184. Wertheimer E, Krapf D, de la Vega-Beltran JL, Sanchez-Cardenas C, Navarrete F, Haddad D, Escoffier J, Salicioni AM, Levin LR, Buck J, Mager J, Darszon A, Visconti PE (2013) Compartmentalization of distinct cAMP signaling pathways in mammalian sperm. J Biol Chem 288(49):35307–35320.  https://doi.org/10.1074/jbc.M113.489476 CrossRefPubMedPubMedCentralGoogle Scholar
  185. White DR, Aitken RJ (1989) Relationship between calcium, cyclic AMP, ATP, and intracellular pH and the capacity of hamster spermatozoa to express hyperactivated motility. Gamete Res 22(2):163–177.  https://doi.org/10.1002/mrd.1120220205 CrossRefPubMedGoogle Scholar
  186. Wistrom CA, Meizel S (1993) Evidence suggesting involvement of a unique human sperm steroid receptor/Cl channel complex in the progesterone-initiated acrosome reaction. Dev Biol 159(2):679–690PubMedCrossRefGoogle Scholar
  187. Yanagimachi R (1994) Mammalian fertilization. In: Knobil E, Neill JD (eds) The physiology of reproduction, 2nd edn. Raven Press, New York, pp 189–317Google Scholar
  188. Yeromin AV, Zhang SL, Jiang W, Yu Y, Safrina O, Cahalan MD (2006) Molecular identification of the CRAC channel by altered ion selectivity in a mutant of Orai. Nature 443(7108):226–229.  https://doi.org/10.1038/nature05108 CrossRefPubMedPubMedCentralGoogle Scholar
  189. Yoshida M, Yoshida K (2011) Sperm chemotaxis and regulation of flagellar movement by Ca2+. Mol Hum Reprod 17(8):457–465.  https://doi.org/10.1093/molehr/gar041 CrossRefPubMedGoogle Scholar
  190. Yoshida M, Inaba K, Ishida K, Morisawa M (1994) Calcium and cyclic AMP mediate sperm activation, but Ca2+ alone contributes sperm chemotaxis in the ascidian, Ciona savignyi. Develop Growth Differ 36:589–595.  https://doi.org/10.1111/j.1440-169X.1994.00589.x CrossRefGoogle Scholar
  191. Yoshida M, Murata M, Inaba K, Morisawa M (2002) A chemoattractant for ascidian spermatozoa is a sulfated steroid. Proc Natl Acad Sci U S A 99(23):14831–14836PubMedPubMedCentralCrossRefGoogle Scholar
  192. Yoshida M, Ishikawa M, Izumi H, De Santis R, Morisawa M (2003) Store-operated calcium channel regulates the chemotactic behavior of ascidian sperm. Proc Natl Acad Sci U S A 100(1):149–154PubMedCrossRefGoogle Scholar
  193. Yoshida M, Hiradate Y, Sensui N, Cosson J, Morisawa M (2013) Species-specificity of sperm motility activation and chemotaxis: a study on ascidian species. Biol Bull 224(3):156–165PubMedCrossRefGoogle Scholar
  194. Zamir N, Riven-Kreitman R, Manor M, Makler A, Blumberg S, Ralt D, Eisenbach M (1993) Atrial natriuretic peptide attracts human spermatozoa in vitro. Biochem Biophys Res Commun 197:116–122PubMedCrossRefGoogle Scholar
  195. Zatylny C, Marvin L, Gagnon J, Henry J (2002) Fertilization in Sepia officinalis: the first mollusk sperm-attracting peptide. Biochem Biophys Res Commun 296(5):1186–1193PubMedCrossRefGoogle Scholar
  196. Zeng Y, Clark EN, Florman HM (1995) Sperm membrane potential: hyperpolarization during capacitation regulates zona pellucida-dependent acrosomal secretion. Dev Biol 171:554–563PubMedCrossRefGoogle Scholar
  197. Zeng XH, Yang C, Kim ST, Lingle CJ, Xia XM (2011) Deletion of the Slo3 gene abolishes alkalization-activated K+ current in mouse spermatozoa. Proc Natl Acad Sci U S A 108(14):5879–5884.  https://doi.org/10.1073/pnas.1100240108 CrossRefPubMedPubMedCentralGoogle Scholar
  198. Zeng XH, Navarro B, Xia XM, Clapham DE, Lingle CJ (2013) Simultaneous knockout of Slo3 and CatSper1 abolishes all alkalization- and voltage-activated current in mouse spermatozoa. J Gen Physiol 142(3):305–313.  https://doi.org/10.1085/jgp.201311011 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Japan KK, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Misaki Marine Biological Station, School of ScienceUniversity of TokyoMiuraJapan
  2. 2.Biomedical Engineering CenterToin University of YokohamaYokohamaJapan

Personalised recommendations