Advertisement

Sex Determination and Differentiation in Mammals

  • Kento Miura
  • Ayako Tomita
  • Yoshiakira Kanai
Chapter
Part of the Diversity and Commonality in Animals book series (DCA)

Abstract

In most mammals, sex determination is initiated by transient expression of Sry, Sex-determining region Y gene, encoding an HMG-box transcription factor in bipotential gonadal supporting cells. In XY mouse gonads, SRY activates SOX9, another SRY-related HMG-box factor, during a critical time window (i.e. embryonic days 11.0–11.5) in male supporting cells. The maintenance of high-level SOX9 expression consequently induces Sertoli cell differentiation, leading to testis formation during the early organogenic stages. In XX gonads without Sry expression, bipotential supporting cells express FOXL2, a forkhead transcription factor, shortly after this time window, resulting in pre-granulosa cell differentiation and its subsequent contribution to ovarian folliculogenesis after birth. At later fetal stages, after cessation of SRY expression, the balance between masclinizing FGF9 and feminizing WNT4 signals affects the maintenance of high-level SOX9 expression in the supporting cells. During the perinatal and postnatal stages, each sex of the supporting cells is maintained by the balance between the masclinizing actions of SOX9 and DMRT1 and the feminizing actions of FOXL2, estrogen, and retinoic acid. In this chapter, we review recent knowledge regarding the SRY-dependent sex determination system during the critical time window and discuss the antagonistic interaction between testicular and ovarian factors during the late fetal, perinatal, and postnatal periods in mice.

Keywords

SRY SOX9 AMH Bipotential supporting cells Critical time window FGF9 TESCO Retinoic acid Sex reversal Mouse 

References

  1. Albrecht KH, Eicher EM (2001) Evidence that Sry is expressed in pre-Sertoli cells and Sertoli and granulosa cells have a common precursor. Dev Biol 240(1):92–107.  https://doi.org/10.1006/dbio.2001.0438 CrossRefPubMedGoogle Scholar
  2. Anderson EL, Baltus AE, Roepers-Gajadien HL, Hassold TJ, de Rooij DG, van Pelt AM, Page DC (2008) Stra8 and its inducer, retinoic acid, regulate meiotic initiation in both spermatogenesis and oogenesis in mice. Proc Natl Acad Sci U S A 105(39):14976–14980.  https://doi.org/10.1073/pnas.0807297105 CrossRefPubMedPubMedCentralGoogle Scholar
  3. Baba T, Otake H, Sato T, Miyabayashi K, Shishido Y, Wang CY, Shima Y, Kimura H, Yagi M, Ishihara Y, Hino S, Ogawa H, Nakao M, Yamazaki T, Kang D, Ohkawa Y, Suyama M, Chung BC, Morohashi K (2014) Glycolytic genes are targets of the nuclear receptor Ad4BP/SF-1. Nat Commun 5:3634.  https://doi.org/10.1038/ncomms4634 CrossRefPubMedGoogle Scholar
  4. Bagheri-Fam S, Sim H, Bernard P, Jayakody I, Taketo MM, Scherer G, Harley VR (2008) Loss of Fgfr2 leads to partial XY sex reversal. Dev Biol 314(1):71–83.  https://doi.org/10.1016/j.ydbio.2007.11.010 CrossRefPubMedGoogle Scholar
  5. Barrionuevo F, Georg I, Scherthan H, Lecureuil C, Guillou F, Wegner M, Scherer G (2009) Testis cord differentiation after the sex determination stage is independent of Sox9 but fails in the combined absence of Sox9 and Sox8. Dev Biol 327(2):301–312.  https://doi.org/10.1016/j.ydbio.2008.12.011 CrossRefPubMedGoogle Scholar
  6. Barrios F, Filipponi D, Pellegrini M, Paronetto MP, Di Siena S, Geremia R, Rossi P, De Felici M, Jannini EA, Dolci S (2010) Opposing effects of retinoic acid and FGF9 on Nanos2 expression and meiotic entry of mouse germ cells. J Cell Sci 123(Pt 6):871–880.  https://doi.org/10.1242/jcs.057968 CrossRefPubMedGoogle Scholar
  7. Barsoum IB, Bingham NC, Parker KL, Jorgensen JS, Yao HH (2009) Activation of the hedgehog pathway in the mouse fetal ovary leads to ectopic appearance of fetal Leydig cells and female pseudohermaphroditism. Dev Biol 329(1):96–103.  https://doi.org/10.1016/j.ydbio.2009.02.025 CrossRefPubMedPubMedCentralGoogle Scholar
  8. Bernard P, Ryan J, Sim H, Czech DP, Sinclair AH, Koopman P, Harley VR (2012) Wnt signaling in ovarian development inhibits Sf1 activation of Sox9 via the Tesco enhancer. Endocrinology 153(2):901–912.  https://doi.org/10.1210/en.2011-1347 CrossRefPubMedGoogle Scholar
  9. Birk OS, Casiano DE, Wassif CA, Cogliati T, Zhao L, Zhao Y, Grinberg A, Huang S, Kreidberg JA, Parker KL, Porter FD, Westphal H (2000) The LIM homeobox gene Lhx9 is essential for mouse gonad formation. Nature 403(6772):909–913.  https://doi.org/10.1038/35002622 CrossRefPubMedGoogle Scholar
  10. Bitgood MJ, Shen L, McMahon AP (1996) Sertoli cell signaling by desert hedgehog regulates the male germline. Curr Biol 6(3):298–304CrossRefPubMedGoogle Scholar
  11. Boulanger L, Pannetier M, Gall L, Allais-Bonnet A, Elzaiat M, Le Bourhis D, Daniel N, Richard C, Cotinot C, Ghyselinck NB, Pailhoux E (2014) FOXL2 is a female sex-determining gene in the goat. Curr Biol 24(4):404–408.  https://doi.org/10.1016/j.cub.2013.12.039 CrossRefPubMedGoogle Scholar
  12. Bowles J, Knight D, Smith C, Wilhelm D, Richman J, Mamiya S, Yashiro K, Chawengsaksophak K, Wilson MJ, Rossant J, Hamada H, Koopman P (2006) Retinoid signaling determines germ cell fate in mice. Science 312(5773):596–600.  https://doi.org/10.1126/science.1125691 CrossRefPubMedGoogle Scholar
  13. Bowles J, Feng CW, Spiller C, Davidson TL, Jackson A, Koopman P (2010) FGF9 suppresses meiosis and promotes male germ cell fate in mice. Dev Cell 19(3):440–449.  https://doi.org/10.1016/j.devcel.2010.08.010 CrossRefPubMedGoogle Scholar
  14. Bradford ST, Hiramatsu R, Maddugoda MP, Bernard P, Chaboissier MC, Sinclair A, Schedl A, Harley V, Kanai Y, Koopman P, Wilhelm D (2009) The cerebellin 4 precursor gene is a direct target of SRY and SOX9 in mice. Biol Reprod 80(6):1178–1188.  https://doi.org/10.1095/biolreprod.108.071480 CrossRefPubMedPubMedCentralGoogle Scholar
  15. Bullejos M, Koopman P (2001) Spatially dynamic expression of Sry in mouse genital ridges. Dev Dyn 221(2):201–205.  https://doi.org/10.1002/dvdy.1134 CrossRefPubMedGoogle Scholar
  16. Brennan J, Tilmann C, Capel B (2003) Pdgfr-alpha mediates testis cord organization and fetal Leydig cell development in the XY gonad. Genes Dev 17(6):800–810.  https://doi.org/10.1101/gad.1052503 CrossRefPubMedPubMedCentralGoogle Scholar
  17. Buganim Y, Itskovich E, YC H, Cheng AW, Ganz K, Sarkar S, Fu D, Welstead GG, Page DC, Jaenisch R (2012) Direct reprogramming of fibroblasts into embryonic Sertoli-like cells by defined factors. Cell Stem Cell 11(3):373–386.  https://doi.org/10.1016/j.stem.2012.07.019 CrossRefPubMedPubMedCentralGoogle Scholar
  18. Carre GA, Greenfield A (2014) Characterising novel pathways in testis determination using mouse genetics. Sex Dev 8(5):199–207.  https://doi.org/10.1159/000358402 CrossRefPubMedGoogle Scholar
  19. Chassot AA, Bradford ST, Auguste A, Gregoire EP, Pailhoux E, de Rooij DG, Schedl A, Chaboissier MC (2012) WNT4 and RSPO1 together are required for cell proliferation in the early mouse gonad. Development 139(23):4461–4472.  https://doi.org/10.1242/dev.078972 CrossRefPubMedGoogle Scholar
  20. Chassot AA, Gillot I, Chaboissier MC (2014) R-spondin1, WNT4, and the CTNNB1 signaling pathway: strict control over ovarian differentiation. Reproduction 148(6):R97–110.  https://doi.org/10.1530/REP-14-0177 CrossRefPubMedGoogle Scholar
  21. Colvin JS, Green RP, Schmahl J, Capel B, Ornitz DM (2001) Male-to-female sex reversal in mice lacking fibroblast growth factor 9. Cell 104(6):875–889.  https://doi.org/10.1016/S0092-8674(01)00284-7 CrossRefPubMedGoogle Scholar
  22. Couse JF, Hewitt SC, Bunch DO, Sar M, Walker VR, Davis BJ, Korach KS (1999) Postnatal sex reversal of the ovaries in mice lacking estrogen receptors alpha and beta. Science 286(5448):2328–2331CrossRefPubMedGoogle Scholar
  23. DeFalco T, Takahashi S, Capel B (2011) Two distinct origins for Leydig cell progenitors in the fetal testis. Dev Biol 352(1):14–26.  https://doi.org/10.1016/j.ydbio.2011.01.011 CrossRefPubMedPubMedCentralGoogle Scholar
  24. Defalco T, Saraswathula A, Briot A, Iruela-Arispe ML, Capel B (2013) Testosterone levels influence mouse fetal Leydig cell progenitors through notch signaling. Biol Reprod 88(4):91.  https://doi.org/10.1095/biolreprod.112.106138 CrossRefPubMedPubMedCentralGoogle Scholar
  25. DiNapoli L, Batchvarov J, Capel B (2006) FGF9 promotes survival of germ cells in the fetal testis. Development 133(8):1519–1527.  https://doi.org/10.1242/dev.02303 CrossRefPubMedGoogle Scholar
  26. DiTacchio L, Bowles J, Shin S, Lim DS, Koopman P, Janknecht R (2012) Transcription factors ER71/ETV2 and SOX9 participate in a positive feedback loop in fetal and adult mouse testis. J Biol Chem 287(28):23657–23666.  https://doi.org/10.1074/jbc.M111.320101 CrossRefPubMedPubMedCentralGoogle Scholar
  27. Dokshin GA, Baltus AE, Eppig JJ, Page DC (2013) Oocyte differentiation is genetically dissociable from meiosis in mice. Nat Genet 45(8):877–883.  https://doi.org/10.1038/ng.2672 CrossRefPubMedPubMedCentralGoogle Scholar
  28. Dupont S, Dennefeld C, Krust A, Chambon P, Mark M (2003) Expression of Sox9 in granulosa cells lacking the estrogen receptors, ERalpha and ERbeta. Dev Dyn 226(1):103–106.  https://doi.org/10.1002/dvdy.10202 CrossRefPubMedGoogle Scholar
  29. Elvin JA, Yan C, Wang P, Nishimori K, Matzuk MM (1999) Molecular characterization of the follicle defects in the growth differentiation factor 9-deficient ovary. Mol Endocrinol 13(6):1018–1034.  https://doi.org/10.1210/mend.13.6.0309 CrossRefPubMedGoogle Scholar
  30. Endo T, Romer KA, Anderson EL, Baltus AE, de Rooij DG, Page DC (2015) Periodic retinoic acid-STRA8 signaling intersects with periodic germ-cell competencies to regulate spermatogenesis. Proc Natl Acad Sci U S A 112(18):E2347–E2356.  https://doi.org/10.1073/pnas.1505683112 CrossRefPubMedPubMedCentralGoogle Scholar
  31. Feng CW, Bowles J, Koopman P (2014) Control of mammalian germ cell entry into meiosis. Mol Cell Endocrinol 382(1):488–497.  https://doi.org/10.1016/j.mce.2013.09.026 CrossRefPubMedGoogle Scholar
  32. Fujimoto Y, Tanaka SS, Yamaguchi YL, Kobayashi H, Kuroki S, Tachibana M, Shinomura M, Kanai Y, Morohashi K, Kawakami K, Nishinakamura R (2013) Homeoproteins Six1 and Six4 regulate male sex determination and mouse gonadal development. Dev Cell 26(4):416–430.  https://doi.org/10.1016/j.devcel.2013.06.018 CrossRefPubMedGoogle Scholar
  33. Garcia TX, DeFalco T, Capel B, Hofmann MC (2013) Constitutive activation of NOTCH1 signaling in Sertoli cells causes gonocyte exit from quiescence. Dev Biol 377(1):188–201.  https://doi.org/10.1016/j.ydbio.2013.01.031 CrossRefPubMedPubMedCentralGoogle Scholar
  34. Garcia-Ortiz JE, Pelosi E, Omari S, Nedorezov T, Piao Y, Karmazin J, Uda M, Cao A, Cole SW, Forabosco A, Schlessinger D, Ottolenghi C (2009) Foxl2 functions in sex determination and histogenesis throughout mouse ovary development. BMC Dev Biol 9:36.  https://doi.org/10.1186/1471-213X-9-36 CrossRefPubMedPubMedCentralGoogle Scholar
  35. Georg I, Barrionuevo F, Wiech T, Scherer G (2012) Sox9 and Sox8 are required for basal lamina integrity of testis cords and for suppression of FOXL2 during embryonic testis development in mice. Biol Reprod 87(4):99.  https://doi.org/10.1095/biolreprod.112.101907 CrossRefPubMedGoogle Scholar
  36. Gierl MS, Gruhn WH, von Seggern A, Maltry N, Niehrs C (2012) GADD45G functions in male sex determination by promoting p38 signaling and Sry expression. Dev Cell 23(5):1032–1042.  https://doi.org/10.1016/j.devcel.2012.09.014 CrossRefPubMedGoogle Scholar
  37. Hammes A, Guo JK, Lutsch G, Leheste JR, Landrock D, Ziegler U, Gubler MC, Schedl A (2001) Two splice variants of the Wilms’ tumor 1 gene have distinct functions during sex determination and nephron formation. Cell 106(3):319–329CrossRefGoogle Scholar
  38. Hara K, Kanai-Azuma M, Uemura M, Shitara H, Taya C, Yonekawa H, Kawakami H, Tsunekawa N, Kurohmaru M, Kanai Y (2009) Evidence for crucial role of hindgut expansion in directing proper migration of primordial germ cells in mouse early embryogenesis. Dev Biol 330(2):427–439.  https://doi.org/10.1016/j.ydbio.2009.04.012 CrossRefPubMedGoogle Scholar
  39. Harikae K, Miura K, Kanai Y (2013a) Early gonadogenesis in mammals: significance of long and narrow gonadal structure. Dev Dyn 242(4):330–338.  https://doi.org/10.1002/dvdy.23872 CrossRefPubMedGoogle Scholar
  40. Harikae K, Miura K, Shinomura M, Matoba S, Hiramatsu R, Tsunekawa N, Kanai-Azuma M, Kurohmaru M, Morohashi K, Kanai Y (2013b) Heterogeneity in sexual bipotentiality and plasticity of granulosa cells in developing mouse ovaries. J Cell Sci 126(Pt 13):2834–2844.  https://doi.org/10.1242/jcs.122663 CrossRefPubMedGoogle Scholar
  41. Hiramatsu R, Matoba S, Kanai-Azuma M, Tsunekawa N, Katoh-Fukui Y, Kurohmaru M, Morohashi K, Wilhelm D, Koopman P, Kanai Y (2009) A critical time window of Sry action in gonadal sex determination in mice. Development 136(1):129–138.  https://doi.org/10.1242/dev.029587 CrossRefPubMedGoogle Scholar
  42. Hiramatsu R, Harikae K, Tsunekawa N, Kurohmaru M, Matsuo I, Kanai Y (2010) FGF signaling directs a center-to-pole expansion of tubulogenesis in mouse testis differentiation. Development 137(2):303–312.  https://doi.org/10.1242/dev.040519 CrossRefPubMedGoogle Scholar
  43. Hogarth CA, Griswold MD (2013) Retinoic acid regulation of male meiosis. Curr Opin Endocrinol Diabetes Obes 20(3):217–223.  https://doi.org/10.1097/MED.0b013e32836067cf CrossRefPubMedGoogle Scholar
  44. Hu YC, Okumura LM, Page DC (2013) Gata4 is required for formation of the genital ridge in mice. PLoS Genet 9(7):e1003629.  https://doi.org/10.1371/journal.pgen.1003629 CrossRefPubMedPubMedCentralGoogle Scholar
  45. Jameson SA, Lin YT, Capel B (2012) Testis development requires the repression of Wnt4 by Fgf signaling. Dev Biol 370(1):24–32.  https://doi.org/10.1016/j.ydbio.2012.06.009 CrossRefPubMedPubMedCentralGoogle Scholar
  46. Jeays-Ward K, Dandonneau M, Swain A (2004) Wnt4 is required for proper male as well as female sexual development. Dev Biol 276(2):431–440.  https://doi.org/10.1016/j.ydbio.2004.08.049 CrossRefPubMedGoogle Scholar
  47. Kanai Y, Hiramatsu R, Matoba S, Kidokoro T (2005) From SRY to SOX9: mammalian testis differentiation. J Biochem 138(1):13–19.  https://doi.org/10.1093/jb/mvi098 CrossRefPubMedGoogle Scholar
  48. Karl J, Capel B (1998) Sertoli cells of the mouse testis originate from the coelomic epithelium. Dev Biol 203(2):323–333.  https://doi.org/10.1006/dbio.1998.9068 CrossRefPubMedGoogle Scholar
  49. Kashimada K, Koopman P (2010) Sry: the master switch in mammalian sex determination. Development 137(23):3921–3930.  https://doi.org/10.1242/dev.048983 CrossRefPubMedGoogle Scholar
  50. Kashimada K, Svingen T, Feng CW, Pelosi E, Bagheri-Fam S, Harley VR, Schlessinger D, Bowles J, Koopman P (2011) Antagonistic regulation of Cyp26b1 by transcription factors SOX9/SF1 and FOXL2 during gonadal development in mice. FASEB J 25(10):3561–3569.  https://doi.org/10.1096/fj.11-184333 CrossRefPubMedPubMedCentralGoogle Scholar
  51. Katoh-Fukui Y, Miyabayashi K, Komatsu T, Owaki A, Baba T, Shima Y, Kidokoro T, Kanai Y, Schedl A, Wilhelm D, Koopman P, Okuno Y, Morohashi K (2012) Cbx2, a polycomb group gene, is required for Sry gene expression in mice. Endocrinology 153(2):913–924.  https://doi.org/10.1210/en.2011-1055 CrossRefPubMedGoogle Scholar
  52. Kidokoro T, Matoba S, Hiramatsu R, Fujisawa M, Kanai-Azuma M, Taya C, Kurohmaru M, Kawakami H, Hayashi Y, Kanai Y, Yonekawa H (2005) Influence on spatiotemporal patterns of a male-specific Sox9 activation by ectopic Sry expression during early phases of testis differentiation in mice. Dev Biol 278(2):511–525.  https://doi.org/10.1016/j.ydbio.2004.11.006 CrossRefPubMedGoogle Scholar
  53. Kim Y, Kobayashi A, Sekido R, DiNapoli L, Brennan J, Chaboissier MC, Poulat F, Behringer RR, Lovell-Badge R, Capel B (2006) Fgf9 and Wnt4 act as antagonistic signals to regulate mammalian sex determination. PLoS Biol 4(6):e187.  https://doi.org/10.1371/journal.pbio.0040187 CrossRefPubMedPubMedCentralGoogle Scholar
  54. Koubova J, Menke DB, Zhou Q, Capel B, Griswold MD, Page DC (2006) Retinoic acid regulates sex-specific timing of meiotic initiation in mice. Proc Natl Acad Sci U S A 103(8):2474–2479.  https://doi.org/10.1073/pnas.0510813103 CrossRefPubMedPubMedCentralGoogle Scholar
  55. Kuroki S, Matoba S, Akiyoshi M, Matsumura Y, Miyachi H, Mise N, Abe K, Ogura A, Wilhelm D, Koopman P, Nozaki M, Kanai Y, Shinkai Y, Tachibana M (2013) Epigenetic regulation of mouse sex determination by the histone demethylase Jmjd1a. Science 341(6150):1106–1109.  https://doi.org/10.1126/science.1239864 CrossRefPubMedGoogle Scholar
  56. Kusaka M, Katoh-Fukui Y, Ogawa H, Miyabayashi K, Baba T, Shima Y, Sugiyama N, Sugimoto Y, Okuno Y, Kodama R, Iizuka-Kogo A, Senda T, Sasaoka T, Kitamura K, Aizawa S, Morohashi K (2010) Abnormal epithelial cell polarity and ectopic epidermal growth factor receptor (EGFR) expression induced in Emx2 KO embryonic gonads. Endocrinology 151(12):5893–5904.  https://doi.org/10.1210/en.2010-0915 CrossRefPubMedGoogle Scholar
  57. Larney C, Bailey TL, Koopman P (2014) Switching on sex: transcriptional regulation of the testis-determining gene Sry. Development 141(11):2195–2205.  https://doi.org/10.1242/dev.107052 CrossRefPubMedPubMedCentralGoogle Scholar
  58. Larney C, Bailey TL, Koopman P (2015) Conservation analysis of sequences flanking the testis-determining gene Sry in 17 mammalian species. BMC Dev Biol 15:34.  https://doi.org/10.1186/s12861-015-0085-6 CrossRefPubMedPubMedCentralGoogle Scholar
  59. Lavery R, Chassot AA, Pauper E, Gregoire EP, Klopfenstein M, de Rooij DG, Mark M, Schedl A, Ghyselinck NB, Chaboissier MC (2012) Testicular differentiation occurs in absence of R-spondin1 and Sox9 in mouse sex reversals. PLoS Genet 8(12):e1003170.  https://doi.org/10.1371/journal.pgen.1003170 CrossRefPubMedPubMedCentralGoogle Scholar
  60. Li Y, Zheng M, Lau YF (2014) The sex-determining factors SRY and SOX9 regulate similar target genes and promote testis cord formation during testicular differentiation. Cell Rep 8(3):723–733.  https://doi.org/10.1016/j.celrep.2014.06.055 CrossRefPubMedGoogle Scholar
  61. Lindeman RE, Gearhart MD, Minkina A, Krentz AD, Bardwell VJ, Zarkower D (2015) Sexual cell-fate reprogramming in the ovary by DMRT1. Curr Biol 25(6):764–771.  https://doi.org/10.1016/j.cub.2015.01.034 CrossRefPubMedPubMedCentralGoogle Scholar
  62. Liu C, Peng J, Matzuk MM, Yao HH (2015) Lineage specification of ovarian theca cells requires multicellular interactions via oocyte and granulosa cells. Nat Commun 6:6934.  https://doi.org/10.1038/ncomms7934 CrossRefPubMedPubMedCentralGoogle Scholar
  63. Ludbrook LM, Bernard P, Bagheri-Fam S, Ryan J, Sekido R, Wilhelm D, Lovell-Badge R, Harley VR (2012) Excess DAX1 leads to XY ovotesticular disorder of sex development (DSD) in mice by inhibiting steroidogenic factor-1 (SF1) activation of the testis enhancer of SRY-box-9 (Sox9). Endocrinology 153(4):1948–1958.  https://doi.org/10.1210/en.2011-1428 CrossRefPubMedGoogle Scholar
  64. Luo X, Ikeda Y, Parker KL (1994) A cell-specific nuclear receptor is essential for adrenal and gonadal development and sexual differentiation. Cell 77(4):481–490CrossRefGoogle Scholar
  65. Maatouk DM, DiNapoli L, Alvers A, Parker KL, Taketo MM, Capel B (2008) Stabilization of beta-catenin in XY gonads causes male-to-female sex-reversal. Hum Mol Genet 17(19):2949–2955.  https://doi.org/10.1093/hmg/ddn193 CrossRefPubMedPubMedCentralGoogle Scholar
  66. Maatouk DM, Mork L, Chassot AA, Chaboissier MC, Capel B (2013) Disruption of mitotic arrest precedes precocious differentiation and transdifferentiation of pregranulosa cells in the perinatal Wnt4 mutant ovary. Dev Biol 383(2):295–306.  https://doi.org/10.1016/j.ydbio.2013.08.026 CrossRefPubMedPubMedCentralGoogle Scholar
  67. Malki S, Nef S, Notarnicola C, Thevenet L, Gasca S, Mejean C, Berta P, Poulat F, Boizet-Bonhoure B (2005) Prostaglandin D2 induces nuclear import of the sex-determining factor SOX9 via its cAMP-PKA phosphorylation. EMBO J 24(10):1798–1809.  https://doi.org/10.1038/sj.emboj.7600660 CrossRefPubMedPubMedCentralGoogle Scholar
  68. Matoba S, Hiramatsu R, Kanai-Azuma M, Tsunekawa N, Harikae K, Kawakami H, Kurohmaru M, Kanai Y (2008) Establishment of testis-specific SOX9 activation requires high-glucose metabolism in mouse sex differentiation. Dev Biol 324(1):76–87.  https://doi.org/10.1016/j.ydbio.2008.09.004 CrossRefPubMedGoogle Scholar
  69. Matson CK, Murphy MW, Sarver AL, Griswold MD, Bardwell VJ, Zarkower D (2011) DMRT1 prevents female reprogramming in the postnatal mammalian testis. Nature 476(7358):101–104.  https://doi.org/10.1038/nature10239 CrossRefPubMedPubMedCentralGoogle Scholar
  70. Mead TJ, Wang Q, Bhattaram P, Dy P, Afelik S, Jensen J, Lefebvre V (2013) A far-upstream (−70 kb) enhancer mediates Sox9 auto-regulation in somatic tissues during development and adult regeneration. Nucleic Acids Res 41(8):4459–4469.  https://doi.org/10.1093/nar/gkt140 CrossRefPubMedPubMedCentralGoogle Scholar
  71. Menke DB, Page DC (2002) Sexually dimorphic gene expression in the developing mouse gonad. Gene Expr Patterns 2(3-4):359–367CrossRefPubMedGoogle Scholar
  72. Miles DC, Wakeling SI, Stringer JM, van den Bergen JA, Wilhelm D, Sinclair AH, Western PS (2013) Signaling through the TGF beta-activin receptors ALK4/5/7 regulates testis formation and male germ cell development. PLoS One 8(1):e54606.  https://doi.org/10.1371/journal.pone.0054606 CrossRefPubMedPubMedCentralGoogle Scholar
  73. Minkina A, Matson CK, Lindeman RE, Ghyselinck NB, Bardwell VJ, Zarkower D (2014) DMRT1 protects male gonadal cells from retinoid-dependent sexual transdifferentiation. Dev Cell 29(5):511–520.  https://doi.org/10.1016/j.devcel.2014.04.017 CrossRefPubMedPubMedCentralGoogle Scholar
  74. Miyabayashi K, Katoh-Fukui Y, Ogawa H, Baba T, Shima Y, Sugiyama N, Kitamura K, Morohashi K (2013) Aristaless related homeobox gene, Arx, is implicated in mouse fetal Leydig cell differentiation possibly through expressing in the progenitor cells. PLoS One 8(6):e68050.  https://doi.org/10.1371/journal.pone.0068050 CrossRefPubMedPubMedCentralGoogle Scholar
  75. Miyabayashi K, Tokunaga K, Otake H, Baba T, Shima Y, Morohashi K (2015) Heterogeneity of ovarian theca and interstitial gland cells in mice. PLoS One 10(6):e0128352.  https://doi.org/10.1371/journal.pone.0128352 CrossRefPubMedPubMedCentralGoogle Scholar
  76. Moniot B, Ujjan S, Champagne J, Hirai H, Aritake K, Nagata K, Dubois E, Nidelet S, Nakamura M, Urade Y, Poulat F, Boizet-Bonhoure B (2014) Prostaglandin D2 acts through the Dp2 receptor to influence male germ cell differentiation in the foetal mouse testis. Development 141(18):3561–3571.  https://doi.org/10.1242/dev.103408 CrossRefPubMedGoogle Scholar
  77. Morgan CT, Noble D, Kimble J (2013) Mitosis-meiosis and sperm-oocyte fate decisions are separable regulatory events. Proc Natl Acad Sci U S A 110(9):3411–3416.  https://doi.org/10.1073/pnas.1300928110 CrossRefPubMedPubMedCentralGoogle Scholar
  78. Mork L, Maatouk DM, McMahon JA, Guo JJ, Zhang P, McMahon AP, Capel B (2012) Temporal differences in granulosa cell specification in the ovary reflect distinct follicle fates in mice. Biol Reprod 86(2):37.  https://doi.org/10.1095/biolreprod.111.095208 CrossRefPubMedGoogle Scholar
  79. Morohashi K, Baba T, Tanaka M (2013) Steroid hormones and the development of reproductive organs. Sex Dev 7(1–3):61–79.  https://doi.org/10.1159/000342272 CrossRefPubMedGoogle Scholar
  80. Nicol B, Yao HH (2014) Building an ovary: insights into establishment of somatic cell lineages in the mouse. Sex Dev 8(5):243–251.  https://doi.org/10.1159/000358072 CrossRefPubMedGoogle Scholar
  81. Nicol B, Yao HH (2015) Gonadal identity in the absence of pro-testis factor SOX9 and pro-ovary factor beta-catenin in mice. Biol Reprod. (in press).  https://doi.org/10.1095/biolreprod.115.131276
  82. Nishimura T, Sato T, Yamamoto Y, Watakabe I, Ohkawa Y, Suyama M, Kobayashi S, Tanaka M (2015) Sex determination. foxl3 is a germ cell-intrinsic factor involved in sperm-egg fate decision in medaka. Science 349(6245):328–331.  https://doi.org/10.1126/science.aaa2657 CrossRefPubMedPubMedCentralGoogle Scholar
  83. Nishino K, Hattori N, Tanaka S, Shiota K (2004) DNA methylation-mediated control of Sry gene expression in mouse gonadal development. J Biol Chem 279(21):22306–22313.  https://doi.org/10.1074/jbc.M309513200 CrossRefPubMedGoogle Scholar
  84. Nishino K, Hattori N, Sato S, Arai Y, Tanaka S, Nagy A, Shiota K (2011) Non-CpG methylation occurs in the regulatory region of the Sry gene. J Reprod Dev 57(5):586–593CrossRefPubMedGoogle Scholar
  85. Ottolenghi C, Pelosi E, Tran J, Colombino M, Douglass E, Nedorezov T, Cao A, Forabosco A, Schlessinger D (2007) Loss of Wnt4 and Foxl2 leads to female-to-male sex reversal extending to germ cells. Hum Mol Genet 16(23):2795–2804.  https://doi.org/10.1093/hmg/ddm235 CrossRefPubMedGoogle Scholar
  86. Padua MB, Fox SC, Jiang T, Morse DA, Tevosian SG (2014) Simultaneous gene deletion of gata4 and gata6 leads to early disruption of follicular development and germ cell loss in the murine ovary. Biol Reprod 91(1):24.  https://doi.org/10.1095/biolreprod.113.117002 CrossRefPubMedPubMedCentralGoogle Scholar
  87. Padua MB, Jiang T, Morse DA, Fox SC, Hatch HM, Tevosian SG (2015) Combined loss of the GATA4 and GATA6 transcription factors in male mice disrupts testicular development and confers adrenal-like function in the testes. Endocrinology 156(5):1873–1886.  https://doi.org/10.1210/en.2014-1907 CrossRefPubMedPubMedCentralGoogle Scholar
  88. Pannetier M, Fabre S, Batista F, Kocer A, Renault L, Jolivet G, Mandon-Pepin B, Cotinot C, Veitia R, Pailhoux E (2006) FOXL2 activates P450 aromatase gene transcription: towards a better characterization of the early steps of mammalian ovarian development. J Mol Endocrinol 36(3):399–413.  https://doi.org/10.1677/jme.1.01947 CrossRefPubMedGoogle Scholar
  89. Pitetti JL, Calvel P, Romero Y, Conne B, Truong V, Papaioannou MD, Schaad O, Docquier M, Herrera PL, Wilhelm D, Nef S (2013) Insulin and IGF1 receptors are essential for XX and XY gonadal differentiation and adrenal development in mice. PLoS Genet 9(1):e1003160.  https://doi.org/10.1371/journal.pgen.1003160 CrossRefPubMedPubMedCentralGoogle Scholar
  90. Polanco JC, Wilhelm D, Davidson TL, Knight D, Koopman P (2010) Sox10 gain-of-function causes XX sex reversal in mice: implications for human 22q-linked disorders of sex development. Hum Mol Genet 19(3):506–516.  https://doi.org/10.1093/hmg/ddp520 CrossRefPubMedGoogle Scholar
  91. Quinn A, Kashimada K, Davidson TL, Ng ET, Chawengsaksophak K, Bowles J, Koopman P (2014) A site-specific, single-copy transgenesis strategy to identify 5′ regulatory sequences of the mouse testis-determining gene Sry. PLoS One 9(4):e94813.  https://doi.org/10.1371/journal.pone.0094813 CrossRefPubMedPubMedCentralGoogle Scholar
  92. Rastetter RH, Bernard P, Palmer JS, Chassot AA, Chen H, Western PS, Ramsay RG, Chaboissier MC, Wilhelm D (2014) Marker genes identify three somatic cell types in the fetal mouse ovary. Dev Biol 394(2):242–252.  https://doi.org/10.1016/j.ydbio.2014.08.013 CrossRefPubMedGoogle Scholar
  93. Rastetter RH, Smith CA, Wilhelm D (2015) The role of non-coding RNA in male sex determination and differentiation. Reproduction.  https://doi.org/10.1530/REP-15-0106
  94. Raymond CS, Kettlewell JR, Hirsch B, Bardwell VJ, Zarkower D (1999) Expression of Dmrt1 in the genital ridge of mouse and chicken embryos suggests a role in vertebrate sexual development. Dev Biol 215(2):208–220.  https://doi.org/10.1006/dbio.1999.9461 CrossRefPubMedPubMedCentralGoogle Scholar
  95. Raymond CS, Murphy MW, O’Sullivan MG, Bardwell VJ, Zarkower D (2000) Dmrt1, a gene related to worm and fly sexual regulators, is required for mammalian testis differentiation. Genes Dev 14(20):2587–2595CrossRefPubMedPubMedCentralGoogle Scholar
  96. Real FM, Sekido R, Lupianez DG, Lovell-Badge R, Jimenez R, Burgos M (2013) A microRNA (mmu-miR-124) prevents Sox9 expression in developing mouse ovarian cells. Biol Reprod 89(4):78.  https://doi.org/10.1095/biolreprod.113.110957 CrossRefPubMedGoogle Scholar
  97. Saba R, Kato Y, Saga Y (2014) NANOS2 promotes male germ cell development independent of meiosis suppression. Dev Biol 385(1):32–40.  https://doi.org/10.1016/j.ydbio.2013.10.018 CrossRefPubMedGoogle Scholar
  98. Sada A, Suzuki A, Suzuki H, Saga Y (2009) The RNA-binding protein NANOS2 is required to maintain murine spermatogonial stem cells. Science 325(5946):1394–1398.  https://doi.org/10.1126/science.1172645 CrossRefPubMedGoogle Scholar
  99. Saga Y (2010) Function of Nanos2 in the male germ cell lineage in mice. Cell Mol Life Sci 67(22):3815–3822.  https://doi.org/10.1007/s00018-010-0456-x CrossRefPubMedGoogle Scholar
  100. Schepers G, Wilson M, Wilhelm D, Koopman P (2003) SOX8 is expressed during testis differentiation in mice and synergizes with SF1 to activate the Amh promoter in vitro. J Biol Chem 278(30):28101–28108.  https://doi.org/10.1074/jbc.M304067200 CrossRefPubMedGoogle Scholar
  101. Schmahl J, Kim Y, Colvin JS, Ornitz DM, Capel B (2004) Fgf9 induces proliferation and nuclear localization of FGFR2 in Sertoli precursors during male sex determination. Development 131(15):3627–3636.  https://doi.org/10.1242/dev.01239 CrossRefPubMedGoogle Scholar
  102. Schmahl J, Rizzolo K, Soriano P (2008) The PDGF signaling pathway controls multiple steroid-producing lineages. Genes Dev 22(23):3255–3267.  https://doi.org/10.1101/gad.1723908 CrossRefPubMedPubMedCentralGoogle Scholar
  103. Sekido R, Lovell-Badge R (2008) Sex determination involves synergistic action of SRY and SF1 on a specific Sox9 enhancer. Nature 453(7197):930–934.  https://doi.org/10.1038/nature06944 CrossRefPubMedPubMedCentralGoogle Scholar
  104. Sekido R, Bar I, Narvaez V, Penny G, Lovell-Badge R (2004) SOX9 is up-regulated by the transient expression of SRY specifically in Sertoli cell precursors. Dev Biol 274(2):271–279.  https://doi.org/10.1016/j.ydbio.2004.07.011 CrossRefPubMedGoogle Scholar
  105. Shima Y, Miyabayashi K, Haraguchi S, Arakawa T, Otake H, Baba T, Matsuzaki S, Shishido Y, Akiyama H, Tachibana T, Tsutsui K, Morohashi K (2013) Contribution of Leydig and Sertoli cells to testosterone production in mouse fetal testes. Mol Endocrinol 27(1):63–73.  https://doi.org/10.1210/me.2012-1256 CrossRefPubMedGoogle Scholar
  106. Shinomura M, Kishi K, Tomita A, Kawasumi M, Kanezashi H, Kuroda Y, Tsunekawa N, Ozawa A, Aiyama Y, Yoneda A, Suzuki H, Saito M, Picard JY, Kohno K, Kurohmaru M, Kanai-Azuma M, Kanai Y (2014) A novel Amh-Treck transgenic mouse line allows toxin-dependent loss of supporting cells in gonads. Reproduction 148(6):H1–H9.  https://doi.org/10.1530/REP-14-0171 CrossRefPubMedGoogle Scholar
  107. Siggers P, Carre GA, Bogani D, Warr N, Wells S, Hilton H, Esapa C, Hajihosseini MK, Greenfield A (2014) A novel mouse Fgfr2 mutant, hobbyhorse (hob), exhibits complete XY gonadal sex reversal. PLoS One 9(6):e100447.  https://doi.org/10.1371/journal.pone.0100447 CrossRefPubMedPubMedCentralGoogle Scholar
  108. Sim H, Argentaro A, Czech DP, Bagheri-Fam S, Sinclair AH, Koopman P, Boizet-Bonhoure B, Poulat F, Harley VR (2011) Inhibition of SRY-calmodulin complex formation induces ectopic expression of ovarian cell markers in developing XY gonads. Endocrinology 152(7):2883–2893.  https://doi.org/10.1210/en.2010-1475 CrossRefPubMedGoogle Scholar
  109. Spiller CM, Feng CW, Jackson A, Gillis AJ, Rolland AD, Looijenga LH, Koopman P, Bowles J (2012) Endogenous Nodal signaling regulates germ cell potency during mammalian testis development. Development 139(22):4123–4132.  https://doi.org/10.1242/dev.083006 CrossRefPubMedGoogle Scholar
  110. Suzuki A, Saga Y (2008) Nanos2 suppresses meiosis and promotes male germ cell differentiation. Genes Dev 22(4):430–435.  https://doi.org/10.1101/gad.1612708 CrossRefPubMedPubMedCentralGoogle Scholar
  111. Suzuki A, Igarashi K, Aisaki K, Kanno J, Saga Y (2010) NANOS2 interacts with the CCR4-NOT deadenylation complex and leads to suppression of specific RNAs. Proc Natl Acad Sci U S A 107(8):3594–3599.  https://doi.org/10.1073/pnas.0908664107 CrossRefPubMedPubMedCentralGoogle Scholar
  112. Suzuki H, Kanai-Azuma M, Kanai Y (2015) From sex determination to initial folliculogenesis in mammalian ovaries: morphogenetic waves along the anteroposterior and dorsoventral axes. Sex Dev.  https://doi.org/10.1159/000440689
  113. Takasawa K, Kashimada K, Pelosi E, Takagi M, Morio T, Asahara H, Schlessinger D, Mizutani S, Koopman P (2014) FOXL2 transcriptionally represses Sf1 expression by antagonizing WT1 during ovarian development in mice. FASEB J 28(5):2020–2028.  https://doi.org/10.1096/fj.13-246108 CrossRefPubMedPubMedCentralGoogle Scholar
  114. Tang H, Brennan J, Karl J, Hamada Y, Raetzman L, Capel B (2008) Notch signaling maintains Leydig progenitor cells in the mouse testis. Development 135(22):3745–3753.  https://doi.org/10.1242/dev.024786 CrossRefPubMedPubMedCentralGoogle Scholar
  115. Tevosian SG (2014) Transgenic mouse models in the study of reproduction: insights into GATA protein function. Reproduction 148(1):R1–R14.  https://doi.org/10.1530/REP-14-0086 CrossRefPubMedGoogle Scholar
  116. Tevosian SG, Albrecht KH, Crispino JD, Fujiwara Y, Eicher EM, Orkin SH (2002) Gonadal differentiation, sex determination and normal Sry expression in mice require direct interaction between transcription partners GATA4 and FOG2. Development 129(19):4627–4634PubMedGoogle Scholar
  117. Uda M, Ottolenghi C, Crisponi L, Garcia JE, Deiana M, Kimber W, Forabosco A, Cao A, Schlessinger D, Pilia G (2004) Foxl2 disruption causes mouse ovarian failure by pervasive blockage of follicle development. Hum Mol Genet 13(11):1171–1181.  https://doi.org/10.1093/hmg/ddh124 CrossRefPubMedGoogle Scholar
  118. Uhlenhaut NH, Jakob S, Anlag K, Eisenberger T, Sekido R, Kress J, Treier AC, Klugmann C, Klasen C, Holter NI, Riethmacher D, Schutz G, Cooney AJ, Lovell-Badge R, Treier M (2009) Somatic sex reprogramming of adult ovaries to testes by FOXL2 ablation. Cell 139(6):1130–1142.  https://doi.org/10.1016/j.cell.2009.11.021 CrossRefPubMedGoogle Scholar
  119. Val P, Jeays-Ward K, Swain A (2006) Identification of a novel population of adrenal-like cells in the mammalian testis. Dev Biol 299(1):250–256.  https://doi.org/10.1016/j.ydbio.2006.07.030 CrossRefPubMedGoogle Scholar
  120. Wainwright EN, Jorgensen JS, Kim Y, Truong V, Bagheri-Fam S, Davidson T, Svingen T, Fernandez-Valverde SL, McClelland KS, Taft RJ, Harley VR, Koopman P, Wilhelm D (2013) SOX9 regulates microRNA miR-202-5p/3p expression during mouse testis differentiation. Biol Reprod 89(2):34.  https://doi.org/10.1095/biolreprod.113.110155 CrossRefPubMedGoogle Scholar
  121. Wainwright EN, Svingen T, Ng ET, Wicking C, Koopman P (2014) Primary cilia function regulates the length of the embryonic trunk axis and urogenital field in mice. Dev Biol 395(2):342–354.  https://doi.org/10.1016/j.ydbio.2014.08.037 CrossRefPubMedGoogle Scholar
  122. Wang DS, Kobayashi T, Zhou LY, Paul-Prasanth B, Ijiri S, Sakai F, Okubo K, Morohashi K, Nagahama Y (2007) Foxl2 up-regulates aromatase gene transcription in a female-specific manner by binding to the promoter as well as interacting with ad4 binding protein/steroidogenic factor 1. Mol Endocrinol 21(3):712–725.  https://doi.org/10.1210/me.2006-0248 CrossRefPubMedPubMedCentralGoogle Scholar
  123. Warr N, Carre GA, Siggers P, Faleato JV, Brixey R, Pope M, Bogani D, Childers M, Wells S, Scudamore CL, Tedesco M, del Barco Barrantes I, Nebreda AR, Trainor PA, Greenfield A (2012) Gadd45gamma and map 3k4 interactions regulate mouse testis determination via p38 MAPK-mediated control of Sry expression. Dev Cell 23(5):1020–1031.  https://doi.org/10.1016/j.devcel.2012.09.016 CrossRefPubMedPubMedCentralGoogle Scholar
  124. Wilhelm D, Martinson F, Bradford S, Wilson MJ, Combes AN, Beverdam A, Bowles J, Mizusaki H, Koopman P (2005) Sertoli cell differentiation is induced both cell-autonomously and through prostaglandin signaling during mammalian sex determination. Dev Biol 287(1):111–124.  https://doi.org/10.1016/j.ydbio.2005.08.039 CrossRefPubMedGoogle Scholar
  125. Wilhelm D, Hiramatsu R, Mizusaki H, Widjaja L, Combes AN, Kanai Y, Koopman P (2007) SOX9 regulates prostaglandin D synthase gene transcription in vivo to ensure testis development. J Biol Chem 282(14):10553–10560.  https://doi.org/10.1074/jbc.M609578200 CrossRefPubMedGoogle Scholar
  126. Wu Q, Kanata K, Saba R, Deng CX, Hamada H, Saga Y (2013) Nodal/activin signaling promotes male germ cell fate and suppresses female programming in somatic cells. Development 140(2):291–300.  https://doi.org/10.1242/dev.087882 CrossRefPubMedPubMedCentralGoogle Scholar
  127. Wu Q, Fukuda K, Weinstein M, Graff JM, Saga Y (2015) SMAD2 and p38 signaling pathways act in concert to determine XY primordial germ cell fate in mice. Development 142(3):575–586.  https://doi.org/10.1242/dev.119446 CrossRefPubMedGoogle Scholar
  128. Yao HH, Whoriskey W, Capel B (2002) Desert hedgehog/patched 1 signaling specifies fetal Leydig cell fate in testis organogenesis. Genes Dev 16(11):1433–1440.  https://doi.org/10.1101/gad.981202 CrossRefPubMedPubMedCentralGoogle Scholar
  129. Zhao L, Ng ET, Davidson TL, Longmuss E, Urschitz J, Elston M, Moisyadi S, Bowles J, Koopman P (2014) Structure-function analysis of mouse Sry reveals dual essential roles of the C-terminal polyglutamine tract in sex determination. Proc Natl Acad Sci U S A 111(32):11768–11773.  https://doi.org/10.1073/pnas.1400666111 CrossRefPubMedPubMedCentralGoogle Scholar
  130. Zhao L, Svingen T, Ng ET, Koopman P (2015) Female-to-male sex reversal in mice caused by transgenic overexpression of Dmrt1. Development 142(6):1083–1088.  https://doi.org/10.1242/dev.122184 CrossRefPubMedPubMedCentralGoogle Scholar
  131. Zhou Z, Shirakawa T, Ohbo K, Sada A, Wu Q, Hasegawa K, Saba R, Saga Y (2015) RNA binding protein Nanos2 organizes post-transcriptional buffering system to retain primitive state of mouse spermatogonial stem cells. Dev Cell 34(1):96–107.  https://doi.org/10.1016/j.devcel.2015.05.014 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Japan KK, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Veterinary AnatomyThe University of TokyoTokyoJapan

Personalised recommendations