Advertisement

Variety of Sex Change in Tropical Fish

  • Yasuhisa Kobayashi
  • Ryo Nozu
  • Ryo Horiguchi
  • Masaru Nakamura
Chapter
Part of the Diversity and Commonality in Animals book series (DCA)

Abstract

Among vertebrates, teleost fish are of particular interest for their sexual diversity and plasticity. During ontogenesis in gonochoristic fish, the undifferentiated gonadal primordium develops into an ovary or testis, a process referred to as sex determination or sexual differentiation. After primary sex determination, the sexes of gonochoristic fish remain fixed for the remainder of their lives. Other fish are hermaphrodites, however, and can change their sex in adulthood, as either simultaneous hermaphrodites, which possess both functional ovarian and testicular tissue, or sequential hermaphrodites. Sequential hermaphrodite species can be divided into three groups. The first are protogynous (female-first) hermaphrodites; the fish begins its life as a female but later becomes a male. The reverse is the case for protandrous (male-first) species (the second group). A third group is composed of those few species that can change their sex serially (bidirectional sex change). This diversity of sexual plasticity is unique to fish and, as such, provides excellent model systems with which to investigate the mechanisms of sex determination and differentiation in vertebrates. In this chapter, we first discuss gonadal sex differentiation in hermaphroditic fish in comparison with gonochoristic fish and then describe various types of sex change in fish from the viewpoints of morphology and physiology.

Keywords

Sex change Gonad Testis Ovary Protandry Protogyny Bidirectional sex change Estrogen Androgen Sex determination Sex differentiation Wrasse Grouper Anemonefish Gobiid fish Tilapia 

References

  1. Alam MA, Bhandari RK, Kobayashi Y, Soyano K, Nakamura M (2006) Induction of sex change within two full moons during breeding season and spawning in grouper. Aquaculture 255(1–4):532–535.  https://doi.org/10.1016/j.aquaculture.2006.01.008 CrossRefGoogle Scholar
  2. Alam MA, Kobayashi Y, Hirai T, Nakamura M (2010) Isolation, characterization and expression analyses of FSH receptor in protogynous grouper. Comp Biochem Physiol A Mol Integr Physiol 156(3):364–371.  https://doi.org/10.1016/j.cbpa.2010.03.001 CrossRefPubMedGoogle Scholar
  3. Atz JW (1964) Intersexuality in fishes. In: Armstrong CN, Marshall AJ (eds) Intersexuality in vertebrates including man. Academic, London, pp 145–232Google Scholar
  4. Bhandari RK, Komuro H, Nakamura S, Higa M, Nakamura M (2003) Gonadal restructuring and correlative steroid hormone profiles during natural sex change in protogynous honeycomb grouper ( Epinephelus merra). Zool Sci 20(11):1399–1404.  https://doi.org/10.2108/zsj.20.1399 CrossRefGoogle Scholar
  5. Bhandari RK, Higa M, Nakamura S, Nakamura M (2004a) Aromatase inhibitor induces complete sex change in the protogynous honeycomb grouper (Epinephelus merra). Mol Reprod Dev 67(3):303–307.  https://doi.org/10.1002/mrd.20027 CrossRefGoogle Scholar
  6. Bhandari RK, Komuro H, Higa M, Nakamura M (2004b) Sex inversion of sexually immature honeycomb grouper (Epinephelus merra) by aromatase inhibitor. Zool Sci 21(3):305–310.  https://doi.org/10.2108/zsj.21.305 CrossRefGoogle Scholar
  7. Bhandari RK, Alam MA, Higa M, Soyano K, Nakamura M (2005) Evidence that estrogen regulates the sex change of honeycomb grouper (Epinephelus merra), a protogynous hermaphrodite fish. J Exp Zool A Comp Exp Biol 303(6):497–503.  https://doi.org/10.1002/jez.a.178 CrossRefGoogle Scholar
  8. Bhandari RK, Alam MA, Soyano K, Nakamura M (2006a) Induction of female-to-male sex change in the honeycomb grouper (Epinephelus merra) by 11-ketotestosterone treatments. Zool Sci 23(1):65–69.  https://doi.org/10.2108/zsj.23.65 CrossRefGoogle Scholar
  9. Bhandari RK, Nakamura M, Kobayashi T, Nagahama Y (2006b) Suppression of steroidogenic enzyme expression during androgen-induced sex reversal in Nile tilapia (Oreochromis niloticus). Gen Comp Endocrinol 145(1):20–24.  https://doi.org/10.1016/j.ygcen.2005.06.014
  10. Devlin RH, Nagahama Y (2002) Sex determination and sex differentiation in fish: an overview of genetic, physiological, and environmental influences. Aquaculture 208(3–4):191–364.  https://doi.org/10.1016/s0044-8486(02)00057-1 CrossRefGoogle Scholar
  11. Erisman BE, Petersen CW, Hastings PA, Warner RR (2013) Phylogenetic perspectives on the evolution of functional hermaphroditism in teleost fishes. Integr Comp Biol 53(4):736–754.  https://doi.org/10.1093/icb/ict077 CrossRefPubMedGoogle Scholar
  12. Fricke HW (1979) Mating system, resource defence and sex change in the anemonefishAmphiprion akallopisos. Z Tierpsychol 50(3):313–326.  https://doi.org/10.1111/j.1439-0310.1979.tb01034.x CrossRefGoogle Scholar
  13. Fricke H, Fricke S (1977) Monogamy and sex change by aggressive dominance in coral reef fish. Nature 266(5605):830–832.  https://doi.org/10.1038/266830a0 CrossRefPubMedGoogle Scholar
  14. Frisch A (2004) Sex-change and gonadal steroids in sequentially-hermaphroditic teleost fish. Rev Fish Biol Fish 14(4):481–499.  https://doi.org/10.1007/s11160-005-3586-8 CrossRefGoogle Scholar
  15. Godwin J (1994) Historical aspects of protandrous sex change in the anemonefish Amphiprion melanopus (Pomacentridae, Teleostei). J Zool 232(2):199–213.  https://doi.org/10.1111/j.1469-7998.1994.tb01569.x
  16. Godwin J (2010) Neuroendocrinology of sexual plasticity in teleost fishes. Front Neuroendocrinol 31(2):203–216.  https://doi.org/10.1016/j.yfrne.2010.02.002 CrossRefPubMedPubMedCentralGoogle Scholar
  17. Godwin J, Thomas P (1993) Sex change and steroid profiles in the protandrous anemonefish Amphiprion melanopus (Pomacentridae, Teleostei). Gen Comp Endocrinol 91(2):144–157.  https://doi.org/10.1006/gcen.1993.1114
  18. Higa M, Ogasawara K, Sakaguchi A, Nagahama Y, Nakamura M (2003) Role of steroid hormones in sex change of protogynous wrasse. Fish Physiol Biochem 28(1–4):149–150.  https://doi.org/10.1023/B:FISH.0000030505.28138.d1 CrossRefGoogle Scholar
  19. Horiguchi R, Nozu R, Hirai T, Kobayashi Y, Nagahama Y, Nakamura M (2013) Characterization of gonadal soma-derived factor expression during sex change in the protogynous wrasse,Halichoeres trimaculatus. Dev Dyn 242(4):388–399.  https://doi.org/10.1002/dvdy.23929 CrossRefGoogle Scholar
  20. Kobayashi Y, Kobayashi T, Sunobe T, Nagahama Y, Nakamura M (2004) Expression of gonadotropin receptors in the serial sex changing goby, Trimma okinawae. Zool Sci 21(12):1333Google Scholar
  21. Kobayashi Y, Sunobe T, Kobayashi T, Nagahama Y, Nakamura M (2005) Gonadal structure of the serial-sex changing gobiid fish Trimma okinawae. Develop Growth Differ 47(1):7–13.  https://doi.org/10.1111/j.1440-169x.2004.00774.x CrossRefGoogle Scholar
  22. Kobayashi Y, Nakamura M, Sunobe T, Usami T, Kobayashi T, Manabe H, Paul-Prasanth B, Suzuki N, Nagahama Y (2009) Sex change in the gobiid fish is mediated through rapid switching of gonadotropin receptors from ovarian to testicular portion or vice versa. Endocrinology 150(3):1503–1511.  https://doi.org/10.1210/en.2008-0569 CrossRefPubMedGoogle Scholar
  23. Kobayashi Y, Alam MA, Horiguchi R, Shimizu A, Nakamura M (2010a) Sexually dimorphic expression of gonadotropin subunits in the pituitary of protogynous honeycomb grouper (Epinephelus merra): evidence that follicle-stimulating hormone (FSH) induces gonadal sex change. Biol Reprod 82(6):1030–1036.  https://doi.org/10.1095/biolreprod.109.080986 CrossRefGoogle Scholar
  24. Kobayashi Y, Horiguchi R, Miura S, Nakamura M (2010b) Sex- and tissue-specific expression of P450 aromatase (cyp19a1a) in the yellowtail clownfish, Amphiprion clarkii. Comp Biochem Physiol A Mol Integr Physiol 155(2):237–244.  https://doi.org/10.1016/j.cbpa.2009.11.004 CrossRefGoogle Scholar
  25. Kobayashi Y, Horiguchi R, Nozu R, Nakamura M (2010c) Expression and localization of forkhead transcriptional factor 2 (Foxl2) in the gonads of protogynous wrasse, Halichoeres trimaculatus. Biol Sex Differ 1:3.  https://doi.org/10.1186/2042-6410-1-3 CrossRefGoogle Scholar
  26. Kobayashi Y, Nagahama Y, Nakamura M (2013) Diversity and plasticity of sex determination and differentiation in fishes. Sex Dev 7(1–3):115–125.  https://doi.org/10.1159/000342009 CrossRefPubMedGoogle Scholar
  27. Kojima Y, Bhandari RK, Kobayashi Y, Nakamura M (2008) Sex change of adult initial-phase male wrasse, Halichoeres trimaculatus by estradiol-17 beta treatment. Gen Comp Endocrinol 156(3):628–632.  https://doi.org/10.1016/j.ygcen.2008.02.003
  28. Lee YH, Du JL, Yueh WS, Lin BY, Huang JD, Lee CY, Lee MF, Lau EL, Lee FY, Morrey C, Nagahama Y, Chang CF (2001) Sex change in the protandrous black porgy, Acanthopagrus schlegeli: a review in gonadal development, estradiol, estrogen receptor, aromatase activity and gonadotropin. J Exp Zool 290(7):715–726.  https://doi.org/10.1002/jez.1122 CrossRefGoogle Scholar
  29. Miura S (2007) Morphological and experimental studies on sex differentiation and sex change in the protandrous anemonefish Amphiprion clarkii. Doctoral thesis, University of the Ryukyus, NishiharaGoogle Scholar
  30. Miura S, Komatsu T, Bhandari RK, Nakamura S, Nakamura M (2003) Gonadal sex differentiation in protandrous anemone fish, Amphiprion clarkii. Fish Physiol Biochem 28(1–4):165–166.  https://doi.org/10.1023/B:FISH.0000030513.05061.88 CrossRefGoogle Scholar
  31. Miura S, Horiguchi R, Nakamura M (2008a) Immunohistochemical evidence for 11beta-hydroxylase (P45011beta) and androgen production in the gonad during sex differentiation and in adults in the protandrous anemonefish Amphiprion clarkii. Zool Sci 25(2):212–219.  https://doi.org/10.2108/zsj.25.212
  32. Miura S, Nakamura S, Kobayashi Y, Piferrer F, Nakamura M (2008b) Differentiation of ambisexual gonads and immunohistochemical localization of P450 cholesterol side-chain cleavage enzyme during gonadal sex differentiation in the protandrous anemonefish, Amphiprion clarkii. Comp Biochem Physiol B Biochem Mol Biol 149(1):29–37.  https://doi.org/10.1016/j.cbpb.2007.08.002 CrossRefGoogle Scholar
  33. Miura S, Kobayashi Y, Bhandari RK, Nakamura M (2013) Estrogen favors the differentiation of ovarian tissues in the ambisexual gonads of anemonefish Amphiprion clarkii. J Exp Zool A Ecol Genet Physiol 319(10):560–568.  https://doi.org/10.1002/jez.1818 CrossRefGoogle Scholar
  34. Miyake Y, Fukui Y, Kuniyoshi H, Sakai Y, Hashimoto H (2008) Examination of the ability of gonadal sex change in primary males of the diandric wrasses Halichoeres poecilopterus and Halichoeres tenuispinis: estrogen implantation experiments. Zool Sci 25(2):220–224.  https://doi.org/10.2108/zsj.25.220 CrossRefGoogle Scholar
  35. Moyer JT, Nakazono A (1978) Protandrous hermaphroditism, in six species of the Anemonefish genus Amphiprion in Japan. Jpn J Ichthyol 25(2):101–106Google Scholar
  36. Murata R, Karimata H, Alam MA, Nakamura M (2009) Gonadal sex differentiation in the Malabar grouper, Epinephelus malabaricus. Aquaculture 293(3–4):286–289.  https://doi.org/10.1016/j.aquaculture.2009.04.031 CrossRefGoogle Scholar
  37. Murata R, Karimata H, Alam MA, Nakamura M (2010) Precocious sex change and spermatogenesis in the underyearling Malabar grouper Epinephelus malabaricus by androgen treatment. Aquac Res 41(2):303–308.  https://doi.org/10.1111/j.1365-2109.2009.02332.x CrossRefGoogle Scholar
  38. Murata R, Karimata H, Kobayashi Y, Horiguchi R, Kishimoto K, Kimura M, Kobayashi T, Soyano K, Nakamura M (2011) Differentiation of steroid-producing cells during ovarian differentiation in the protogynous Malabar grouper, Epinephelus malabaricus. Int J Dev Biol 55(6):619–625.  https://doi.org/10.1387/ijdb.103181rm CrossRefGoogle Scholar
  39. Murata R, Kobayashi Y, Karimata H, Kishimoto K, Kimura M, Shimizu A, Nakamura M (2012) The role of pituitary gonadotropins in gonadal sex differentiation in the protogynous Malabar grouper, Epinephelus malabaricus. Gen Comp Endocrinol 178(3):587–592.  https://doi.org/10.1016/j.ygcen.2012.07.012 CrossRefGoogle Scholar
  40. Murata R, Kobayashi Y, Karimata H, Kishimoto K, Kimura M, Nakamura M (2014) Transient sex change in the immature Malabar grouper, Epinephelus malabaricus, androgen treatment. Biol Reprod 91(1):25.  https://doi.org/10.1095/biolreprod.113.115378
  41. Nakamura M (2000) Endocrinological studies on sex differentiation and reproduction in fish. Nippon Suisan Gakkaishi 66(3):376–379.  https://doi.org/10.2331/suisan.66.376 CrossRefGoogle Scholar
  42. Nakamura M (2013) Morphological and physiological studies on gonadal sex differentiation in teleost fish. Aqua BioSci Monogr 6(1):1–47.  https://doi.org/10.5047/absm.2013.00601.0001 CrossRefGoogle Scholar
  43. Nakamura M, Nagahama Y (1985) Steroid producing cells during ovarian differentiation of the tilapia, Sarotherodon niloticus. Develop Growth Differ 27(6):701–708.  https://doi.org/10.1111/j.1440-169X.1985.00701.x
  44. Nakamura M, Hourigan TF, Yamauchi K, Nagahama Y, Grau EG (1989) Histological and ultrastructural evidence for the role of gonadal steroid hormones in sex change in the protogynous wrasse Thalassoma duperrey. Environ Biol Fish 24(2):117–136.  https://doi.org/10.1007/bf00001282 CrossRefGoogle Scholar
  45. Nakamura M, Mariko T, Nagahama Y (1994) Ultrastructure and in vitro steroidogenesis of the gonads in the protandrous anemonefish Amphiprion frenatus. Jpn J Ichtyol 41(1):47–56.  https://doi.org/10.11369/jji1950.41.47
  46. Nakamura M, Kobayashi T, Chang XT, Nagahama Y (1998) Gonadal sex differentiation in teleost fish. J Exp Zool 281(5):362–372.  https://doi.org/10.1002/(SICI)1097-010X(19980801)281:5<362::AID-JEZ3>3.0.CO;2-M CrossRefGoogle Scholar
  47. Nakamura M, Kobayashi T, Yoshiura Y, Nagahama Y (2000) Role of endogenous steroid hormones on gonadal sex differentiation in fish. Proc 6th Int Symp Rep Physiol Fish 1:247–249Google Scholar
  48. Nakamura M, Kobayashi Y, Miura S, Alam MA, Bhandari RK (2005) Sex change in coral reef fish. Fish Physiol Biochem 31(2–3):117–122.  https://doi.org/10.1007/s10695-006-7595-x CrossRefPubMedGoogle Scholar
  49. Nakamura M, Miura S, Nozu R, Kobayashi Y (2015) Opposite-directional sex change in functional female protandrous anemonefish, Amphiprion clarkii: effect of aromatase inhibitor on the ovarian tissue. Zool Lett 1:30.  https://doi.org/10.1186/s40851-015-0027-y
  50. Nozu R, Nakamura M (2015) Cortisol administration induces sex change from ovary to testis in the protogynous wrasse, Halichoeres trimaculatus. Sex Dev.  https://doi.org/10.1159/000373902
  51. Nozu R, Kojima Y, Nakamura M (2009) Short term treatment with aromatase inhibitor induces sex change in the protogynous wrasse, Halichoeres trimaculatus. Gen Comp Endocrinol 161(3):360–364.  https://doi.org/10.1016/j.ygcen.2009.01.024 CrossRefGoogle Scholar
  52. Nozu R, Horiguchi R, Murata R, Kobayashi Y, Nakamura M (2013) Survival of ovarian somatic cells during sex change in the protogynous wrasse, Halichoeres trimaculatus. Fish Physiol Biochem 39(1):47–51.  https://doi.org/10.1007/s10695-012-9632-2 CrossRefGoogle Scholar
  53. Nozu R, Horiguchi R, Kobayashi Y, Nakamura M (2015) Expression profile of doublesex/male abnormal-3-related transcription factor-1 during gonadal sex change in the protogynous wrasse, Halichoeres trimaculatus. Mol Reprod Dev.  https://doi.org/10.1002/mrd.22527 CrossRefGoogle Scholar
  54. Oba Y, Hirai T, Yoshiura Y, Kobayashi T, Nagahama Y (2001) Fish gonadotropin and thyrotropin receptors: the evolution of glycoprotein hormone receptors in vertebrates. Comp Biochem Physiol B Biochem Mol Biol 129(2–3):441–448.  https://doi.org/10.1016/S1096-4959(01)00374-8 CrossRefPubMedGoogle Scholar
  55. Ohta K, Hirano M, Mine T, Mizutani H, Yamaguchi A, Matsuyama M (2008a) Body color change and serum steroid hormone levels throughout the process of sex change in the adult wrasse, Pseudolabrus sieboldi. Mar Biol 153(5):843–852.  https://doi.org/10.1007/s00227-007-0856-0 CrossRefGoogle Scholar
  56. Ohta K, Mine T, Yamaguchi A, Matsuyama M (2008b) Sexually dimorphic expression of pituitary glycoprotein hormones in a sex-changing fish (Pseudolabrus sieboldi). J Exp Zool A Ecol Genet Physiol 309(9):534–541.  https://doi.org/10.1002/jez.485 CrossRefGoogle Scholar
  57. Paul-Prasanth B, Bhandari RK, Kobayashi T, Horiguchi R, Kobayashi Y, Nakamoto M, Shibata Y, Sakai F, Nakamura M, Nagahama Y (2013) Estrogen oversees the maintenance of the female genetic program in terminally differentiated gonochorists. Sci Rep 3:2862.  https://doi.org/10.1038/srep02862 CrossRefPubMedPubMedCentralGoogle Scholar
  58. Reinboth R, Brusle-Sicard S (1997) Histological and ultrastructural studies on the effects of hCG on sex inversion in the protogynous teleost Coris julis. J Fish Biol 51(4):738–749.  https://doi.org/10.1111/j.1095-8649.1997.tb01995.x Google Scholar
  59. Ross RM (1978) Reproductive behavior of the anemonefish Amphiprion melanopus on Guam. Copeia 1978(1):103–107.  https://doi.org/10.2307/1443829 CrossRefGoogle Scholar
  60. Ross RM (1981) Experimental evidence for stimulation and inhibition of sex change in the Hawaiian reef fish Thalassoma duperrey. Proc 4th Int Coral Reef Symp 2:575–580Google Scholar
  61. Ross RM (1982) Sex change in the endemic Hawaiian labridThalassoma duperrey (Quoy and Gaimard): a behavioral and ecological analysis. PhD dissertation, University of Hawaii, HonoluluGoogle Scholar
  62. Ross RM (1983) Annual, semilunar, and diel reproductive rhythms in the Hawaiian labrid Thalassoma duperrey. Mar Biol 72(3):311–318.  https://doi.org/10.1007/BF00396837 CrossRefGoogle Scholar
  63. Shapiro DY (1992) Plasticity of gonadal development and protandry in fishes. J Exp Zool 261(2):194–203.  https://doi.org/10.1002/jez.1402610210 CrossRefPubMedGoogle Scholar
  64. Strüssmann CA, Nakamura M (2002) Morphology, endocrinology, and environmental modulation of gonadal sex differentiation in teleost fishes. Fish Physiol Biochem 26(1):13–29CrossRefGoogle Scholar
  65. Sunobe T, Nakazono A (1993) Sex change in both directions by alteration of social dominance in Trimma okinawae (Pisces: Gobiidae). Ethology 94(4):339–345.  https://doi.org/10.1111/j.1439-0310.1993.tb00450.x
  66. Sunobe T, Nakazono A (1999) Mating system and hermaphroditism in the gobiid fish, Priolepis cincta, at Kagoshima, Japan. Ichthyol Res 46(1):103–105.  https://doi.org/10.1007/BF02674954
  67. Swanson P, Dickey JT, Campbell B (2003) Biochemistry and physiology of fish gonadotropins. Fish Physiol Biochem 28(1–4):53–59.  https://doi.org/10.1023/B:FISH.0000030476.73360.07 CrossRefGoogle Scholar
  68. Takatsu K, Miyaoku K, Roy SR, Murono Y, Sago T, Itagaki H, Nakamura M, Tokumoto T (2013) Induction of female-to-male sex change in adult zebrafish by aromatase inhibitor treatment. Sci Rep 3:3400.  https://doi.org/10.1038/srep03400 CrossRefPubMedPubMedCentralGoogle Scholar
  69. Yamamoto T (1969) Sex differentiation. In: Hoar WS, Randall DJ (eds) Fish physiology, vol 3. Academic, New York, pp 117–175Google Scholar

Copyright information

© Springer Japan KK, part of Springer Nature 2018

Authors and Affiliations

  • Yasuhisa Kobayashi
    • 1
    • 2
  • Ryo Nozu
    • 3
  • Ryo Horiguchi
    • 4
  • Masaru Nakamura
    • 3
  1. 1.Faculty of Science, Ushimado Marine Institute (UMI)Okayama UniversitySetouchiJapan
  2. 2.Faculty of AgricultureKindai UniversityNaraJapan
  3. 3.Reserach CenterOkinawa Churashima FoundationOkinawaJapan
  4. 4.Advanced Research Facilities and Services, Preeminent Medical Photonics Education and Research CenterHamamatsu University School of MedicineHamamatsuJapan

Personalised recommendations