Advertisement

Sex Determination Cascade in Insects: A Great Treasure House of Alternative Splicing

  • Masataka G. Suzuki
Chapter
Part of the Diversity and Commonality in Animals book series (DCA)

Abstract

Cytological and genetic studies using insects, performed in the first decades of the twentieth century, greatly contributed to establishing the notion that genotypic factors determine sexual fate. Since then, excellent studies of Drosophila have provided important clues to answering the question of how sex is determined. In Drosophila melanogaster, somatic sexual differentiation is regulated by a well-characterized genetic hierarchy composed of a primary genetic signal (X:A ratio), master regulator (Sex-lethal), subordinate regulator (transformer/transformer-2), and double-switch (dsx and fru). On the basis of the knowledge obtained from studies with Drosophila, scientists have gained understanding of molecular mechanisms of sex determination in a variety of insect species. Recent studies have revealed that several insect species, such as the silkworm and the mosquito, have a unique sex determination cascade, which is surprisingly different from that in Drosophila. The most characteristic feature of the sex-determining genes in insects so far identified is that their sex-specific expressions are controlled by alternative splicing. In this chapter, we give an overview of the sex-determining genes revealed thorough the studies of D. melanogaster and those homologues identified in either nondrosophilid insects or animal species other than insects. In particular, we provide a detailed description of the novel sex-determining genes identified in the silkworm on the basis of our recent studies.

Keywords

Sex determination Sexual differentiation Sex-determining gene Alternative splicing Insects Sex determination cascade Silkworm 

References

  1. Abe H, Mita K, Yasukochi Y, Oshiki T, Shimada T (2005) Retrotransposable elements on the W chromosome of the silkworm, Bombyx mori. Cytogenet Genome Res 110:114–151CrossRefGoogle Scholar
  2. Amrein H, Hedley ML, Maniatis T (1994) The role of specific protein-RNA and protein–protein interactions in positive and negative control of pre-mRNA splicing by transformer-2. Cell 76:735–746PubMedCrossRefGoogle Scholar
  3. Anand A, Villella A, Ryner LC, Carlo T, Goodwin SF, Song HJ, Gailey DA, Morales A, Hall JC, Baker BS, Taylor BJ (2001) Molecular genetic dissection of the sex-specific and vital functions of the Drosophila melanogaster sex determination gene fruitless. Genetics 158:1569–1595PubMedPubMedCentralGoogle Scholar
  4. Antic D, Keene JD (1997) Embryonic lethal abnormal visual RNA-binding proteins involved in growth, differentiation, and posttranscriptional gene expression. Am J Hum Genet 61:273–278PubMedPubMedCentralCrossRefGoogle Scholar
  5. Antic D, Lu N, Keene JD (1999) ELAV tumor antigen, Hel-N1, increases translation of neurofilament M mRNA and induces formation of neurites in human teratocarcinoma cells. Genes Dev 13:449–461PubMedPubMedCentralCrossRefGoogle Scholar
  6. Baker RH, Sakai RK (1976) Male determining factor on chromosome 3 in the mosquito, Culex tritaeniorhynchus. J Hered 67:289–294PubMedCrossRefGoogle Scholar
  7. Baker BS, Wolfner MF (1988) A molecular analysis of doublesex, a bifunctional gene that controls both male and female sexual differentiation in Drosophila melanogaster. Genes Dev 2:477–489PubMedCrossRefGoogle Scholar
  8. Bedo DG, Foster GG (1985) Cytogenotic mapping of the male-determining region of Lucilia cuprina (Diptera: Clliphoridae). Chromosoma 92:344–350CrossRefGoogle Scholar
  9. Bell LR, Horabin JI, Schedl P, Cline TW (1991) Positive autoregulation of Sexlethal by alternative splicing maintains the female determined state in Drosophila. Cell 65:229–239PubMedCrossRefGoogle Scholar
  10. Bertossa RC, van de Zande L, Beukeboom LW (2009) The Fruitless gene in Nasonia displays complex sex-specific splicing and contains new zinc finger domains. Mol Biol Evol 26:1557–1569PubMedCrossRefGoogle Scholar
  11. Beukeboom LW (1995) Sex determination in hymenoptera: a need for genetic and molecular studies. BioEssays 17:813–817PubMedCrossRefGoogle Scholar
  12. Beye M, Hasselmann M, Fondrk MK, Page RE, Omholt SW (2003) The gene csd is the primary signal for sexual development in the honeybee and encodes an SR-type protein. Cell 114:419–429PubMedCrossRefGoogle Scholar
  13. Boerjan B, Tobback J, De Loof A, Schoofs L, Huybrechts R (2011) Fruitless RNAi knockdown in males interferes with copulation success in Schistocerca gregaria. Insect Biochem Mol Biol 41:340–347PubMedCrossRefGoogle Scholar
  14. Boerjan B, Tobback J, Vandersmissen HP, Huybrechts R, Schoofs L (2012) Fruitless RNAi knockdown in the desert locust, Schistocerca gregaria, influences male fertility. J Insect Physiol 58:265–269PubMedCrossRefGoogle Scholar
  15. Boggs RT, Gregor P, Idriss S, Belote JM, McKeown M (1987) Regulation of sexual differentiation in D. melanogaster via alternative splicing of RNA from the transformer gene. Cell 50:739–747PubMedCrossRefGoogle Scholar
  16. Bopp D, Saccone G, Beye M (2014) Sex determination in insects: variations on a common theme. Sex Dev 8:20–28PubMedCrossRefGoogle Scholar
  17. Bridges CB (1921) Triploid intersexes in Drosophila melanogaster. Science 54:252–254PubMedCrossRefGoogle Scholar
  18. Burghardt G, Hediger M, Siegenthaler C, Moser M, Dübendorfer A, Bopp D (2005) The transformer2 gene in Musca domestica is required for selecting and maintaining the female pathway of development. Dev Genes Evol 215:165–176PubMedCrossRefGoogle Scholar
  19. Burtis KC, Baker BS (1989) Drosophila doublesex gene controls somatic sexual differentiation by producing alternatively spliced mRNAs encoding related sex-specific polypeptides. Cell 56:997–1010PubMedCrossRefGoogle Scholar
  20. Burtis KC, Coschigano KT, Baker BS, Wensink PC (1991) The doublesex proteins of Drosophila melanogaster bind directly to a sex-specific yolk protein gene enhancer. EMBO J 10:2577–2582PubMedPubMedCentralCrossRefGoogle Scholar
  21. Chen P, Xu SL, Zhou W, Guo XG, Wang CL, Wang DL, Zhao YL (2014) Cloning and expression analysis of a transformer gene in Daphnia pulex during different reproduction stages. Anim Reprod Sci 146:227–237PubMedCrossRefGoogle Scholar
  22. Cline TW (1984) Autoregulatory functioning of a Drosophila gene product that establishes and maintains the sexually determined state. Genetics 107:231–277PubMedPubMedCentralGoogle Scholar
  23. Cline TW (1988) Evidence that sisterless-a and sisterless-b are two of several discrete “numerator” elements of the X:A sex-determination signal in Drosophila that switch Sex-lethal between two alternative stable expression states. Genetics 119:829–862PubMedPubMedCentralGoogle Scholar
  24. Cline TW, Meyer BJ (1996) Vive la difference: males vs females in flies vs worms. Annu Rev Genet 30:637–702PubMedCrossRefGoogle Scholar
  25. Clough E, Jimenez E, Kim YA, Whitworth C, Neville MC, Hempel LU, Pavlou HJ, Chen ZX, Sturgill D, Dale RK, Smith HE, Przytycka TM, Goodwin SF, Van Doren M, Oliver B (2014) Sex- and tissue-specific functions of Drosophila doublesex transcription factor target genes. Dev Cell 31:761–773PubMedPubMedCentralCrossRefGoogle Scholar
  26. Clynen E, Ciudad L, Bellés X, Piulachs MD (2011) Conservation of fruitless’ role as master regulator of male courtship behaviour from cockroaches to flies. Dev Genes Evol 221:43–48PubMedCrossRefGoogle Scholar
  27. Concha C, Scott MJ (2009) Sexual development in Lucilia cuprina (Diptera, Calliphoridae) is controlled by the transformer gene. Genetics 182:785–798PubMedPubMedCentralCrossRefGoogle Scholar
  28. Coschigano KT, Wensink PC (1993) Sex-specific transcriptional regulation by the male and female doublesex proteins of Drosophila. Genes Dev 7:42–54PubMedCrossRefGoogle Scholar
  29. Dalton JE, Fear JM, Knott S, Baker BS, McIntyre LM, Arbeitman MN (2013) Male-specific fruitless isoforms have different regulatory roles conferred by distinct zinc finger DNA binding domains. BMC Genomics 14:659PubMedPubMedCentralCrossRefGoogle Scholar
  30. Demir E, Dickson BJ (2005) Fruitless splicing specifies male courtship behavior in Drosophila. Cell 1215:785–794CrossRefGoogle Scholar
  31. Erickson JW, Quintero JJ (2007) Indirect effects of ploidy suggest X chromosome dose, not the X:A ratio, signals sex in Drosophila. PLoS Biol 5:2821–2830CrossRefGoogle Scholar
  32. Estes PA, Keys LN, Schedl P (1995) Multiple response elements in the Sex-lethal early promoter ensure its female-specific expression pattern. Mol Cell Biol 15:904–917PubMedPubMedCentralCrossRefGoogle Scholar
  33. Gailey DA, Billeter JC, Liu JH, Bauzon F, Allendorfer JB, Goodwin SF (2006) Functional conservation of the fruitless male sex-determination gene across 250 Myr of insect evolution. Mol Biol Evol 23:633–643PubMedCrossRefGoogle Scholar
  34. Garabedian MJ, Shepherd BM, Wensink PC (1986) A tissue-specific transcription enhancer from the Drosophila yolk protein 1 gene. Cell 45:859–867PubMedCrossRefGoogle Scholar
  35. Ge H, Zuo P, Manley JL (1991) Primary structure of the human splicing factor ASF reveals similarities with Drosophila regulators. Cell 66:373–382PubMedCrossRefGoogle Scholar
  36. Gempe T, Hasselmann M, Schiøtt M, Hause G, Otte M, Beye M (2009) Sex determination in honeybees: two separate mechanisms induce and maintain the female pathway. PLoS Biol 7:e1000222PubMedPubMedCentralCrossRefGoogle Scholar
  37. Geuverink E, Beukeboom LW (2014) Phylogenetic distribution and evolutionary dynamics of the sex determination genes doublesex and transformer in insects. Sex Dev 8:38–49PubMedCrossRefGoogle Scholar
  38. Goldschmidt RB (1955) Theoretical genetic. University of California Press, BerkeleyCrossRefGoogle Scholar
  39. Good PJ (1995) A conserved family of elav-like genes in vertebrates. Proc Natl Acad Sci U S A 92:4557–4561PubMedPubMedCentralCrossRefGoogle Scholar
  40. Graveley BR, Hertel KJ, Maniatis T (1998) A systematic analysis of the factors that determine the strength of pre-mRNA splicing enhancers. EMBO J 17:6747–6756PubMedPubMedCentralCrossRefGoogle Scholar
  41. Hägele K (1985) Identification of a polytene chromosome band containing a male sex determiner of Chironomus thummi thummi. Chromosoma 91:167–171PubMedCrossRefGoogle Scholar
  42. Hall AB, Basu S, Jiang X, Qi Y, Timoshevskiy VA, Biedler JK, Sharakhova MV, Elahi R, Anderson MA, Chen XG, Sharakhov IV, Adelman ZN, Tu Z (2015) A male-determining factor in the mosquito Aedes aegypti. Science 2348:1268–1270CrossRefGoogle Scholar
  43. Handa N, Nureki O, Kurimoto K, Kim I, Sakamoto H, Shimura Y, Muto Y, Yokoyama S (1999) Structural basis for recognition of the tra mRNA precursor by the Sex-lethal protein. Nature 398:579–585PubMedCrossRefGoogle Scholar
  44. Hashimoto H (1933) The role of the W chromosome for sex determination in the silkworm, Bombyx mori. Jpn J Genet 8:245–258CrossRefGoogle Scholar
  45. Hasselmann M, Gempe T, Schiøtt M, Nunes-Silva CG, Otte M, Beye M (2008) Evidence for the evolutionary nascence of a novel sex determination pathway in honeybees. Nature 454:519–522PubMedCrossRefGoogle Scholar
  46. Hediger M, Henggeler C, Meier N, Perez R, Saccone G, Bopp D (2010) Molecular characterization of the key switch F provides a basis for understanding the rapid divergence of the sex-determining pathway in the housefly. Genetics 184:155–170PubMedPubMedCentralCrossRefGoogle Scholar
  47. Heimpel GE, de Boer JG (2008) Sex determination in the Hymenoptera. Annu Rev Entomol 53:209–230PubMedCrossRefGoogle Scholar
  48. Heinrichs V, Ryner LC, Baker BS (1998) Regulation of sex-specific selection of fruitless 5′ splice sites by transformer and transformer-2. Mol Cell Biol 18:450–458PubMedPubMedCentralCrossRefGoogle Scholar
  49. Henking H (1891) Unlersuehungen ueber die ersten Entwicklungsvorgänge in den Eiern der Insekten. II. Ueber Spermatogenese und deren Beziehung zur Entwickelung bei Pyrrhocoris apterus L. Z Wiss Zool 51:685–736Google Scholar
  50. Hodgkin J (2002) The remarkable ubiquity of DM domain factors as regulators of sexual phenotype: ancestry or aptitude? Genes Dev 16:2322–2326PubMedCrossRefGoogle Scholar
  51. Inoue M, Muto Y, Sakamoto H, Yokoyama S (2000) NMR studies on functional structures of the AU-rich element-binding domains of Hu antigen C. Nucleic Acids Res 28:1743–1750PubMedPubMedCentralCrossRefGoogle Scholar
  52. Ito H, Fujitani K, Usui K, Shimizu-Nishikawa K, Tanaka S, Yamamoto D (1996) Sexual orientation in Drosophila is altered by the satori mutation in the sex-determination gene fruitless that encodes a zinc finger protein with a BTB domain. Proc Natl Acad Sci U S A 93:9687–9692PubMedPubMedCentralCrossRefGoogle Scholar
  53. Jacqart D, Thomasset C (1988) Sexuality and medicine in the Middle Ages (trans: Adamson M). Princeton University Press, PrincetonGoogle Scholar
  54. Jumaa H, Nielsen PJ (1997) The splicing factor SRp20 modifies splicing of its own mRNA and ASF/SF2 antagonizes this regulation. EMBO J 16:5077–5085PubMedPubMedCentralCrossRefGoogle Scholar
  55. Kan JL, Green MR (1999) Pre-mRNA splicing of IgM exons M1 and M2 is directed by a juxtaposed splicing enhancer and inhibitor. Genes Dev 13:462–471PubMedPubMedCentralCrossRefGoogle Scholar
  56. Kato Y, Kobayashi K, Oda S, Tatarazako N, Watanabe H, Iguchi T (2010) Sequence divergence and expression of a transformer gene in the branchiopod crustacean, Daphnia magna. Genomics 95:160–165PubMedCrossRefGoogle Scholar
  57. Kato Y, Kobayashi K, Watanabe H, Iguchi T, Kopp A (2011) Environmental Sex Determination in the Branchiopod Crustacean Daphnia magna: deep conservation of a doublesex gene in the sex-determining pathway. PLoS Genet 7:e1001345PubMedPubMedCentralCrossRefGoogle Scholar
  58. Katsuma S, Kawamoto M, Kiuchi T (2015) Guardian small RNAs and sex determination. RNA Biol 11:1238–1242PubMedCrossRefGoogle Scholar
  59. Kawaoka S, Kadota K, Arai Y, Suzuki Y, Fujii T, Abe H, Yasukochi Y, Mita K, Sugano S, Shimizu K et al (2011) The silkworm W chromosome is a source of female enriched piRNAs. RNA 17:2144–2151PubMedPubMedCentralCrossRefGoogle Scholar
  60. Keys LN, Cline TW, Schedl P (1992) The primary sex determination signal of Drosophila acts at the level of transcription. Cell 68:933–943CrossRefGoogle Scholar
  61. Kimura K, Ote M, Tazawa T, Yamamoto D (2005) fruitless specifies sexually dimorphic neural circuitry in the Drosophila brain. Nature 438:229–233PubMedCrossRefGoogle Scholar
  62. Kiuchi T, Koga H, Kawamoto M, Shoji K, Sakai H, Arai Y, Ishihara G, Kawaoka S, Sugano S, Shimada T, Suzuki Y, Suzuki MG, Katsuma S (2014) A single female-specific piRNA is the primary determiner of sex in the silkworm. Nature 2014(509):633–636CrossRefGoogle Scholar
  63. Kopp A (2012) Dmrt genes in the development and evolution of sexual dimorphism. Trends Genet 28:175–184PubMedPubMedCentralCrossRefGoogle Scholar
  64. Lagos D, Koukidou M, Savakis C, Komitopoulou K (2007) The transformer gene in Bactrocera oleae: the genetic switch that determines its sex fate. Insect Mol Biol 16:221–230PubMedCrossRefGoogle Scholar
  65. Lee G, Hall JC (2001) Abnormalities of male-specific FRU protein and serotonin expression in the CNS of fruitless mutants in Drosophila. J Neurosci 21:513–526PubMedCrossRefGoogle Scholar
  66. Lee G, Villella A, Taylor BJ, Hall JC (2001) New reproductive anomalies in fruitless-mutant Drosophila males: extreme lengthening of mating durations and infertility correlated with defective serotonergic innervation of reproductive organs. J Neurobiol 47:121–149PubMedCrossRefGoogle Scholar
  67. Li Y, Blencowe BJ (1999) Distinct factor requirements for exonic splicing enhancer function and binding of U2AF to the polypyrimidine tract. J Biol Chem 274:35074–35079PubMedCrossRefGoogle Scholar
  68. Luo SD, Baker BS (2015) Constraints on the evolution of a doublesex target gene arising from doublesex’s pleiotropic deployment. Proc Natl Acad Sci U S A 112:E852–E861PubMedPubMedCentralCrossRefGoogle Scholar
  69. Lynch KW, Maniatis T (1995) Synergistic interactions between two distinct elements of a regulated splicing enhancer. Genes Dev 9:284–293PubMedCrossRefGoogle Scholar
  70. Lynch KW, Maniatis T (1996) Assembly of specific SR protein complexes on distinct regulatory elements of the Drosophila doublesex splicing enhancer. Genes Dev 10:2089–2101PubMedCrossRefGoogle Scholar
  71. Ma WJ, Cheng S, Campbell C, Wright A, Furneaux H (1996) Cloning and characterization of HuR, a ubiquitously expressed Elav-like protein. J Biol Chem 271:8144–8151PubMedCrossRefGoogle Scholar
  72. Malone CD, Hannon GJ (2009) Small RNAs as guardians of the genome. Cell 136:656–668PubMedPubMedCentralCrossRefGoogle Scholar
  73. Manley JL, Tacke R (1996) SR proteins and splicing control. Genes Dev 10:569–1579CrossRefGoogle Scholar
  74. Matson CK, Zarkower D (2012) Sex and the singular DM domain: insights into sexual regulation, evolution and plasticity. Nat Rev Genet 13:163–174PubMedPubMedCentralCrossRefGoogle Scholar
  75. Meier N, Käppeli SC, Hediger Niessen M, Billeter JC, Goodwin SF, Bopp D (2013) Genetic control of courtship behavior in the housefly: evidence for a conserved bifurcation of the sex-determining pathway. PLoS One 8:e62476PubMedPubMedCentralCrossRefGoogle Scholar
  76. Meise M, Hilfiker-Kleiner D, Dubendorfer A, Brunner C, Nothiger R, Bopp D (1998) Sex-lethal, the master sex-determining gene in Drosophila, is not sex-specifically regulated in Musca domestica. Development 125:1487–1494PubMedGoogle Scholar
  77. Mita K, Kasahara M, Sasaki S, Nagayasu Y, Yamada T et al (2004) The genome sequence of silkworm, Bombyx mori. DNA Res 11:27–35PubMedCrossRefPubMedCentralGoogle Scholar
  78. Nene V, Wortman JR, Lawson D, Haas B, Kodira C et al (2007) Genome sequence of Aedes aegypti, a major arbovirus vector. Science 316:1718–1723PubMedCrossRefGoogle Scholar
  79. Neville MC, Nojima T, Ashley E, Parker DJ, Walker J, Southall T, Van de Sande B, Marques AC, Fischer B, Brand AH, Russell S, Ritchie MG, Aerts S, Goodwin SF (2014) Male-specific fruitless isoforms target neurodevelopmental genes to specify a sexually dimorphic nervous system. Curr Biol 24:229–241PubMedPubMedCentralCrossRefGoogle Scholar
  80. Newton ME, Southern DI, Wood RJ (1974) X and Y chromosomes of Aedes aegypti (L.) distinguished by Giemsa C-banding. Chromosoma 49:41–49PubMedCrossRefGoogle Scholar
  81. Niimi T, Sahara K, Oshima H, Yasukochi Y, Ikeo K, Traut W (2006) Molecular cloning and chromosomal localization of the Bombyx Sex-lethal gene. Genome 2006(49):263–268CrossRefGoogle Scholar
  82. Nissen I, Müller M, Beye M (2012) The Am-tra2 gene is an essential regulator of female splice regulation at two levels of the sex determination hierarchy of the honeybee. Genetics 192:1015–1026PubMedPubMedCentralCrossRefGoogle Scholar
  83. O’Neil MT, Belote JM (1992) Interspecific comparison of the transformer gene of Drosophila reveals an unusually high degree of evolutionary divergence. Genetics 131:113–128PubMedPubMedCentralGoogle Scholar
  84. Pane A, Salvemini M, Delli Bovi P, Polito C, Saccone G (2002) The transformer gene in Ceratitis capitata provides a genetic basis for selecting and remembering the sexual fate. Development 129:3715–3725PubMedGoogle Scholar
  85. Privman E, Wurm Y, Keller L (2013) Duplication and concerted evolution in a master sex determiner under balancing selection. Proc Biol Sci 280:20122968PubMedPubMedCentralCrossRefGoogle Scholar
  86. Ruiz MF, Milano A, Salvemini M, Eirín-López JM, Perondini AL, Selivon D, Polito C, Saccone G, Sánchez L (2007) The gene transformer of Anastrepha fruit flies (Diptera, Tephritidae) and its evolution in insects. PLoS One 28:e1239CrossRefGoogle Scholar
  87. Ryner LC, Goodwin SF, Castrillon DH, Anand A, Villella A, Baker BS, Hall JC, Taylor BJ, Wasserman SA (1996) Control of male sexual behavior and sexual orientation in Drosophila by the fruitless gene. Cell 87:1079–1089PubMedCrossRefGoogle Scholar
  88. Saccone G, Peluso I, Artiaco D, Giordano E, Bopp D, Polito LC (1998) The Ceratitis capitata homologue of the Drosophila sex-determining gene Sex-lethal is structurally conserved, but not sex-specifically regulated. Development 125:1495–1500PubMedGoogle Scholar
  89. Sakai H, Sakaguchi H, Aoki F, Suzuki MG (2015) Functional analysis of sex-determination genes by gene silencing with LNA-DNA gapmers in the silkworm, Bombyx mori. Mech Dev 137:45–52PubMedCrossRefGoogle Scholar
  90. Salvemini M, Robertson M, Aronson B, Atkinson P, Polito LC, Saccone G (2009) Ceratitis capitata transformer-2 gene is required to establish and maintain the autoregulation of Cctra, the master gene for female sex determination. Int J Dev Biol 53:109–120PubMedCrossRefGoogle Scholar
  91. Salvemini M, Polito C, Saccone G (2010) Fruitless alternative splicing and sex behaviour in insects: an ancient and unforgettable love story? J Genet 89:287–299PubMedCrossRefGoogle Scholar
  92. Salvemini M, Mauro U, Lombardo F, Milano A, Zazzaro V, Arcà B, Polito LC, Saccone G (2011) Genomic organization and splicing evolution of the doublesex gene, a Drosophila regulator of sexual differentiation, in the dengue and yellow fever mosquito Aedes aegypti. BMC Evol Biol 11:41PubMedPubMedCentralCrossRefGoogle Scholar
  93. Salvemini M, D’Amato R, Petrella V, Aceto S, Nimmo D, Neira M, Alphey L, Polito LC, Saccone G (2013) The orthologue of the fruitfly sex behaviour gene fruitless in the mosquito Aedes aegypti: evolution of genomic organisation and alternative splicing. PLoS One 8:e48554PubMedPubMedCentralCrossRefGoogle Scholar
  94. Sarno F, Ruiz MF, Eirín-López JM, Perondini AL, Selivon D, Sánchez L (2010) The gene transformer-2 of Anastrepha fruit flies (Diptera, Tephritidae) and its evolution in insects. BMC Evol Biol 10:140PubMedPubMedCentralCrossRefGoogle Scholar
  95. Schmieder S, Colinet D, Poirié M (2012) Tracing back the nascence of a new sex-determination pathway to the ancestor of bees and ants. Nat Commun 3:895PubMedPubMedCentralCrossRefGoogle Scholar
  96. Schütt C, Nöthiger R (2000) Structure, function and evolution of sex-determining systems in Dipteran insects. Development 127:667–677PubMedGoogle Scholar
  97. Shearman DCA, Formmer M (1998) The Bactrocera tryoni homolog of the Drosophila melanogaster sex-determination gene doublesex. Insect Mol Biol 7:355–366PubMedCrossRefGoogle Scholar
  98. Shirangi TR, Dufour HD, Williams TM, Carroll SB (2009) Rapid evolution of sex pheromone-producing enzyme expression in Drosophila. PLoS Biol 7:e1000168PubMedPubMedCentralCrossRefGoogle Scholar
  99. Shukla JN, Palli SR (2012) Sex determination in beetles: production of all male progeny by parental RNAi knockdown of transformer. Sci Rep 2:602PubMedPubMedCentralCrossRefGoogle Scholar
  100. Sievert V, Kuhn S, Paululat A, Traut W (2000) Sequence conservation and expression of the sex-lethal homologue in the fly Megaselia scalaris. Genome 43:382–390PubMedCrossRefGoogle Scholar
  101. Smith CA, Roeszler KN, Ohnesorg T, Cummins DM, Farlie PG, Doran TJ, Sinclair AH (2009) The avian Z-linked gene DMRT1 is required for male sex determination in the chicken. Nature 461:267–271CrossRefPubMedGoogle Scholar
  102. Stevens N (1905) Studies in spermatogenesis with special reference to the accessory chromosome. 36th Carnegie Institution of Washington Publication, Washington, DCGoogle Scholar
  103. Sutton WS (1903) The chromosomes in heredity. Biol Bull 4:231–251CrossRefGoogle Scholar
  104. Suzuki MG, Ohbayashi F, Mita K, Shimada T (2001) The mechanism of sex-specific splicing at the doublesex gene is different between Drosophila melanogaster and Bombyx mori. Insect Biochem Mol Biol 31:1201–1211PubMedCrossRefGoogle Scholar
  105. Suzuki MG, Imanishi S, Dohmae N, Nishimura T, Shimada T, Matsumoto S (2008) Establishment of a novel in vivo sex-specific splicing assay system to identify a trans-acting factor that negatively regulates splicing of Bombyx mori dsx female exons. Mol Cell Biol 28:333–343PubMedCrossRefGoogle Scholar
  106. Suzuki MG, Imanishi S, Dohmae N, Asanuma M, Matsumoto S (2010) Identification of a male-specific RNA binding protein that regulates sex-specific splicing of Bmdsx by increasing RNA binding activity of BmPSI. Mol Cell Biol 30:5776–5786PubMedPubMedCentralCrossRefGoogle Scholar
  107. Suzuki MG, Suzuki K, Aoki F, Ajimura M (2012) Effect of RNAi-mediated knockdown of the Bombyx mori transformer-2 gene on the sex-specific splicing of Bmdsx pre-mRNA. Int J Dev Biol. 56:693–699PubMedCrossRefGoogle Scholar
  108. Suzuki MG, Kobayashi S, Aoki F (2014) Male-specific splicing of the silkworm Imp gene is maintained by an autoregulatory mechanism. Mech Dev 131:47–56PubMedCrossRefGoogle Scholar
  109. Suzuki MG, Tochigi M, Sakaguchi H, Aoki F, Miyamoto N (2015) Identification of a transformer homolog in the acorn worm, Saccoglossus kowalevskii, and analysis of its activity in insect cells. Dev Genes Evol 225:161–169PubMedCrossRefGoogle Scholar
  110. Szabo A, Dalmau J, Manley G, Rosenfeld M, Wong E, Henson J, Posner JB, Furneaux HM (1991) HuD, a paraneoplastic encephalomyelitis antigen, contains RNA-binding domains and is homologous to Elav and Sex-lethal. Cell 67:325–333PubMedCrossRefGoogle Scholar
  111. Tanaka Y (1916) Genetic studies in the silkworm. J Coll Agric Sapporo 6:1–33Google Scholar
  112. Toyota K, Kato Y, Sato M, Sugiura N, Miyagawa S, Miyakawa H, Watanabe H, Oda S, Ogino Y, Hiruta C, Mizutani T, Tatarazako N, Paland S, Jackson C, Colbourne JK, Iguchi T (2013) Molecular cloning of doublesex genes of four cladocera (water flea) species. BMC Genomics 14:239PubMedPubMedCentralCrossRefGoogle Scholar
  113. Traut W (1994) Sex determination in the fly Megaselia scalaris, a model system for primary steps of sex chromosome evolution. Genetics 136:1097–1104PubMedPubMedCentralGoogle Scholar
  114. Ustinova J, Mayer F (2006) Alternative starts of transcription, several paralogues, and almost-fixed interspecific differences of the gene fruitless in a hemimetabolous insect. J Mol Evol 63:788–800PubMedCrossRefGoogle Scholar
  115. Usui-Aoki K, Ito H, Ui-Tei K, Takahashi K, Lukacsovich T, Awano W, Nakata H, Piao ZF, Nilsson EE, Tomida J, Yamamoto D (2000) Formation of the male-specific muscle in female Drosophila by ectopic fruitless expression. Nat Cell Biol 2:500–506PubMedCrossRefGoogle Scholar
  116. Verhulst EC, Beukeboom LW, van de Zande L (2010) Maternal control of haplodiploid sex determination in the wasp Nasonia. Science 328:620–623PubMedCrossRefGoogle Scholar
  117. Wakamatsu Y, Weston JA (1997) Sequential expression and role of Hu RNA-binding proteins during neurogenesis. Development 124:3449–3460PubMedGoogle Scholar
  118. Willhoeft U, Franz G (1996) Identification of the sex-determining region of the Ceratitis capitata Y chromosome by deletion mapping. Genetics 144:737–745PubMedPubMedCentralGoogle Scholar
  119. Williams TM, Selegue JE, Werner T, Gompel N, Kopp A, Carroll SB (2008) The regulation and evolution of a genetic switch controlling sexually dimorphic traits in Drosophila. Cell 134:610–623PubMedPubMedCentralCrossRefGoogle Scholar
  120. Yoshido A, Yasukochi Y, Sahara K (2011) Samia cynthia versus Bombyx mori: comparative gene mapping between a species with a low-number karyotype and the model species of Lepidoptera. Insect Biochem Mol Biol 41:370–377PubMedCrossRefGoogle Scholar
  121. Zollman S, Godt D, Prive GG, Couderc JL, Laski FA (1994) The BTB domain, found primarily in zinc finger proteins, defines an evolutionarily conserved family that includes several developmentally regulated genes in Drosophila. Proc Natl Acad Sci U S A 91:10717–10721PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Japan KK, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Division of Biological Sciences, Department of Integrated Biosciences, Graduate School of Frontier SciencesThe University of TokyoKashiwaJapan

Personalised recommendations