Advertisement

Environmental Control of Sex Differentiation in Daphnia

  • Kenji Toyota
  • Norihisa Tatarazako
  • Taisen Iguchi
Chapter
Part of the Diversity and Commonality in Animals book series (DCA)

Abstract

The cladoceran crustacean genus Daphnia (daphnids) exhibits a unique reproductive strategy in response to changes in environmental conditions of their habitat. This is known as environmental sex determination (ESD). Under favorable environmental conditions, daphnids produce clonal female offspring by parthenogenesis. Under unfavorable environmental conditions (e.g., short day length, low temperature, food shortage, overpopulation, and/or a combination thereof), daphnids produce male offspring by parthenogenesis and then switch reproductive methods to undergo sexual reproduction. Based on pharmacological and molecular experiments, the juvenile hormone pathway and doublesex1 gene have been identified as responsible factors in the process of ESD and subsequent sexual differentiation in daphnids. Furthermore, morphological observations of the detailed developmental processes that occur during female and male embryogenesis have been made. Despite substantial efforts in studies of the regulatory mechanisms governing sexual differentiation, there remains a large knowledge gap. In this chapter, we provide background information and recent progress in these research fields and present an overview of current knowledge regarding ESD and sexual differentiation in daphnids, mainly focusing on Daphnia pulex and D. magna.

Keywords

Environmental sex determination (ESD) Daphnia pulex Daphnia magna Juvenile hormone Doublesex1 gene 

References

  1. Adamowicz SJ, Petrusek A, Colbourne JK, Hebert PDN, Witt JDS (2009) The scale of divergence: a phylogenetic appraisal of intercontinental allopatric speciation in a passively dispersed freshwater zooplankton genus. Mol Phylogenet Evol 50:423–436PubMedCrossRefGoogle Scholar
  2. Alekseev VR, Lajus DL (2009) Maternal and direct effects of natural-like changes of photoperiod and food condition manipulation on life history parameters in Daphnia. Aquat Ecol 43:415–421CrossRefGoogle Scholar
  3. Alekseev V, Lampert W (2001) Maternal control of resting-egg production in Daphnia. Nature 414:899–901PubMedCrossRefGoogle Scholar
  4. Asada M, Kato Y, Matsuura T, Watanabe H (2014) Early embryonic expression of a putative ecdysteroid-phosphate phosphatase in the water flea, Daphnia magna (Cladocera: Daphniidae). J Insect Sci 14(181):181PubMedPubMedCentralGoogle Scholar
  5. Banta AM, Brown LA (1929) Control of sex in Cladocera. II. The unstable nature of the excretory products involved in male production. Physiol Zool 2(1):93–98CrossRefGoogle Scholar
  6. Barton NH, Charlesworth B (1998) Why sex and recombination? Science 281(5385):1986–1990PubMedCrossRefGoogle Scholar
  7. Bayrer JR, Zhang W, Weiss MA (2005) Dimerization of doublesex is mediated by a cryptic ubiquitin-associated domain fold: implications for sex-specific gene regulation. J Biol Chem 280(38):32989–32996PubMedCrossRefGoogle Scholar
  8. Begum M, Breuer M, Kodrik D, Rahman MM, Loof AD (2004) The NMDA receptor antagonist MK-801 inhibits vitellogenesis in the flesh fly Neobellieria bullata and in the desert locust Schistocerca gregaria. J Insect Physiol 50(10):927–934PubMedCrossRefGoogle Scholar
  9. Burtis KC, Baker BS (1989) Drosophila doublesex gene controls somatic sexual differentiation by producing alternatively spliced mRNAs encoding related sex-specific polypeptides. Cell 56:997–1010PubMedPubMedCentralCrossRefGoogle Scholar
  10. Caceres CE (1998) Interspecific variation in the abundance, production, and emerence of Daphnia diapuasing eggs. Ecology 79(5):1699–1710CrossRefGoogle Scholar
  11. Cassier P (1979) The corpora allata of insects. Int Rev Cytol 57:1–73CrossRefGoogle Scholar
  12. Charles J-P, Iwema T, Epa VC, Takaki K, Rynes J, Jindra M (2011) Ligand-binding properties of a juvenile hormone receptor, methoprene-tolerant. Proc Natl Acad Sci U S A 108(52):21128–21133PubMedPubMedCentralCrossRefGoogle Scholar
  13. Chiang A-S, Lin W-Y, Liu H-P, Pszczolkowski MA, T-F F, Chiu S-L, Holbrook GL (2002) Insect NMDA receptors mediate juvenile hormone biosynthesis. Proc Natl Acad Sci U S A 99(1):37–42PubMedPubMedCentralCrossRefGoogle Scholar
  14. Colbourne JK, Pfrender ME, Gilbert D, Thomas WK, Tucker A, Oakley TH, Tokishita S, Aerts A, Arnold GJ, Basu MK, Bauer DJ, Cáceres CE, Carmel L, Casola C, Choi J-H, Detter JC, Dong Q, Dusheyko S, Eads BD, Fröhlich T, Geiler-Samerotte KA, Gerlach D, Hatcher P, Jogdeo S, Krijgsveld J, Kriventseva EV, Kültz D, Laforsch C, Lindquist E, Lopez J, Manak JR, Muller J, Pangilinan J, Patwardhan RP, Pitluck S, Pritham EJ, Rechtsteiner A, Rho M, Rogozin IB, Sakarya O, Salamov A, Schaack S, Shapiro H, Shiga Y, Skalitzky C, Smith Z, Souvorov A, Sung W, Tang Z, Tsuchiya D, Tu H, Vos H, Wang M, Wolf YI, Yamagata H, Yamada T, Ye Y, Shaw JR, Andrews J, Crease TJ, Tang H, Lucas SM, Robertson HM, Bork P, Koonin EV, Zdobnov EM, Grigoriev IV, Lynch M, Boore JL (2011) The ecoresponsive genome of Daphnia pulex. Science 331(6017):555–561PubMedPubMedCentralCrossRefGoogle Scholar
  15. Corbitt TS, Hardie J (1985) Juvenile hormone effects on polymorphism in the pea aphid, Acyrthosiphon pisum. Entomol Exp Appl 38:131–135CrossRefGoogle Scholar
  16. Cristescu MEA, Colbourne JK, Radivojac J, Lynch M (2006) A microsatellite-based genetic linkage map of the waterflea, Daphnia pulex: on the prospect of crustacean genomics. Genomics 88:415–430PubMedCrossRefGoogle Scholar
  17. Cui Y, Sui Y, Xu J, Zhu F, Palli SR (2014) Juvenile hormone regulates Aedes aegypti Krüppel homolog 1 through a conserved E box motif. Insect Biochem Mol Biol 52:23–32PubMedPubMedCentralCrossRefGoogle Scholar
  18. Daimon T, Shinoda T (2013) Function, diversity, and application of insect juvenile hormone epoxidases (CYP15). Biotechnol Appl Biochem 60(1):82–91PubMedCrossRefGoogle Scholar
  19. de Kort CAD, Granger NA (1981) Regulation of the juvenile hormone titer. Annu Rev Entomol 26:1–28CrossRefGoogle Scholar
  20. Denlinger DL (2002) Regulation of diapause. Annu Rev Entomol 47:93–122PubMedCrossRefGoogle Scholar
  21. Eads BD, Colbourne JK, Bohuski E, Andrews J (2007) Profiling sex-biased gene expression during parthenogenetic reproduction in Daphnia pulex. BMC Genomics 8:464PubMedPubMedCentralCrossRefGoogle Scholar
  22. Eads BD, Andrews J, Colbourne JK (2008) Ecological genomics in Daphnia: stress responses and environmental sex determination. Heredity 100:184–190PubMedCrossRefGoogle Scholar
  23. Emlen DJ, Nijhout HF (1999) Hormonal control of male horn length dimorphism in the dung beetle Onthophagus taurus (Coleoptera: Scarabaeidae). J Insect Physiol 45:45–53PubMedCrossRefGoogle Scholar
  24. Fröhlich T, Arnold GJ, Fritsch R, Mayr T, Laforsch C (2009) LC-MS/MS-based proteome profiling in Daphnia pulex and Daphnia longicephala: the Daphnia pulex genome database as a key for high throughput proteomics in Daphnia. BMC Genomics 10:171PubMedPubMedCentralCrossRefGoogle Scholar
  25. Gao N, Schantz MV, Foster RG, Hardie J (1999) The putative brain photoperiodic photoreceptors in the vetch aphid, Megoura viciae. J Insect Physiol 45:1011–1019PubMedCrossRefGoogle Scholar
  26. Geister TL, Lorenz MW, Hoffmann KH, Fischer K (2008) Effects of the NMDA receptor antagonist MK-801 on female reproduction and juvenile hormone biosynthesis in the cricket Gryllus bimaculatus and the butterfly Bicyclus anynana. J Exp Biol 211:1587–1593PubMedCrossRefGoogle Scholar
  27. Gilbert SF, Epel D (2009) Ecological developmental biology: integrating epigenetics, medicine, and evolution. Sinauer Associates, SunderlandGoogle Scholar
  28. Gliwicz M, Slusarczyk A, Slusarczyk M (2001) Life history synchronization in a long-lifespan single-cohort Daphnia population in a fishless alpine lake. Oecologia 128:368–378PubMedCrossRefGoogle Scholar
  29. Gorbi G, Moroni F, Sei S, Rossi V (2011) Anticipatory maternal effects in two different clones of Daphnia magna in response to food shortage. J Limnol 70(2):222–230CrossRefGoogle Scholar
  30. Gotoh H, Miyakawa H, Ishikawa A, Ishikawa Y, Sugime Y, Emlen DJ, Lavine LC, Miura T (2014) Developmental link between sex and nutrition; doublesex regulates sex-specific mandible growth via juvenile hormone signaling in stag beetles. PLoS Genet 10(1):e1004098PubMedPubMedCentralCrossRefGoogle Scholar
  31. Grosvenor GH, Smith G (1913) The life-cycle of Moina rectirostris. Q J Microsc Sci 2(58):511–522Google Scholar
  32. Hardie J (1981) Juvenile hormone and photoperiodically controlled polymorphism in Aphis fabae: prenatal effects on presumptive oviparae. J Insect Physiol 27(4):257–265CrossRefGoogle Scholar
  33. Hebert PDN (1977) Niche overlap among species in the Daphnia carinata complex. J Anim Ecol 46(2):399–409CrossRefGoogle Scholar
  34. Hiruta C, Tochinai S (2012) How does the alteration of meiosis evolve to parthenogenesis? – case study in a water flea, Daphnia pulex. Meiosis, InTech 109:122Google Scholar
  35. Hiruta C, Nishida C, Tochinai S (2010) Abortive meiosis in the oogenesis of parthenogenetic Daphnia pulex. Chromosom Res 18:833–840CrossRefGoogle Scholar
  36. Hiruta C, Toyota K, Miyakawa H, Ogino Y, Miyagawa S, Tatarazako N, Shaw JR, Iguchi T (2013) Development of a microinjection system for RNA interference in the water flea Daphnia pulex. BMC Biotechnol 13:96PubMedPubMedCentralCrossRefGoogle Scholar
  37. Hiruta C, Ogino Y, Sakuma T, Toyota K, Miyagawa S, Yamamoto T, Iguchi T (2014a) Targeted gene disruption by use of transcription activator-like effector nuclease (TALEN) in the water flea Daphnia pulex. BMC Biotechnol 14:95PubMedPubMedCentralCrossRefGoogle Scholar
  38. Hiruta C, Toyota K, Miyakawa H, Sumiya E, Iguchi T (2014b) Sexual reproduction is a key element in the life history strategy of water fleas, Daphnia magna and Daphnia pulex: casting a spotlight on male induction and its morphology. Daphnia: biology and mathematics perspectives, Nova, pp 261–278Google Scholar
  39. Hiruta C, Kakui K, Tollefsen KE, Iguchi T (2018) Targeted gene disruption by use of CRISPR/Cas9 ribonucleoprotein complexes in the water flea Daphnia pulex. Gene Cells in pressGoogle Scholar
  40. Hobæk A, Larsson P (1990) Sex determination in Daphnia magna. Ecology 71(6):2255–2268CrossRefGoogle Scholar
  41. Ignace DD, Dodson SI, Kashian DR (2011) Identification of the critical timing of sex determination in Daphnia magna (Crustacea, Branchiopoda) for use in toxicological studies. Hydrobiologia 668:117–123CrossRefGoogle Scholar
  42. Innes DJ, Dunbrack RL (1993) Sex allocation variation in Daphnia pulex. J Evol Biol 6:559–575CrossRefGoogle Scholar
  43. Ishikawa A, Ogawa K, Gotoh H, Walsh TK, Tagu D, Brisson JA, Rispe C, Jaubert-Possamai S, Kanbe T, Tsubota T, Shiotsuki T, Miura T (2012) Juvenile hormone titre and related gene expression during the change of reproductive modes in the pea aphid. Insect Mol Biol 21(1):49–60PubMedCrossRefGoogle Scholar
  44. Kato Y, Kobayashi K, Oda S, Colbourn JK, Tatarazako N, Watanabe H, Iguchi T (2008) Molecular cloning and sexually dimorphic expression of DM-domain genes in Daphnia magna. Genomics 91:94–101PubMedCrossRefGoogle Scholar
  45. Kato Y, Kobayashi K, Oda S, Tatarazako N, Watanabe H, Iguchi T (2010a) Sequence divergence and expression of a transformer gene in the branchiopod crustacean, Daphnia magna. Genomics 95:160–165PubMedPubMedCentralCrossRefGoogle Scholar
  46. Kato Y, Kobayashi K, Watanabe H, Iguchi T (2010b) Introduction of foreign DNA into the water flea, Daphnia magna, by electroporation. Ecotoxicology 19:589–592PubMedCrossRefGoogle Scholar
  47. Kato Y, Kobayashi K, Watanabe H, Iguchi T (2011a) Environmental sex determination in the branchiopod crustacean Daphnia magna: deep conservation of a doublesex gene in the sex-determining pathway. PLoS Genet 7(3):e1001345PubMedPubMedCentralCrossRefGoogle Scholar
  48. Kato Y, Shiga Y, Kobayashi K, Tokishita S, Yamagata H, Iguchi T, Watanabe H (2011b) Development of an RNA interference method in the cladoceran crustacean Daphnia magna. Dev Genes Evol 220:337–345PubMedCrossRefGoogle Scholar
  49. Kato Y, Matsuura T, Watanabe H (2012) Genomic integration and germline transmission of plasmid injected into crustacean Daphnia magna eggs. PLoS One 7(9):e45318PubMedPubMedCentralCrossRefGoogle Scholar
  50. Kayukawa T, Minakuchi C, Namiki T, Togawa T, Yoshiyama M, Kamimura M, Mita K, Imanishi S, Kiuchi M, Ishikawa Y, Shinoda T (2012) Transcriptional regulation of juvenile hormone-mediated induction of Krüppel homolog 1, a repressor of insect metamorphosis. Proc Natl Acad Sci U S A 109(29):11729–11734PubMedPubMedCentralCrossRefGoogle Scholar
  51. Kayukawa T, Tateishi K, Shinoda T (2013) Establishement of a versatile cell line for juvenile hormone signaling analysis in Tribolium casteanum. Sci Rep 3:1570PubMedPubMedCentralCrossRefGoogle Scholar
  52. Kim K, Kotov AA, Taylor DJ (2006) Hormonal induction of undescribed males resolves cryptic species of cladocerans. Proc R Soc Lond Ser B Biol Sci 273:141–147CrossRefGoogle Scholar
  53. Kleiven OT, Larsson P, Hobæk A (1992) Sexual reproduction in Daphnia magna requires three stimuli. Oikos 65(2):197–206CrossRefGoogle Scholar
  54. Kopp A (2012) Dmrt genes in the development and evolution of sexual dimorphism. Trends Genet 28(4):175–184PubMedPubMedCentralCrossRefGoogle Scholar
  55. Kotov A, Forró L, Korovchinsky NM, Petrusek A (2013) Crustacea-Cladocera checkList. World checklist of freshwater Cladocera species World Wide Web electronic publication. http://fada.biodiversity.be/group/show/17
  56. LaMontagne JM, McCauley E (2001) Maternal effects in Daphnia: what mothers are telling their offspring and do they listen? Ecol Lett 4:64–71CrossRefGoogle Scholar
  57. Laufer H, Biggers WJ (2001) Unifying concepts learned from methyl farnesoate for invertebrate reproduction and post-embryonic development. Am Zool 41:442–457Google Scholar
  58. Laufer H, Borst D, Baker FC, Carrasco C, Sinkus M, Reuter CC, Tsai LW, Schooley DA (1987) Identification of a juvenile hormone-like compound in a crustacean. Science 235(4785):202–205PubMedCrossRefGoogle Scholar
  59. Lees AD (1964) The location of the photoperiodic receptors in the aphid Megoura viciae buckton. J Exp Biol 41:119–133PubMedGoogle Scholar
  60. Lees AD (1973) Photoperiodic time measurement in the aphid Megoura viciae. J Insect Physiol 19(12):2279–2316CrossRefGoogle Scholar
  61. Lees AD (1981) Action spectra for the photoperiodic control of polymorphism in the aphid Megoura viciae. J Insect Physiol 27(11):761–771CrossRefGoogle Scholar
  62. Li M, Mead EA, Zhu J (2011) Heterodimer of two bHLH-PAS proteins mediates juvenile hormone-induced gene expression. Proc Natl Acad Sci U S A 108(2):638–643PubMedCrossRefGoogle Scholar
  63. Little TJ, O’Connor B, Colegrave N, Watt K, Read AF (2003) Maternal transfer of strain-specific immunity in an invertebrate. Curr Biol 13:489–492PubMedCrossRefGoogle Scholar
  64. Matson CK, Zarkower D (2012) Sex and the singular DM domain: insights into sexual regulation, evolution and plasticity. Nat Rev Genet 13:163–174PubMedPubMedCentralCrossRefGoogle Scholar
  65. Mittmann B, Ungerer P, Klann M, Stollewerk A, Wolff C (2014) Development and staging of the water flea Daphnia magna (Straus, 1820; Cladocera, Daphniidae) based on morphological landmarks. EvoDevo 5:12PubMedPubMedCentralCrossRefGoogle Scholar
  66. Miura T (2005) Developmental regulation of caste-specific characters in social-insect polyphenism. Evol Dev 7(2):122–129PubMedCrossRefGoogle Scholar
  67. Miyakawa H, Gotoh H, Sugimoto N, Miura T (2013a) Effect of juvenoids on predator-induced polyphenism in the water flea, Daphnia pulex. J Exp Zool A Comp Exp Biol 319(8):440–450CrossRefGoogle Scholar
  68. Miyakawa H, Toyota K, Hirakawa I, Ogino Y, Miyagawa S, Oda S, Tatarazako N, Miura T, Colbourne JK, Iguchi T (2013b) A mutation in the receptor methoprene-tolerant alters juvenile hormone response in insects and crustaceans. Nat Commun 4:1856PubMedCrossRefGoogle Scholar
  69. Miyakawa H, Toyota K, Sumiya E, Iguchi T (2014) Comparison of JH signaling in insects and crustaceans. Curr Opin Insect Sci 1:81–87CrossRefGoogle Scholar
  70. Naitou A, Kato Y, Nakanishi T, Matsuura T, Watanabe H (2015) Heterodimeric TALENs induce targeted heritable mutations in the crustacean Daphnia magna. Biol Open 4:364–369PubMedPubMedCentralCrossRefGoogle Scholar
  71. Nakanishi T, Kato Y, Matsuura T, Watanabe H (2014) CRISPR/Cas-mediated targeted mutagenesis in Daphnia magna. PLoS One 9(5):e98363PubMedPubMedCentralCrossRefGoogle Scholar
  72. Nakanishi T, Kato Y, Matsuura T, Watanabe H (2015) TALEN-mediated homologous recombination in Daphnia magna. Sci Rep 5:18312PubMedPubMedCentralCrossRefGoogle Scholar
  73. Nijhout HF (1994) Insect hormones. Princeton University Press, PrincetonGoogle Scholar
  74. Oda S, Tatarazako N, Watanabe H, Morita M, Iguchi T (2005) Production of male neonates in four cladoceran species exposed to a juvenile hormone analog, fenoxycarb. Chemosphere 60:74–78PubMedCrossRefGoogle Scholar
  75. Oda S, Tatarazako N, Watanabe H, Morita M, Iguchi T (2006) Genetic differences in the production of male neonates in Daphnia magna exposed to juvenile hormone analogs. Chemosphere 63:1477–1484PubMedCrossRefGoogle Scholar
  76. Oda S, Kato Y, Watanabe H, Tatarazako N, Iguchi T (2011) Morphological changes in Daphnia galeata induced by a crustacean terpenoid hormone and its analog. Environ Toxicol Chem 30(1):232–238PubMedCrossRefGoogle Scholar
  77. Olesen J (1998) A phylogenetic analysis of the Conchostraca and Cladocera (Crustacea, Branchiopoda, Diplostraca). Zool J Linnean Soc 122:491–536CrossRefGoogle Scholar
  78. Olmstead AW, LeBlanc GA (2002) Juvenoid hormone methyl farnesoate is a sex determinant in the crustacean Daphnia magna. J Exp Zool 293:736–739PubMedCrossRefGoogle Scholar
  79. Pijanowska J, Stolpe G (1996) Summer diapause in Daphnia as a reaction to the presence of fish. J Plankton Res 18(8):1407–1412CrossRefGoogle Scholar
  80. Poynton HC, Taylor NS, Hicks J, Scanlan L, Loguinov AV, Vulpe C, Viant MR (2011) Metabolomics of microliter hemolymph samples enables an improved understanding of the combined metabolic and transcriptional responses of Daphnia magna to cadmium. Environ Sci Technol 45:3710–3717PubMedCrossRefGoogle Scholar
  81. Raymond CS, Shamu CE, Shen MM, Seifert KJ, Hirsch B, Hodgkin J, Zarkower D (1998) Evidence for evolutionary conservation of sex-determining genes. Nature 391:691–695PubMedCrossRefGoogle Scholar
  82. Raymond CS, Murphy MW, O’Sullivan MG, Bardwell VJ, Zarkower D (2000) Dmrt1, a gene related to worm and fly sexual regulators, is required for mammalian testis differentiation. Genes Dev 14(20):2587–2595PubMedPubMedCentralCrossRefGoogle Scholar
  83. Robinett CC, Vaughan AG, Knapp J-M, Baker BS (2010) Sex and the single cell. II. There is a time and place for sex. PLoS Biol 8(5):e1000365PubMedPubMedCentralCrossRefGoogle Scholar
  84. Robinson CD, Lourido S, Whelan SP, Dudycha JL, Lynch M, Isern S (2006) Viral transgenesis of embryonic cell cultures from the freshwater microcrustacean Daphnia. J Exp Zool 305:62–67CrossRefGoogle Scholar
  85. Rossi F (1980) Comparative observations on the female reproductive system and parthenogenetic oogenesis in Cladocera. Boll Zool 47:21–38CrossRefGoogle Scholar
  86. Routtu J, Jansen B, Colson I, Meester LD, Ebert D (2010) The first-generation Daphnia magna linkage map. BMC Genomics 11:508PubMedPubMedCentralCrossRefGoogle Scholar
  87. Sagawa K, Yamagata H, Shiga Y (2005) Exploring embryonic germ line development in the water flea, Daphnia magna, by zinc-finger-containing VASA as a marker. Gene Expr Patterns 5:669–678PubMedCrossRefGoogle Scholar
  88. Shaw JR, Colbourne JK, Davey JC, Glaholt SP, Hampton TH, Chen CY, Folt CL, Hamilton JW (2007) Gene response profiles for Daphnia pulex exposed to the environmental stressor cadmium reveals novel crustacean metallothioneins. BMC Genomics 8:477PubMedPubMedCentralCrossRefGoogle Scholar
  89. Shen MM, Hodgkin J (1988) Mab-3, a gene required for sex-specific yolk protein expression and a male-specific lineage in C. elegans. Cell 54:1019–1031PubMedPubMedCentralCrossRefGoogle Scholar
  90. Simon J-C, Pfrender ME, Tollrian R, Tagu D, Colbourne JK (2011) Genomics of environmentally induced phenotypes in 2 extremely plastic arthropods. J Hered 102(5):512–525PubMedPubMedCentralCrossRefGoogle Scholar
  91. Sin YW, Kenny NJ, Qu Z, Chan KW, Chan KWS, Cheong SPS, Leung RWT, Chan TF, Bendena WG, Chu KH, Tobe SS, Hui JHL (2015) Identification of putative ecdysteroid and juvenile hormone pathway genes in the shrimp Neocaridina denticulata. Gen Comp Endocrinol 214:167–176.  https://doi.org/10.1016/j.ygcen.2014.07.018 CrossRefPubMedGoogle Scholar
  92. Sinev AY, Sanoamuang L-O (2011) Hormonal induction of males as a method for studying tropical cladocerans: description of males of four chydorid species (Cladocera: Anomopoda: Chydoridae). Zootaxa 2826:45–56Google Scholar
  93. Smith G (1915) The life-cycle of Cladocera, with remarks on the physiology of growth and reproduction in crustacea. Proc R Soc Lond B Biol Sci 88(605):418–435CrossRefGoogle Scholar
  94. Smith KC, Macagno ER (1990) UV photoreceptors in the compound eye of Daphnia magna (Crustacea, Branchiopoda). A fourth spectral class in single ommatidia. J Comp Physiol A Sens Neural Behav Physiol 166:597–606CrossRefGoogle Scholar
  95. Song J, Zhongxia W, Wang Z, Deng S, Zhou S (2014) Krüppel-homolog 1 mediates juvenile hormone action to promote vitellogenesis and oocyte maturation in the migratory locust. Insect Biochem Mol Biol 52:94–101PubMedCrossRefGoogle Scholar
  96. Stenderup JT, Olesen J, Glenner H (2006) Molecular phylogeny of the Branchiopoda (Crustacea) – multiple approaches suggest a ‘diplostracan’ ancestry of the Notostraca. Mol Phylogenet Evol 41:182–194PubMedCrossRefGoogle Scholar
  97. Suzuki Y, Truman JW, Riddiford LM (2008) The role of broad in the development of Tribolium castaneum: implications for the evolution of the holometabolous insect pupa. Development 135:569–577PubMedCrossRefGoogle Scholar
  98. Tanaka S (2001) Endocrine mechanisms controlling body-color polymorphism in locusts. Arch Insect Biochem Physiol 47:139–149PubMedCrossRefGoogle Scholar
  99. Tatarazako N, Oda S, Watanabe H, Morita M, Iguchi T (2003) Juvenile hormone agonists affect the occurrence of male Daphnia. Chemosphere 53:827–833PubMedCrossRefGoogle Scholar
  100. Taylor DJ, Crease TJ, Brown WM (1999) Phylogenetic evidence for a single long-lived clade of crustacean cyclic parthenogens and its implications for the evolution of sex. Proc R Soc Lond B Biol Sci 266:791–797CrossRefGoogle Scholar
  101. Threlkeld ST (1979) Estimating cladoceran birth rates: the importance egg mortality and the egg age distribution. Limnol Oceanogr 24(4):601–611CrossRefGoogle Scholar
  102. Tollrian R (1995) Predator-induced morphological defenses: costs, life history shifts, and maternal effects in Daphnia pulex. Ecology 76(6):1691–1705CrossRefGoogle Scholar
  103. Toyota K, Kato Y, Sato M, Sugiura N, Miyagawa S, Miyakawa H, Watanabe H, Oda S, Ogino Y, Hiruta C, Mizutani T, Tatarazako N, Paland S, Jackson C, Colbourne JK, Iguchi T (2013) Molecular cloning of doublesex genes of four cladocera (water flea) species. BMC Genomics 14:239PubMedPubMedCentralCrossRefGoogle Scholar
  104. Toyota K, Kato Y, Miyakawa H, Yatsu R, Mizutani T, Ogino Y, Miyagawa S, Watanabe H, Nishide H, Uchiyama I, Tatarazako N, Iguchi T (2014) Molecular impact of juvenile hormone agonists on neonatal Daphnia magna. J Appl Toxicol 34:537–544PubMedCrossRefGoogle Scholar
  105. Toyota K, Miyakawa H, Hiruta C, Furuta K, Ogino Y, Shinoda T, Tatarazako N, Miyagawa S, Shaw JR, Iguchi T (2015a) Methyl farnesoate synthesis is necessary for the environmental sex determination in the water flea Daphnia pulex. J Insect Physiol 80:22–30PubMedCrossRefGoogle Scholar
  106. Toyota K, Miyakawa H, Yamaguchi K, Shigenobu S, Ogino Y, Tatarazako N, Miyagawa S, Iguchi T (2015b) NMDA receptor activation upstream of methyl farnesoate signaling for short day-induced male offspring production in the water flea, Daphnia pulex. BMC Genomics 16:186PubMedPubMedCentralCrossRefGoogle Scholar
  107. Toyota K, Hiruta C, Ogino Y, Miyagawa S, Okamura T, Onishi Y, Tatarazako N, Iguchi T (2016) Comparative developmental staging of the female and male water fleas Daphnia pulex and Daphnia magna during embryogenesis. Zool Sci (in press)Google Scholar
  108. Tsuchiya D, Eads BD, Zolan ME (2009) Methods for meiotic chromosome preparation, immunofluorescence, and fluorescence in situ hybridization in Daphnia pulex. Methods Mol Biol 558:235–249PubMedCrossRefGoogle Scholar
  109. Ventura T, Rosen O, Sagi A (2015) From the discovery of the crustacean androgenic gland to the insulin-like hormone in six decades. Gen Comp Endocrinol 173:381–388CrossRefGoogle Scholar
  110. Watanabe H, Tatarazako N, Oda S, Nishide H, Uchiyama I, Morita M, Iguchi T (2005) Analysis of expressed sequence tags of the water flea Daphnia magna. Genome 48(4):606–609PubMedCrossRefGoogle Scholar
  111. Watanabe H, Takahashi E, Nakamura Y, Oda S, Tatarazako N, Iguchi T (2007) Development of a Daphnia magna DNA microarray for evaluating the toxicity of environmental chemicals. Environ Toxicol Chem 26(4):669–676PubMedCrossRefGoogle Scholar
  112. Weiss LC, Tollrian R, Herbert Z, Laforsch C (2012) Morphology of the Daphnia nervous system: a comparative study on Daphnia pulex, Daphnia lumholtzi, and Daphnia longicephala. J Morphol 273:1392–1405PubMedCrossRefGoogle Scholar
  113. Yampolsky LY (1992) Genetic variation in the sexual reproduction rate within a population of a cyclic parthenogen, Daphnia magna. Evolution 46(3):833–837PubMedCrossRefGoogle Scholar
  114. Zhang Z, Xu J, Sheng Z, Sui Y, Palli SR (2011) Steroid receptor co-activator is required for juvenile hormone signal transduction through a bHLH-PAS transcription factor, methoprene tolerant. J Biol Chem 286(10):8437–8447PubMedCrossRefGoogle Scholar
  115. Zmora N, Chung JS (2014) A novel hormone is required for the development of reproductive phenotypes in adult female crabs. Endocrinology 155(1):230–239PubMedCrossRefGoogle Scholar

Copyright information

© Springer Japan KK, part of Springer Nature 2018

Authors and Affiliations

  • Kenji Toyota
    • 1
    • 2
    • 3
  • Norihisa Tatarazako
    • 4
  • Taisen Iguchi
    • 1
    • 5
  1. 1.Okazaki Institute for Integrative Bioscience, National Institute for Basic Biology, National Institutes of Natural SciencesSOKENDAI (The Graduate University for Advanced Studies)OkazakiJapan
  2. 2.Department of Biological Science and TechnologyTokyo University of ScienceKatsushika, TokyoJapan
  3. 3.Department of Biological Science, Faculty of ScienceKanagawa UniversityHiratsukaJapan
  4. 4.Graduate School of AgricultureEhime UniversityMatsuyamaJapan
  5. 5.Graduate School of NanobioscienceYokohama City UniversityYokohamaJapan

Personalised recommendations