Rubbish DNA: The Functionless Fraction of the Human Genome

  • Dan Graur
Part of the Evolutionary Studies book series (EVOLUS)


Because genomes are products of natural processes rather than “intelligent design,” all genomes contain functional and nonfunctional parts. The fraction of the genome that has no biological function is called “rubbish DNA.” Rubbish DNA consists of “junk DNA,” i.e., the fraction of the genome on which selection does not operate, and “garbage DNA,” i.e., sequences that lower the fitness of the organism but exist in the genome because purifying selection is neither omnipotent nor instantaneous. In this chapter, I (1) review the concepts of genomic function and functionlessness from an evolutionary perspective, (2) present a precise nomenclature of genomic function, (3) discuss the evidence for the existence of vast quantities of junk DNA within the human genome, (4) discuss the mutational mechanisms responsible for generating junk DNA, (5) spell out the necessary evolutionary conditions for maintaining junk DNA, (6) outline various methodologies for estimating the functional fraction within the genome, and (7) present a recent estimate for the functional fraction of our genome.


Human genome Evolution Functional DNA Rubbish DNA Junk DNA Garbage DNA Literal DNA Indifferent DNA Pseudogenes Lazarus DNA Zombie DNA Jekyll-to-Hyde DNA 


  1. Adey A et al (2013) The haplotype-resolved genome and epigenome of the aneuploid HeLa cancer cell line. Nature 500:207–211PubMedPubMedCentralCrossRefGoogle Scholar
  2. Ahituv N, Zhu Y, Visel A, Holt A, Afzal V, Pennacchio LA, Rubin EM (2007) Deletion of ultraconserved elements yields viable mice. PLoS Biol 5:e234PubMedPubMedCentralCrossRefGoogle Scholar
  3. Amundson R, Lauder GV (1994) Function without purpose. Biol Philos 9:443–469CrossRefGoogle Scholar
  4. Andrés AM et al (2009) Targets of balancing selection in the human genome. Mol Biol Evol 26:2755–2764PubMedPubMedCentralCrossRefGoogle Scholar
  5. Aparicio S et al (2002) Whole-genome shotgun assembly and analysis of the genome of Fugu rubripes. Science 297:1301–1310PubMedCrossRefGoogle Scholar
  6. Aronson AI et al (1960) Biophysics. In: Year book 59: Carnegie Institution of Washington. Lord Baltimore Press, Baltimore, pp 229–289Google Scholar
  7. Avarello R, Pedicini A, Caiulo A, Zuffardi O, Fraccaro M (1992) Evidence for an ancestral alphoid domain on the long arm of human chromosome 2. Hum Genet 89:247–249PubMedCrossRefGoogle Scholar
  8. Babushok DV et al (2007) A novel testis ubiquitin-binding protein gene arose by exon shuffling in hominoids. Genome Res 17:1129–1138PubMedPubMedCentralCrossRefGoogle Scholar
  9. Bailey JA, Liu G, Eichler EE (2003) An Alu transposition model for the origin and expansion of human segmental duplications. Am J Hum Genet 73:823–834PubMedPubMedCentralCrossRefGoogle Scholar
  10. Bartolomé C, Bello X, Maside X (2009) Widespread evidence for horizontal transfer of transposable elements across Drosophila genomes. Genome Biol 10:R22PubMedPubMedCentralCrossRefGoogle Scholar
  11. Biémont C, Vieira C (2006) Junk DNA as an evolutionary force. Nature 443:521–524PubMedCrossRefGoogle Scholar
  12. Brenner S (1998) Refuge of spandrels. Curr Biol 8:R669PubMedCrossRefGoogle Scholar
  13. Britten RJ (1994) Evidence that most Alu sequences were inserted in a process that ceased about 30 million years ago. Proc Natl Acad Sci U S A 91:6148–6150PubMedPubMedCentralCrossRefGoogle Scholar
  14. Brookfield JF (2000) Genomic sequencing: the complexity conundrum. Curr Biol 10:R514–R515PubMedCrossRefGoogle Scholar
  15. Brookfield JFY, Badge RM (1997) Population genetics models of transposable elements. Genetica 100:281–294PubMedCrossRefGoogle Scholar
  16. Brosius J, Gould SJ (1992) On “genomenclature”: a comprehensive (and respectful) taxonomy for pseudogenes and other “junk DNA”. Proc Natl Acad Sci U S A 89:10706–10710PubMedPubMedCentralCrossRefGoogle Scholar
  17. Brunet TDP, Doolittle WF (2014) Getting “function” right. Proc Natl Acad Sci U S A 111:E3365PubMedCrossRefGoogle Scholar
  18. Burgess J (1985) An introduction to plant cell development. Cambridge University Press, CambridgeGoogle Scholar
  19. Carlson CS, Thomas DJ, Eberle MA, Swanson JE, Livingston RJ, Rieder MJ, Nickerson DA (2005) Genomic regions exhibiting positive selection identified from dense genotype data. Genome Res 15:1553–1565PubMedPubMedCentralCrossRefGoogle Scholar
  20. Cavalier-Smith T (1978) Nuclear volume control by nucleoskeletal DNA, selection for cell volume and cell growth rate, and the solution of the DNA C-value paradox. J Cell Sci 34:247–278PubMedGoogle Scholar
  21. Cavalier-Smith T (1982) Skeletal DNA and the evolution of genome size. Annu Rev Biophys Bioeng 11:273–302PubMedCrossRefGoogle Scholar
  22. Cavalier-Smith T (ed) (1985) The evolution of genome size. Wiley, New YorkGoogle Scholar
  23. Cavalier-Smith T (2005) Economy, speed and size matter: evolutionary forces driving nuclear genome miniaturization and expansion. Ann Bot 95:147–175PubMedPubMedCentralCrossRefGoogle Scholar
  24. Chalopin D, Naville M, Plard F, Galiana D, Volff JN (2015) Comparative analysis of transposable elements highlights mobilome diversity and evolution in vertebrates. Genome Biol Evol 7:567–580PubMedPubMedCentralCrossRefGoogle Scholar
  25. Chen YH et al (2003) KCNQ1 gain-of-function mutation in familial atrial fibrillation. Science 299:251–254PubMedCrossRefGoogle Scholar
  26. Chénais B, Caruso A, Hiard S, Casse N (2012) The impact of transposable elements on eukaryotic genomes: from genome size increase to genetic adaptation to stressful environments. Gene 509:7–15PubMedCrossRefGoogle Scholar
  27. Cho JH, Brant SR (2011) Recent insights into the genetics of inflammatory bowel disease. Gastroenterology 140:1704–1712PubMedPubMedCentralCrossRefGoogle Scholar
  28. Chun S, Fay JC (2009) Identification of deleterious mutations within three human genomes. Genome Res 19:1553–1561PubMedPubMedCentralCrossRefGoogle Scholar
  29. Comings DE (1972) The structure and function of chromatin. Adv Hum Genet 3:237–431PubMedCrossRefGoogle Scholar
  30. Conrad DF et al (2011) Variation in genome-wide mutation rates within and between human families. Nat Genet 43:712–714PubMedPubMedCentralCrossRefGoogle Scholar
  31. Cooper GM, Shendure J (2011) Needles in stacks of needles: finding disease-causal. Nat Rev Genet 12:628–640PubMedCrossRefGoogle Scholar
  32. Cummins R (1975) Functional analysis. J Philos 72:741–765CrossRefGoogle Scholar
  33. Daniels SB, Peterson KR, Strausbaugh LD, Kidwell MG, Chovnick A (1990) Evidence for horizontal transmission of the P transposable element between Drosophila species. Genetics 124:339–355PubMedPubMedCentralGoogle Scholar
  34. Darlington CD (1937) Recent advances in cytology, 2nd edn. Blakiston, PhiladelphiaGoogle Scholar
  35. De Gobbi M et al (2006) A regulatory SNP causes a human genetic disease by creating a new transcriptional promoter. Science 312:1215–1217PubMedCrossRefGoogle Scholar
  36. Denoeud F et al (2007) Prominent use of distal 5′ transcription start sites and discovery of a large number of additional exons in ENCODE regions. Genome Res 17:746–759PubMedPubMedCentralCrossRefGoogle Scholar
  37. Dietrich FS et al (2004) The Ashbya gossypii genome as a tool for mapping the ancient Saccharomyces cerevisiae genome. Science 304:304–307PubMedCrossRefGoogle Scholar
  38. Doolittle WF (2013) Is junk DNA bunk? A critique of ENCODE. Proc Natl Acad Sci U S A 110:5294–5300PubMedPubMedCentralCrossRefGoogle Scholar
  39. Doolittle WF, Sapienza C (1980) Selfish genes, the phenotype paradigm and genome evolution. Nature 284:601–603PubMedCrossRefGoogle Scholar
  40. Doolittle WF, Brunet TDP, Linquist S, Gregory TR (2014) Distinguishing between “function” and “effect” in genome biology. Genome Biol Evol 6:1234–1237Google Scholar
  41. Douglas S et al (2001) The highly reduced genome of an enslaved algal nucleus. Nature 410:1091–1096PubMedCrossRefGoogle Scholar
  42. Eddy SR (2012) The C-value paradox, junk DNA and ENCODE. Curr Biol 22:R898–R899PubMedCrossRefGoogle Scholar
  43. Ehret CF, de Haller G (1963) Origin, development, and maturation of organelles and organelle systems of the cell surface in Paramecium. J Ultrastruct Res 23(Supplement 6):1–42CrossRefGoogle Scholar
  44. ENCODE Project Consortium (2012) An integrated encyclopedia of DNA elements in the human genome. Nature 489:57–74CrossRefGoogle Scholar
  45. Excoffier L, Hofer T, Foll M (2009) Detecting loci under selection in a hierarchically structured population. Heredity 103:285–298PubMedCrossRefGoogle Scholar
  46. Ezkurdia I et al (2014) Multiple evidence strands suggest that there may be as few as 19,000 human protein-coding genes. Hum Mol Genet 23:5866–5878PubMedPubMedCentralCrossRefGoogle Scholar
  47. Faulkner GJ et al (2009) The regulated retrotransposon transcriptome of mammalian cells. Nat Genet 41:563–571PubMedCrossRefGoogle Scholar
  48. Fu W et al (2013) Analysis of 6,515 exomes reveals the recent origin of most human protein-coding variants. Nature 493:216–220PubMedCrossRefGoogle Scholar
  49. Gherman A et al (2007) Population bottlenecks as a potential major shaping force of human genome architecture. PLoS Genet 3:e119PubMedPubMedCentralCrossRefGoogle Scholar
  50. Gilson PR, Su V, Slamovits CH, Reith ME, Keeling PJ, McFadden GI (2006) Complete nucleotide sequence of the chlorarachniophyte nucleomorph: nature’s smallest nucleus. Proc Natl Acad Sci U S A 103:9566–9571PubMedPubMedCentralCrossRefGoogle Scholar
  51. Goldberg WM (2013) The biology of reefs and reef organisms. University of Chicago Press, ChicagoCrossRefGoogle Scholar
  52. Graur D (2016) Molecular and genome evolution. Sinauer Associates, SunderlandGoogle Scholar
  53. Graur D (2017) An upper limit on the functional fraction of the human genome. Genome Biol Evol 9:1880–1885Google Scholar
  54. Graur D, Zheng Y, Price N, Azevedo RB, Zufall RA, Elhaik E (2013) On the immortality of television sets: “function” in the human genome according to the evolution-free gospel of ENCODE. Genome Biol Evol 5:578–590PubMedPubMedCentralCrossRefGoogle Scholar
  55. Graur D, Zheng Y, Azevedo RB (2015) An evolutionary classification of genomic function. Genome Biol Evol 7:642–645PubMedPubMedCentralCrossRefGoogle Scholar
  56. Gregory TR (2001) Coincidence, coevolution, or causation? DNA content, cell size, and the C-value enigma. Biol Rev 76:65–101PubMedCrossRefGoogle Scholar
  57. Gregory TR (2003) Variation across amphibian species in the size of the nuclear genome supports a pluralistic, hierarchical approach to the C-value enigma. Biol J Linn Soc 79:329–339CrossRefGoogle Scholar
  58. Greilhuber J, Leitch IJ (2013) Genome size and the phenotype. In: Leitch IJ, Greilhuber J, Dolezel J, Wendel J (eds) Plant genome diversity, vol 2. Springer, Wien, pp 323–344Google Scholar
  59. Greilhuber J, Dolezel J, Lysák MA, Bennett MD (2005) The origin, evolution and proposed stabilization of the terms ‘genome size’ and ‘C-value’ to describe nuclear DNA contents. Ann Bot 95:255–260PubMedPubMedCentralCrossRefGoogle Scholar
  60. Greilhuber J, Borsch T, Müller K, Worberg A, Porembski S, Barthlott W (2006) Smallest angiosperm genomes found in Lentibulariaceae, with chromosomes of bacterial size. Plant Biol 8:770–777PubMedCrossRefGoogle Scholar
  61. Grossman SR et al (2010) A composite of multiple signals distinguishes causal variants in regions of positive selection. Science 327:883–886PubMedCrossRefGoogle Scholar
  62. Grossman SR et al (2013) Identifying recent adaptations in large-scale genomic data. Cell 152:703–713PubMedPubMedCentralCrossRefGoogle Scholar
  63. Haldane JBS (1937) The effect of variation on fitness. Am Nat 71:337–349CrossRefGoogle Scholar
  64. Hanson L, Brown RL, Boyd A, Johnson MA, Bennett MD (2003) First nuclear DNA C-values for 28 angiosperm genera. Ann Bot 91:31–38PubMedPubMedCentralCrossRefGoogle Scholar
  65. Hare MP, Palumbi SR (2003) High intron sequence conservation across three mammalian orders suggests functional constraints. Mol Biol Evol 20:969–978PubMedCrossRefGoogle Scholar
  66. Hartl DL, Lohe AR, Lozovskaya ER (1997) Modern thoughts on an ancyent marinere: function, evolution, regulation. Annu Rev Genet 31:337–358PubMedCrossRefGoogle Scholar
  67. Hawkins JS, Kim H, Nason JD, Wing RA, Wendel JF (2006) Differential lineage-specific amplification of transposable elements is responsible for genome size variation in Gossypium. Genome Res 16:1252–1261PubMedPubMedCentralCrossRefGoogle Scholar
  68. Hayden EC (2010) Life is complicated. Nature 464:664–667CrossRefGoogle Scholar
  69. Hazkani-Covo E, Zeller RM, Martin W (2010) Molecular poltergeists: mitochondrial DNA copies (numts) in sequenced nuclear genomes. PLoS Genet 6:e1000834PubMedPubMedCentralCrossRefGoogle Scholar
  70. Hirose T, Shu MD, Steitz JA (2003) Splicing-dependent and –independent modes of assembly for intron-encoded box C/D snoRNPs in mammalian cells. Mol Cell 12:113–123PubMedCrossRefGoogle Scholar
  71. Huneman P (ed) (2013) Functions: selection and mechanisms. Springer, DordrechtGoogle Scholar
  72. Hurst LD (2013) Open questions: a logic (or lack thereof) of genome organization. BMC Biol 11:58PubMedPubMedCentralCrossRefGoogle Scholar
  73. Ibarra-Laclette E et al (2013) Architecture and evolution of a minute plant genome. Nature 498:94–98PubMedPubMedCentralCrossRefGoogle Scholar
  74. International Human Genome Sequencing Consortium (2004) Finishing the euchromatic sequence of the human genome. Nature 431:931–945CrossRefGoogle Scholar
  75. Jorgensen P, Edgington NP, Schneider BL, Rupes I, Tyers M, Futcher B (2007) The size of the nucleus increases as yeast cells grow. Mol Biol Cell 18:3523–3532PubMedPubMedCentralCrossRefGoogle Scholar
  76. Kandouz M, Bier A, Carystinos GD, Alaoui-Jamali MA, Batist G (2004) Connexin43 pseudogene is expressed in tumor cells and inhibits growth. Oncogene 23:4763–4770PubMedCrossRefGoogle Scholar
  77. Kaufman SA (1971) Gene regulation networks: a theory for their global structures and behaviours. In: Moscona AA, Monroy A (eds) Current topics in developmental biology. Academic, New York, pp 145–182Google Scholar
  78. Kauffman SA (1993) The origins of order: self-organization and selection in evolution. Oxford University Press, OxfordGoogle Scholar
  79. Keightley PD, Eyre-Walker A (2000) Deleterious mutations and the evolution of sex. Science 209:331–333CrossRefGoogle Scholar
  80. Kelley JL et al (2014) Compact genome of the Antarctic midge is likely an adaptation to an extreme environment. Nat Commun 5:4611PubMedPubMedCentralGoogle Scholar
  81. Kellis M et al (2014) Defining functional DNA elements in the human genome. Proc Natl Acad Sci U S A 111:6131–6138PubMedPubMedCentralCrossRefGoogle Scholar
  82. Kidwell MG (1992) Horizontal transfer of P-elements and other short inverted repeat transposons. Genetica 86:275–286PubMedCrossRefGoogle Scholar
  83. Kidwell MG (2002) Transposable elements and the evolution of genome size in eukaryotes. Genetica 115:49–63PubMedCrossRefGoogle Scholar
  84. Kimura M (1961) Some calculations on the mutational load. Jap J Genet 36:S179–S190Google Scholar
  85. Kimura M, Maruyama T (1966) The mutational load with interactions in fitness. Genetics 54:1337–1351PubMedPubMedCentralGoogle Scholar
  86. Klotzko AJ (ed) (2001) The cloning sourcebook. Oxford University Press, OxfordGoogle Scholar
  87. Kolata G (2010) Reanimated ‘junk’ DNA is found to cause disease. New York Times
  88. Kong A et al (2012) Rate of de novo mutations and the importance of father’s age to disease risk. Nature 488:471–475Google Scholar
  89. de Koning AP, Gu W, Castoe TA, Batzer MA, Pollock DD (2011) Repetitive elements may comprise over two-thirds of the human genome. PLoS Genet 7:e1002384PubMedPubMedCentralCrossRefGoogle Scholar
  90. Kovach A et al (2010) The Pinus taeda genome is characterized by diverse and highly diverged repetitive sequences. BMC Genomics 11:420PubMedPubMedCentralCrossRefGoogle Scholar
  91. Krams SM, Bromberg JS (2013) ENCODE: life, the universe and everything. Am J Transplant 13:245PubMedCrossRefGoogle Scholar
  92. Lander ES et al (2001) Initial sequencing and analysis of the human genome. Nature 409:860–921PubMedCrossRefGoogle Scholar
  93. Lawrie DS, Petrov DA (2014) Comparative population genomics: power and principles for the inference of functionality. Trends Genet 30:133–139PubMedPubMedCentralCrossRefGoogle Scholar
  94. Le Rouzic A, Boutin TS, Capy P (2007) Long-term evolution of transposable elements. Proc Nat Acad Sci 104:19375–19380PubMedPubMedCentralCrossRefGoogle Scholar
  95. Levin HL, Moran JV (2011) Dynamic interactions between transposable elements and their hosts. Nature Rev Genet 12:615–627PubMedPubMedCentralCrossRefGoogle Scholar
  96. Levy DL, Heald R (2010) Nuclear size is regulated by importin α and Ntf2 in Xenopus. Cell 143:288–298PubMedPubMedCentralCrossRefGoogle Scholar
  97. Li H, Stephan W (2006) Inferring the demographic history and rate of adaptive substitution in Drosophila. PLoS Genet 2:e166PubMedPubMedCentralCrossRefGoogle Scholar
  98. Li X et al (2011) Chromosome size in diploid eukaryotic species centers on the average length with a conserved boundary. Mol Biol Evol 28:1901–1911PubMedPubMedCentralCrossRefGoogle Scholar
  99. Lloyd S (2001) Measures of complexity: a nonexhaustive list. IEEE Control Syst Mag 21(4):7–8CrossRefGoogle Scholar
  100. Lockton S, Ross-Ibarra J, Gaut BS (2008) Demography and weak selection drive patterns of transposable element diversity in natural populations of Arabidopsis lyrata. Proc Natl Acad Sci U S A 105:13965–13970PubMedPubMedCentralCrossRefGoogle Scholar
  101. Lynch M (2006) The origins of eukaryotic gene structure. Mol Biol Evol 23:450–468PubMedCrossRefGoogle Scholar
  102. Lynch M (2010) Evolution of the mutation rate. Trends Genet 26:345–352PubMedPubMedCentralCrossRefGoogle Scholar
  103. Lynch M, Conery JS (2003) The origins of genome complexity. Science 302:1401–1404PubMedCrossRefGoogle Scholar
  104. Lynch M, Bobay L-M, Catania F, Gout J-F, Rho M (2011) The repatterning of eukaryotic genomes by random genetic drift. Annu Rev Genomics Hum Genet 12:347–366PubMedPubMedCentralCrossRefGoogle Scholar
  105. Makalowski W (2003) Not junk after all. Science 300:1246–1247PubMedCrossRefGoogle Scholar
  106. Marshall WF et al (2012) What determines cell size? BMC Biol 10:101PubMedPubMedCentralCrossRefGoogle Scholar
  107. Maruyama T (1974) The age of a rare mutant gene in a large population. Am J Hum Genet 26:669–673PubMedPubMedCentralGoogle Scholar
  108. Massingham T, Goldman N (2005) Detecting amino acid sites under positive selection and purifying selection. Genetics 169:1753–1762PubMedPubMedCentralCrossRefGoogle Scholar
  109. Mehta G, Jalan R, Mookerjee RP (2013) Cracking the ENCODE: from transcription to therapeutics. Hepatology 57:2532–2535PubMedCrossRefGoogle Scholar
  110. Millikan RG (1989) In defense of proper functions. Philos Sci 56:288–302CrossRefGoogle Scholar
  111. Mirsky AE, Ris H (1951) The desoxyribonucleic acid content of animal cells and its evolutionary significance. J Gen Physiol 34:451–462PubMedPubMedCentralCrossRefGoogle Scholar
  112. Moran LA (2007) The deflated ego problem.
  113. Muller HJ (1950) Our load of mutations. Am J Hum Genet 2:111–176PubMedPubMedCentralGoogle Scholar
  114. Neander K (1991) Functions as selected effects: the conceptual analyst’s defense. Philos Sci 58:168–184CrossRefGoogle Scholar
  115. Nei M (2013) Mutation driven evolution. Oxford University Press, OxfordGoogle Scholar
  116. Nelson DR (2004) “Frankenstein genes,” or the Mad Magazine version of the human pseudogenome. Hum Genomics 1:310–316PubMedPubMedCentralCrossRefGoogle Scholar
  117. Neumann FR, Nurse P (2007) Nuclear size control in fission yeast. J Cell Biol 179:593–600PubMedPubMedCentralCrossRefGoogle Scholar
  118. Nielsen R (2005) Molecular signatures of natural selection. Annu Rev Genet 39:197–218PubMedCrossRefGoogle Scholar
  119. Niu DK, Jiang L (2013) Can ENCODE tell us how much junk DNA we carry in our genome? Biochem Biophys Res Commun 430:1340–1343PubMedCrossRefGoogle Scholar
  120. Noleto RB, de Souza Fonseca Guimarães F, Paludo KS, Vicari MR, Artoni RF, Cestari MM (2009) Genome size evaluation in Tetraodontiform fishes from the Neotropical region. Mar Biotechnol 11:680–685PubMedCrossRefGoogle Scholar
  121. Ohno S (1972) So much “junk” DNA in our genome. Brookhaven Symp Biol 23:366–370PubMedGoogle Scholar
  122. Ohno S (1973) Evolutional reason for having so much junk DNA. In: Pfeiffer RA (ed) Modern aspects of cytogenetics: constitutive heterochromatin in man. F. K. Schattauer Verlag, Stuttgart, pp 169–180Google Scholar
  123. Ohshima K, Hattori M, Yada T, Gojobori T, Sakaki Y, Okada N (2003) Whole-genome screening indicates a possible burst of formation of processed pseudogenes and Alu repeats by particular L1 subfamilies in ancestral primates. Genome Biol 4:R74PubMedPubMedCentralCrossRefGoogle Scholar
  124. Ohta T (1973) Slightly deleterious mutant substitutions in evolution. Nature 246:96–98PubMedCrossRefGoogle Scholar
  125. Oler AJ, Traina-Dorge S, Derbes RS, Canella D, Cairns BR, Roy-Engel AM (2012) Alu expression in human cell lines and their retrotranspositional potential. Mob DNA 3:11PubMedPubMedCentralCrossRefGoogle Scholar
  126. Orgel LE, Crick FHC (1980) Selfish DNA: the ultimate parasite. Nature 284:604–607PubMedCrossRefGoogle Scholar
  127. Pagel M, Johnstone RA (1992) Variation across species in the size of the nuclear genome supports the junk-DNA explanation for the C-value paradox. Proc Roy Soc 249B:119–124CrossRefGoogle Scholar
  128. Palazzo AF, Gregory TR (2014) The case for junk DNA. PLoS Genet 10:e1004351PubMedPubMedCentralCrossRefGoogle Scholar
  129. Parenteau J et al (2008) Deletion of many yeast introns reveals a minority of genes that require splicing for function. Mol Biol Cell 19:1932–1941PubMedPubMedCentralCrossRefGoogle Scholar
  130. Pasyukova EG, Nuzhdin SV, Morozova TV, Mackay TF (2004) Accumulation of transposable elements in the genome of Drosophila melanogaster is associated with a decrease in fitness. J Hered 95:284–290PubMedCrossRefGoogle Scholar
  131. Pei B et al (2012) The GENCODE pseudogene resource. Genome Biol 13:R51PubMedPubMedCentralCrossRefGoogle Scholar
  132. Peierls R (1960) Wolfgang Ernst Pauli, 1900-1958. Biogr Mem Fellows R Soc 5:174–192CrossRefGoogle Scholar
  133. Pellicier J, Fay MF, Leitch IJ (2010) The largest eukaryotic genome of them all? Bot J Linn Soc 164:10–15CrossRefGoogle Scholar
  134. Pertea M, Salzberg SL (2010) Between a chicken and a grape: estimating the number of human genes. Genome Biol 11:206PubMedPubMedCentralCrossRefGoogle Scholar
  135. Petsko GA (2003) Funky, not junky. Genome Biol 4:104PubMedPubMedCentralCrossRefGoogle Scholar
  136. Picot S, Wallau GL, Loreto EL, Heredia FO, Hua-Van A, Capy P (2008) The mariner transposable element in natural populations of Drosophila simulans. Heredity 101:53–59PubMedCrossRefGoogle Scholar
  137. Piegu B et al (2006) Doubling genome size without polyploidization: dynamics of retrotransposition-driven genomic expansions in Oryza australiensis, a wild relative of rice. Genome Res 16:1262–1269PubMedPubMedCentralCrossRefGoogle Scholar
  138. Ponjavic J, Ponting CP, Lunter G (2007) Functionality or transcriptional noise? Evidence for selection within long noncoding RNAs. Genome Res 17:556–565PubMedPubMedCentralCrossRefGoogle Scholar
  139. Ponting CP, Hardison RC (2011) What fraction of the human genome is functional? Genome Res 21:1769–1776PubMedPubMedCentralCrossRefGoogle Scholar
  140. Pruitt KD, Tatusova T, Klimke W, Maglott DR (2009) NCBI reference sequences: current status, policy and new initiatives. Nucleic Acids Res 37:D32–D36PubMedCrossRefGoogle Scholar
  141. Purves WK, Sadava D, Orians GH, Heller HC (2004) Life: the science of biology, 7th edn. Sinauer, SunderlandGoogle Scholar
  142. Raj A, van Oudenaarden A (2008) Stochastic gene expression and its consequences. Cell 135:216–226PubMedPubMedCentralCrossRefGoogle Scholar
  143. Rands CM, Meader S, Ponting CP, Lunter G (2014) PLoS Genet 10:e1004525PubMedPubMedCentralCrossRefGoogle Scholar
  144. Rees H, Jones RN (1972) The origin of the wide species variation in nuclear DNA content. Int Rev Cytol 32:53–92PubMedCrossRefGoogle Scholar
  145. Rhind N et al (2011) Comparative functional genomics of the fission yeasts. Science 332:930–936PubMedPubMedCentralCrossRefGoogle Scholar
  146. Roach JC et al (2010) Analysis of genetic inheritance in a family quartet by whole-genome sequencing. Science 328:636–639PubMedPubMedCentralCrossRefGoogle Scholar
  147. Roest Crollius H et al (2000) Characterization and repeat analysis of the compact genome of the freshwater pufferfish Tetraodon nigroviridis. Genome Res 10:939–949PubMedCrossRefGoogle Scholar
  148. Schaack S, Gilbert C, Feschotte C (2010) Promiscuous DNA: horizontal transfer of transposable elements and why it matters for eukaryotic evolution. Trends Ecol Evol 25:537–546PubMedPubMedCentralCrossRefGoogle Scholar
  149. Šmarda P, Hejcman M, Březinová A, Horová L, Steigerová H, Zedek F, Bureš P, Hejcmanová P, Schellberg J (2013) Effect of phosphorus availability on the selection of species with different ploidy levels and genome sizes in a long-term grassland fertilization experiment. New Phytol 200:911–921PubMedCrossRefGoogle Scholar
  150. Smith NG, Brandström M, Ellegren H (2004) Evidence for turnover of functional noncoding DNA in mammalian genome evolution. Genomics 84:806–813PubMedCrossRefGoogle Scholar
  151. Srivastava M et al (2008) The Trichoplax genome and the nature of placozoans. Nature 454:955–960PubMedCrossRefGoogle Scholar
  152. Stamatoyannopoulos JA (2012) What does our genome encode? Genome Res 22:1602–1611PubMedPubMedCentralCrossRefGoogle Scholar
  153. Starostova Z, Kratochvil L, Flajshans M (2008) Cell size does not always correspond to genome size: phylogenetic analysis in geckos questions optimal DNA theories of genome size evolution. Zoology 111:377–384PubMedCrossRefGoogle Scholar
  154. Starostova Z, Kubicka L, Konarzewski M, Kozlowski J, Kratochvil L (2009) Cell size but not genome size affects scaling of metabolic rate in eyelid geckos. Am Nat 174:E100–E105PubMedCrossRefGoogle Scholar
  155. Struhl K (2007) Transcriptional noise and the fidelity of initiation by RNA polymerase II. Nat Struct Mol Biol 14:103–105PubMedCrossRefGoogle Scholar
  156. Sulem P et al (2015) Identification of a large set of rare complete human knockouts. Nat Genet.
  157. Sundaram V et al (2014) Widespread contribution of transposable elements to the innovation of gene regulatory networks. Genome Res 24:1963–1976Google Scholar
  158. Sunyaev S, Ramensky V, Koch I, Lathe W, Kondrashov AS, Bork P (2001) Prediction of deleterious human alleles. Hum Mol Genet 10:591–597PubMedCrossRefGoogle Scholar
  159. Swift H (1950) The constancy of deoxyribose nucleic acid in plant nuclei. Proc Natl Acad Sci U S A 36:643–654PubMedPubMedCentralCrossRefGoogle Scholar
  160. Tang D (2015) Repetitive elements in vertebrate genomes.
  161. Tenaillon MI, Hollister JD, Gaut BS (2010) A triptych of the evolution of plant transposable elements. Trends Plant Sci 15:471–478PubMedCrossRefGoogle Scholar
  162. Tennessen JA et al (2012) Evolution and functional impact of rare coding variation from deep sequencing of human exomes. Science 337:64–69PubMedPubMedCentralCrossRefGoogle Scholar
  163. Thomas CA (1971) The genetic organization of chromosomes. Annu Rev Genet 5:237–256PubMedCrossRefGoogle Scholar
  164. Tishkoff SA et al (2006) Convergent adaptation of human lactase persistence in Africa and Europe. Nat Genet 39:31–40PubMedPubMedCentralCrossRefGoogle Scholar
  165. Umylny B, Presting G, Ward WS (2007) Evidence of Alu and B1 expression in dbEST. Syst Biol Reprod Med 53:207–218Google Scholar
  166. Van Valen LM, Maiorana VC (1991) Hela, a new microbial species. Evol Theor 10:71–74Google Scholar
  167. Vitti JJ, Grossman SR, Sabeti PC (2013) Detecting natural selection in genomic data. Annu Rev Genet 47:97–120PubMedCrossRefGoogle Scholar
  168. Vogel F (1964) A preliminary estimate of the number of human genes. Nature 201:847PubMedCrossRefGoogle Scholar
  169. Ward LD, Kellis M (2012) Evidence of abundant purifying selection in humans for recently acquired regulatory functions. Science 337:1675–1678PubMedPubMedCentralCrossRefGoogle Scholar
  170. Wardrop SL, kConFab Investigators, Brown MA (2005) Identification of two evolutionarily conserved and functional regulatory elements in intron 2 of the human BRCA1 gene. Genomics 86:316–328PubMedCrossRefGoogle Scholar
  171. Wen Y-Z, Zheng L-L, Qu L-H, Ayala FJ, Lun Z-R (2012) Pseudogenes are not pseudo any more. RNA Biol 9:27–32PubMedCrossRefGoogle Scholar
  172. Williamson SH, Hubisz MJ, Clark AG, Payseur BA, Bustamante CD, Nielsen R (2007) Localizing recent adaptive evolution in the human genome. PLoS Genet 3:e90PubMedPubMedCentralCrossRefGoogle Scholar
  173. Wilson BA, Masel J (2011) Putatively noncoding transcripts show extensive association with ribosomes. Genome Biol Evol 3:1245–1252PubMedPubMedCentralCrossRefGoogle Scholar
  174. Xue Y et al (2009) Human Y chromosome base-substitution mutation rate measured by direct sequencing in a deep-rooting pedigree. Curr Biol 19:1453–1457PubMedPubMedCentralCrossRefGoogle Scholar
  175. Zeng K, Fu Y-X, Shi S, Wu C-I (2006) Statistical tests for detecting positive selection by utilizing high-frequency variants. Genetics 174:1431–1439PubMedPubMedCentralCrossRefGoogle Scholar
  176. Zhou H, Zhao J, Yu CH, Luo QJ, Chen YQ, Xiao Y, Qu LH (2004) Identification of a novel box C/D snoRNA from mouse nucleolar cDNA library. Gene 327:99–105PubMedCrossRefGoogle Scholar
  177. Zimmer C (2015) Is most of our DNA garbage? New York Times
  178. Zuckerkandl E (1976) Gene control in eukaryotes and the C-value paradox: “excess” DNA as an impediment to transcription of coding sequences. J Mol Evol 9:73–104PubMedCrossRefGoogle Scholar

Copyright information

© Springer Japan KK 2017

Authors and Affiliations

  1. 1.Department of Biology & BiochemistryUniversity of HoustonHoustonUSA

Personalised recommendations