Advertisement

Digital Reconstruction of Neanderthal and Early Homo sapiens Endocasts

  • Naomichi Ogihara
  • Hideki Amano
  • Takeo Kikuchi
  • Yusuke Morita
  • Hiromasa Suzuki
  • Osamu Kondo
Part of the Replacement of Neanderthals by Modern Humans Series book series (RNMH)

Abstract

Endocranial morphology is currently the most useful source of information available for estimating the brain morphology and, hence, possible differences in cognitive ability in fossil hominins. Recently, computed tomography has been widely used to construct digital models of the endocranial cavity. With ongoing advances in computer-assisted morphological techniques, digital endocasts allow detailed analyses of morphological variability between hominin fossils and modern humans. This paper reviews digital reconstructions and morphological analyses of fossil endocasts and presents the digital reconstructions of complete endocasts of specimens of four Neanderthals and four early Homo sapiens based on CT scan data. Possible differences in the brain structure between Neanderthals and early Homo sapiens were identified based on a three-dimensional geometric morphometric analysis of the reconstructed endocasts. Our results demonstrated that ecto- and endocranial shapes are quantitatively different between Neanderthals and early Homo sapiens. The cranium of early Homo sapiens shows relative enlargement of the cerebellar region and relative expansion of the parietal area, possibly indicating that neuroanatomical organization is different between the two species.

Keywords

Fossil Brain Cerebellum Geometric morphometrics 

Notes

Acknowledgment

The authors express their sincere gratitude to T. Akazawa of Kochi Institute of Technology for giving the opportunity to participate in the research project “Replacement of Neanderthals by Modern Humans: Testing Evolutionary Models of Learning” and for lending his continuous guidance and support throughout the course of the study. The authors also thank Y. Rak and I. Hershkovitz of Tel Aviv University and C. P. E. Zollikofer and M. Ponce de León of the University of Zurich for kindly allowing the use of CT scan data of the Amud 1 and Qafzeh 9; P. Mennecier and A. Froment of Muséum national d’Histoire naturelle for La Chapelle-aux-Saints 1, La Ferrassie 1, and Cro-Magnon 1; M. Bastir of Museo Nacional de Ciencias Naturales and C. Stringer of Natural History Museum for Forbes’ Quarry 1; and D. Lieberman, O. Herschensohn, and M. Morgan of Harvard University for Skhul 5. The CT scan data of the Mladeč 1 were obtained from the digital archive of fossil hominoids, the University of Vienna. We also thank M. Nakatsukasa of Kyoto University, G. Suwa of the University of Tokyo, and T Takano of Japan Monkey Center for their kind permission to study the cranial materials under their care and D. Kubo of Hokkaido University for CT scanning of the crania housed at the University of Tokyo. This study was supported by a Grant-in-Aid for Scientific Research from the Japanese Ministry of Education, Culture, Sports, Science and Technology (#22101006).

References

  1. Adams DC, Rohlf FJ, Slice DE (2004) Geometric morphometrics: ten years of progress following the ‘revolution’. Ital J Zool 71:5–16CrossRefGoogle Scholar
  2. Adler DS, Bar-Yosef O, Belfer-Cohen A, Tushabramishvili N, Boaretto E, Mercier N, Valladas H, Rink WJ (2008) Dating the demise: neandertal extinction and the establishment of modern humans in the southern Caucasus. J Hum Evol 55:817–833CrossRefGoogle Scholar
  3. Amano H, Morita Y, Nagano H, Kondo O, Suzuki H, Nakatsukasa M, Ogihara N (2014) Statistical interpolation of missing parts in human crania using regularized multivariate linear regression analysis. In: Akazawa T, Ogihara N, Tanabe HC, Terashima H (eds) Dynamics of learning in Neanderthals and modern humans vol. 2 cognitive and physical perspectives. Springer, New York, pp 161–169Google Scholar
  4. Amano H, Kikuchi T, Morita Y, Kondo O, Suzuki H, Ponce de León MS, Zollikofer CPE, Bastir M, Stringer C, Ogihara N (2015) Virtual reconstruction of the Neanderthal Amud 1 cranium. Am J Phys Anthropol 158:185–197CrossRefGoogle Scholar
  5. Balzeau A, Grimaud-Herve D, Jacob T (2005) Internal cranial features of the Mojokerto child fossil (East Java, Indonesia). J Hum Evol 48:535–553CrossRefGoogle Scholar
  6. Balzeau A, Holloway RL, Grimaud-Hervé D (2012) Variation and asymmetries in regional brain surface in the genus Homo. J Hum Evol 62:696–706CrossRefGoogle Scholar
  7. Balzeau A, Grimaud-Herve D, Detroit F, Hollowaoy RL, Combes B, Prima S (2013) First description of the Cro-Magnon 1 endocast and study of brain variation and evolution in anatomically modern Homo sapiens. Bull Mém Soc Anthropol Paris 25:1–18CrossRefGoogle Scholar
  8. Barton RA (2012) Embodied cognitive evolution and the cerebellum. Philos Trans R Soc B 367:2097–2107CrossRefGoogle Scholar
  9. Bastir M, Rosas A, Lieberman DE, O’Higgins P (2008) Middle cranial fossa anatomy and the origin of modern humans. Anat Rec 291:130–140CrossRefGoogle Scholar
  10. Bastir M, Rosas A, Gunz P, Pena-Melian A, Manzi G, Harvati K, Kruszynski R, Stringer C, Hublin JJ (2011) Evolution of the base of the brain in highly encephalized human species. Nat Commun 2:588CrossRefGoogle Scholar
  11. Benazzi S, Bookstein F, Strait D, Weber G (2011) A new OH5 reconstruction with an assessment of its uncertainty. J Hum Evol 61:75–88CrossRefGoogle Scholar
  12. Benazzi S, Gruppioni G, Strait DS, Hublin J-J (2014) Virtual reconstruction of KNM-ER 1813 Homo habilis cranium. Am J Phys Anthropol 153:154–160CrossRefGoogle Scholar
  13. Berger LR, de Ruiter DJ, Churchill SE, Schmid P, Carlson KJ, Dirks PH, Kibii JM (2010) Australopithecus sediba: a new species of homo-like australopith from South Africa. Science 328:195–204CrossRefGoogle Scholar
  14. Bienvenu T, Guy F, Coudyzer W, Gilissen E, Roualdès G, Vignaud P, Brunet M (2011) Assessing endocranial variations in great apes and humans using 3D data from virtual endocasts. Am J Phys Anthropol 145:231–246CrossRefGoogle Scholar
  15. Bocherens H, Drucker DG, Billiou D, Patou-Mathis M, Vandermeersch B (2005) Isotopic evidence for diet and subsistence pattern of the Saint-Cesaire I Neanderthal: review and use of a multi-source mixing model. J Hum Evol 49:71–87CrossRefGoogle Scholar
  16. Bookstein FL (1991) Morphometric tools for landmark data: geometry and biology. Cambridge University Press, CambridgeGoogle Scholar
  17. Bookstein FL (1997) Landmark methods for forms without landmarks: localizing group differences in outline shape. Med Image Anal 1:225–243CrossRefGoogle Scholar
  18. Boule M (1908) L’homme fossile de la Chapelle-aux-Saints. C R Acad Sci Paris 147:1349–1352Google Scholar
  19. Bouyssonie A, Bouyssonie J, Bardon L (1909) Découverte d’un squelette humain moustérien à La Bouffia de la Chapelle-aux-Saints. (Corréze). C R Hebd Soc Acad Sci Paris 147:1414–1415Google Scholar
  20. Broadfield DC, Holloway RL, Mowbray K, Silvers A, Yuan MS, Marquez S (2001) Endocast of Sambungmacan 3 (Sm 3): a new homo erectus from Indonesia. Anat Rec 262:369–379CrossRefGoogle Scholar
  21. Broca P (1868) Sur les crânes et ossements des Eyzies. Bull Soc Anthropol Paris 3:350–392CrossRefGoogle Scholar
  22. Bruner E (2004) Geometric morphometrics and paleoneurology: brain shape evolution in the genus Homo. J Hum Evol 47:279–303CrossRefGoogle Scholar
  23. Bruner E (2010) Morphological differences in the parietal lobes within the human genus. Curr Anthropol 51:S77–S88CrossRefGoogle Scholar
  24. Bruner E, Ripani M (2008) A quantitative and descriptive approach to morphological variation of the endocranial base in modern humans. Am J Phys Anthropol 137:30–40CrossRefGoogle Scholar
  25. Bruner E, Manzi G, Arsuaga JL (2003) Encephalization and allometric trajectories in the genus Homo: evidence from the Neandertal and modern lineages. Proc Natl Acad Sci U S A 100:15335–15340CrossRefGoogle Scholar
  26. Bruner E, Martin-Loeches M, Colom R (2010) Human midsagittal brain shape variation: patterns, allometry and integration. J Anat 216:589–599CrossRefGoogle Scholar
  27. Bruner E, de la Cuetara JM, Masters M, Amano H, Ogihara N (2014) Functional craniology and brain evolution: from paleontology to biomedicine. Front Neuroanat 8:19CrossRefGoogle Scholar
  28. Busk G (1865) On a very ancient cranium from Gibraltar. Rep Br Assoc Adv Sci (Bath 1864) 91–92Google Scholar
  29. Capitan L, Peyrony D (1909) Deux squelettes humains au milieu de foyers de l’époque moustérienne. C R Acad Inscrip Belles Lett Paris 53:797–806Google Scholar
  30. Carlson KJ, Stout D, Jashashvili T, de Ruiter DJ, Tafforeau P, Carlson K, Berger LR (2011) The endocast of MH1, Australopithecus sediba. Science 333:1402–1407CrossRefGoogle Scholar
  31. Conroy GC, Vannier MW, Tobias PV (1990) Endocranial features of Australopithecus africanus revealed by 2- and 3-D computed tomography. Science 247:838–841CrossRefGoogle Scholar
  32. Conroy GC, Weber GW, Seidler H, Tobias PV, Kane A, Brunsden B (1998) Endocranial capacity in an early hominid cranium from Sterkfontein, South Africa. Science 280:1730–1731CrossRefGoogle Scholar
  33. Conroy GC, Falk D, Guyer J, Weber GW, Seidler H, Recheis W (2000a) Endocranial capacity in Sts 71 (Australopithecus africanus) by three-dimensional computed tomography. Anat Rec 258:391–396CrossRefGoogle Scholar
  34. Conroy GC, Weber GW, Seidler H, Recheis W, Zur Nedden D, Haile Mariam J (2000b) Endocranial capacity of the bodo cranium determined from three-dimensional computed tomography. Am J Phys Anthropol 113:111–118CrossRefGoogle Scholar
  35. Coolidge FL (2014) The exaptation of the parietal lobes in Homo sapiens. J Anthropol Sci 92:295–298Google Scholar
  36. Coqueugniot H, Hublin JJ, Veillon F, Houet F, Jacob T (2004) Early brain growth in Homo erectus and implications for cognitive ability. Nature 431:299–302CrossRefGoogle Scholar
  37. Culham JC, Kanwisher NG (2001) Neuroimaging of cognitive functions in human parietal cortex. Curr Opin Neurobiol 11:157–163CrossRefGoogle Scholar
  38. Dehaene S, Piazza M, Pinel P, Cohen L (2003) Three parietal circuits for number processing. Cogn Neuropsychol 20:487–506CrossRefGoogle Scholar
  39. Falk D (2012) Hominin paleoneurology: where are we now? In: Hofman MA, Falk D (eds) Evolution of the primate brain: from neuron to behavior. Elsevier, London, pp 255–272CrossRefGoogle Scholar
  40. Falk D (2014) Interpreting sulci on hominin endocasts: old hypotheses and new findings. Front Hum Neurosci 8:134CrossRefGoogle Scholar
  41. Falk D, Clarke R (2007) Brief communication: new reconstruction of the Taung endocast. Am J Phys Anthropol 134:529–534CrossRefGoogle Scholar
  42. Falk D, Conroy GC, Recheis W, Weber GW (2000) Early hominid brain evolution_a new look at old endocasts. J Hum Evol 38:695–717CrossRefGoogle Scholar
  43. Falk D, Hildebolt C, Smith K, Morwood MJ, Sutikna T, Brown P, Jatmiko, Saptomo EW, Brunsden B, Prior F (2005) The brain of LB1, Homo floresiensis. Science 308:242–245CrossRefGoogle Scholar
  44. Finlayson C, Carrión JS (2007) Rapid ecological turnover and its impact on Neanderthal and other human populations. Trends Ecol Evol 22:213–222CrossRefGoogle Scholar
  45. Gokhman D, Lavi E, Prüfer K, Fraga MF, Riancho JA, Kelso J, Pääbo S, Meshorer E, Carmel J (2014) Reconstructing the DNA methylation maps of the Neandertal and the Denisovan. Science 344:523–527CrossRefGoogle Scholar
  46. Grün R, Stringer C (1991) Electron spin resonance dating and the evolution of modern humans. Archaeometry 33:153–199CrossRefGoogle Scholar
  47. Grün R, Stringer C, McDermott F, Nathan R, Porat N, Robertson S, Lois Taylor L, Mortimer G, Eggins S, McCulloch M (2005) U-series and ESR analyses of bones and teeth relating to the human burials from Skhul. J Hum Evol 49:316–334CrossRefGoogle Scholar
  48. Guerin G, Frouin M, Talamo S, Aldeias V, Bruxelles L, Chiotti L, Dibble HL, Goldberg P, Hubin JJ, Jain M, Lahaye C, Madelaine S, Maureille B, McPherron SJP, Mercier N, Murray AS, Sandgathe D, Steele TE, Thomsen KJ, Turq A (2015) A multi-method luminescence dating of the Palaeolithic sequence of La Ferrassie based on new excavations adjacent to the La Ferrassie 1 and 2 skeletons. J Archaeol Sci 58:147–166CrossRefGoogle Scholar
  49. Gunz P, Mitteroecker P, Bookstein FL (2005) Semilandmarks in three dimensions. In: Slice DE (ed) Modern morphometrics in physical anthropology. Kluwer Academic/Plenum Publishers, New York, pp 73–98CrossRefGoogle Scholar
  50. Gunz P, Mitteroecker P, Neubauer S, Weber GW, Bookstein FL (2009) Principles for the virtual reconstruction of hominin crania. J Hum Evol 57:48–62CrossRefGoogle Scholar
  51. Gunz P, Neubauer S, Maureille B, Hublin JJ (2010) Brain development after birth differs between Neandertals and modern humans. Curr Biol 20:R921–R922CrossRefGoogle Scholar
  52. Gunz P, Neubauer S, Golovanova L, Doronichev V, Maureille B, Hublin JJ (2012) A uniquely modern human pattern of endocranial development. Insights from a new cranial reconstruction of the Neandertal newborn from Mezmaiskaya. J Hum Evol 62:300–313CrossRefGoogle Scholar
  53. Henry-Gambier D (2002) Les fossiles de Cro-Magnon (Les Eyzies-de-Tayac, Dordogne)_nouvelles données sur leur position chronologique et leur attribution culturelle. Bull Mém Soc Anthropol Paris 14:89–112Google Scholar
  54. Higham T, Douka K, Wood R, Ramsey CB, Brock F, Basell L, Camps M, Arrizabalaga A, Baena J, Barroso-Ruíz C, Bergman C, Boitard C, Boscato P, Caparrós M, Conard NJ, Draily C, Froment A, Galván B, Gambassini P, Garcia-Moreno A, Grimaldi S, Haesaerts P, Holt B, Iriarte-Chiapusso MJ, Jelinek A, Pardo JFJ, Maíllo-Fernández JM, Marom A, Maroto J, Menéndez M, Metz L, Morin E, Moroni A, Negrino F, Panagopoulou E, Peresani M, Pirson S, de la Rasilla M, Riel-Salvatore J, Ronchitelli A, Santamaria D, Semal P, Slimak L, Soler J, Soler N, Villaluenga A, Pinhasi R, Jacobi R (2014) The timing and spatiotemporal patterning of Neanderthal disappearance. Nature 512:306–309CrossRefGoogle Scholar
  55. Holloway RL (1981) Volumetric and asymmetry determinations on recent hominid endocasts: spy I and II, Djebel Ihroud I, and the sale Homo erectus specimens, with some notes on Neanderthal brain size. Am J Phys Anthropol 55:385–393CrossRefGoogle Scholar
  56. Holloway RL (2008) The human brain evolving: a personal retrospective. Annu Rev Anthropol 37:1–19CrossRefGoogle Scholar
  57. Holloway RL, Broadfield DC, Yuan MS (2004) The human fossil record: brain endocasts: the paleoneurological evidence. Wiley, HobokenCrossRefGoogle Scholar
  58. Hublin JJ, Neubauer S, Gunz P (2015) Brain ontogeny and life history in Pleistocene hominins. Philos Trans R Soc B 370:20140062CrossRefGoogle Scholar
  59. Imamizu H, Miyauchi S, Tamada T, Sasaki Y, Takino R, Putz B, Yoshioka T, Kawato M (2000) Human cerebellar activity reflecting an acquired internal model of a new tool. Nature 403:192–195CrossRefGoogle Scholar
  60. Kikuchi T, Ogihara N (2013) Computerized assembly of neurocranial fragments based on surface extrapolation. Anthropol Sci 121:115–122CrossRefGoogle Scholar
  61. Klein RG (2008) Out of Africa and the evolution of human behavior. Evol Anthopol 17:267–281CrossRefGoogle Scholar
  62. Kobayashi Y, Matsui T, Haizuka Y, Ogihara N, Hirai N, Matsumura G (2014) Cerebral sulci and gyri observed on macaque endocasts. In: Akazawa T, Ogihara N, Tanabe HC, Terashima H (eds) Dynamics of learning in Neanderthals and modern humans, vol. 2: cognitive and physical perspectives. Springer, Japan, pp 131–137CrossRefGoogle Scholar
  63. Kranioti EF, Holloway R, Senck S, Ciprut T, Grigorescu D, Harvati K (2011) Virtual assessment of the endocranial morphology of the early modern European fossil calvaria from Cioclovina, Romania. Anat Rec 294:1083–1092CrossRefGoogle Scholar
  64. Kubo D, Kono RT, Suwa G (2011) A micro-CT based study of the endocranial morphology of the Minatogawa I cranium. Anthropol Sci 119:123–135CrossRefGoogle Scholar
  65. Land MF (2014) Do we have an internal model of the outside world? Philos Trans R Soc Lond B 369:1–6CrossRefGoogle Scholar
  66. Lartet L (1868) Une sépulture des troglodytes du Périgord (crânes des Eyzies). Bull Soc Anthropol Paris 3:335–349CrossRefGoogle Scholar
  67. Marien P, Ackermann H, Adamaszek M, Barwood CHS, Beaton A, Desmond J, De Witte E, Fawcett AJ, Hertrich I, Küper M, Leggio M, Marvel C, Molinari M, Murdoch BE, Nicolson RI, Schmahmann JD, Stoodley CJ, Thürling M, Timmann D, Wouters E, Ziegler W (2014) Consensus paper: language and the cerebellum: an ongoing enigma. Cerebellum 13:386–410Google Scholar
  68. McCown TD, Keith SA (1939) The stone age of Mount Carmel: the fossil human remains from the Levallosiso-Mousterian. Clarendon Press, OxfordGoogle Scholar
  69. Mellars P (2004) Neanderthals and the modern human colonization of Europe. Nature 432:461–465CrossRefGoogle Scholar
  70. Mercier N, Valladas H, Bar-Yosef B, Vandermeersch B, Stringer C, Joron JL (1993) Thermoluminescence date for the Mousterian burial site of ES-Skhul, Mt. Carmel. J Archaeol Sci 20:169–174CrossRefGoogle Scholar
  71. Meyer M, Kircher M, Gansauge MT, Li H, Racimo F, Mallick S, Schraiber JG, Jay F, Prüfer K, de Filippo C, Sudmant PH, Alkan C, Fu Q, Do R, Rohland N, Tandon A, Siebauer M, Green RE, Bryc K, Briggs AW, Stenzel U, Dabney J, Shendure J, Kitzman J, Hammer MF, Shunkov MV, Derevianko AP, Patterson N, Andrés AM, Eichler EE, Slatkin M, Reich D, Kelso J, Pääbo S (2012) A high-coverage genome sequence from an archaic Denisovan individual. Science 338:222–226CrossRefGoogle Scholar
  72. Michikawa T, Suzuki H, Moriguchi M, Ogihara N, Kondo O, Kobayashi Y (2017) Automatic extraction of endocast surfaces from CT images of crania. PLoS One 12(4):e0168516CrossRefGoogle Scholar
  73. Middleton FA, Stick PL (1994) Anatomical evidence for cerebellar and basal ganglia involvement in higher cognitive function. Science 266:458–461CrossRefGoogle Scholar
  74. Mitteroecker P, Gunz P (2009) Advances in geometric morphometrics. Evol Biol 36:235–247CrossRefGoogle Scholar
  75. Morita Y, Ogihara N, Kanai T, Suzuki H (2013) Quantification of neurocranial shape variation using shortest paths connecting pairs of anatomical landmarks. Am J Phys Anthropol 151:658–666CrossRefGoogle Scholar
  76. Morita Y, Amano H, Nakatsukasa M, Kondo O, Ogihara N (2014) A geometric morphometric study of neurocranial shape variations in the crania of modern Japanese. In: Akazawa T, Ogihara N, Tanabe H, Terashima H (eds) Dynamics of learning in Neanderthals and modern humans volume 2: cognitive and physical perspectives. Springer, Japan, pp 131–137Google Scholar
  77. Morita Y, Amano H, Ogihara N (2015) Three-dimensional endocranial shape variation in the modern Japanese population. Anthropol Sci 123:185–191CrossRefGoogle Scholar
  78. Neubauer S (2014) Endocasts: possibilities and limitations for the interpretation of human brain evolution. Brain Behav Evol 84:117–134CrossRefGoogle Scholar
  79. Neubauer S, Gunz P, Mitteroecker P, Weber GW (2004) Three-dimensional digital imaging of the partial Australopithecus africanus endocranium MLD 37/38. Can Assoc Radiol J 55:271–278Google Scholar
  80. Neubauer S, Gunz P, Hublin JJ (2009) The pattern of endocranial ontogenetic shape changes in humans. J Anat 215:240–255CrossRefGoogle Scholar
  81. Neubauer S, Gunz P, Hublin JJ (2010) Endocranial shape changes during growth in chimpanzees and humans: a morphometric analysis of unique and shared aspects. J Hum Evol 59:555–566CrossRefGoogle Scholar
  82. Neubauer S, Gunz P, Weber GW, Hublin JJ (2012) Endocranial volume of Australopithecus africanus: new CT-based estimates and the effects of missing data and small sample size. J Hum Evol 62:498–510CrossRefGoogle Scholar
  83. Ogihara N, Nakatsukasa M, Nakano Y, Ishida H (2006) Computerized restoration of nonhomogeneous deformation of a fossil cranium based on bilateral symmetry. Am J Phys Anthropol 130:1–9CrossRefGoogle Scholar
  84. Ogihara N, Amano H, Kikuchi T, Morita Y, Hasegawa K, Kochiyama T, Tanabe HC (2015) Towards digital reconstruction of fossil crania and brain morphology. Anthropol Sci 123:57–68CrossRefGoogle Scholar
  85. O’Higgins P (2000) The study of morphological variation in the hominid fossil record: biology, landmarks and geometry. J Anat 197:103–120CrossRefGoogle Scholar
  86. O’Higgins P, Jones N (1998) Facial growth in Cercocebus torquatus: an application of three-dimensional geometric morphometric techniques to the study of morphological variation. J Anat 193:251–272CrossRefGoogle Scholar
  87. Pearce E, Stringer C, Dunber RIM (2013) New insights into difference in brain organization between Neanderthals and anatomically modern humans. Proc R Soc B 280:20130168CrossRefGoogle Scholar
  88. Prüfer K, Racimo F, Patterson N, Jay F, Sankararaman S, Sawyer S, Heinze A, Renaud G, Sudmant PH, de Filippo C, Li H, Mallick S, Dannemann M, Fu Q, Kircher M, Kuhlwilm M, Lachmann M, Meyer M, Ongyerth M, Siebauer M, Theunert C, Tandon A, Moorjani P, Pickrell J, Mullikin JC, Vohr SH, Green RE, Hellmann I, Johnson PJF, Blanche H, Cann H, Kitzman JO, Shendure J, Eichler EE, Lein ES, Bakken TE, Golovanova LV, Doronichev VB, Shunkov MV, Derevianko AP, Viola B, Slatkin M, Reich D, Kelso J, Pääbo S (2014) The complete genome sequence of a Neanderthal from the Altai Mountains. Nature 505:43–49CrossRefGoogle Scholar
  89. Recheis W, Macchiarelli R, Seidler H, Weaver DS, Schäfer K, Bondioli L, Weber GW, zur Nedden D (1999) Reevaluation of the endocranial volume of the Guattari 1 Neandertal specimen (Monte Circeo). Coll Antropol 23:397–405Google Scholar
  90. Richards MP, Trinkaus E (2009) Isotopic evidence for the diets of European Neanderthals and early modern humans. Proc Natl Acad Sci U S A 106:16034–16039CrossRefGoogle Scholar
  91. Rink WJ, Schwarcz HP, Lee HK, Rees-Jones J, Rabinovich R, Hovers E (2001) Electron spin resonance (ESR) and thermal ionization mass spectrometric (TIMS) 230Th/234U dating of teeth in middle paleolithic layers at amud cave, Israel. Geoarchaeology 16:701–717CrossRefGoogle Scholar
  92. Schoenemann PT, Gee J, Avants B, Holloway RL, Monge J, Lewis J (2007) Validation of plaster endocast morphology through 3D CT image analysis. Am J Phys Anthropol 132:183–192CrossRefGoogle Scholar
  93. Schwarcz HP, Grün R, Vandermeersch B, Bar-Yosef O, Valladas H, Tchernov E (1988) ESR dates for the hominid burial site of Qafzeh in Israel. J Hum Evol 17:733–737CrossRefGoogle Scholar
  94. Seidler H, Falk D, Stringer C, Wilfing H, Muller GB, zur Nedden D, Weber GW, Reicheis W, Arsuaga JL (1997) A comparative study of stereolithographically modelled skulls of Petralona and Broken Hill: implications for future studies of middle Pleistocene hominid evolution. J Hum Evol 33:691–703CrossRefGoogle Scholar
  95. Shea JJ (2008) Transitions or turnovers? Climatically-forced extinctions of Homo sapiens and Neanderthals in the east Mediterranean. Quat Sci Rev 27:2253–2270CrossRefGoogle Scholar
  96. Slice DE (2005) Modern morphometrics. In: Slice DE (ed) Modern morphometrics in physical anthropology. Kluwer Academic/Plenum Publishers, New York, pp 1–45CrossRefGoogle Scholar
  97. Smith FH, Jankovic I, Karavanic I (2005) The assimilation model, modern human origins in Europe, and the extinction of Neandertals. Q J Econ 137:7–19Google Scholar
  98. Suzuki H (1970) The skull of the Amud man. In: Suzuki H, Takai F (eds) The Amud man and his cave site. Keigaku Publishing, Tokyo, pp 123–206Google Scholar
  99. Suzuki H, Takai F (1970) The Amud man and his cave site. Keigaku Publishing, TokyoGoogle Scholar
  100. Szombathy J (1925) Die diluvialen Menschenreste aus der Fürst-Johann-Höhle bei Leutsch in Mähren. Die Eiszeit 2(1–34):73–95Google Scholar
  101. Tobias PV (2001) Re-creating ancient hominid virtual endocasts by CT-scanning. Clin Anat 14:134–141CrossRefGoogle Scholar
  102. Valladas H, Reyss JL, Joron JL, Valladas G, Bar-Yosef O, Vandermeersch B (1988) Thermoluminescence dating of Mousterian ‘Proto-Cro-Magnon’ remains from Israel and the origin of modern man. Nature 331:614–616CrossRefGoogle Scholar
  103. Valladas H, Mercier N, Froget L, Hovers E, Joron JL, Kimbel WH, Rak Y (1999) TL dates for the neanderthal site of the amud cave, Israel. J Archaeol Sci 26:259–268CrossRefGoogle Scholar
  104. van Andel TH, Davies W (2003) Neanderthals and modern humans in the European landscape during the last glaciation: archaeological results of the stage 3 project. McDonald Institute for Archeological Research, CambridgeGoogle Scholar
  105. Vandermeersch B (1981) Les hommes fossiles de Qafzeh (Israel). Editions du CNRS, ParisGoogle Scholar
  106. Weaver AH (2005) Reciprocal evolution of the cerebellum and neocortex in fossil humans. Proc Natl Acad Sci U S A 102:3576–3580CrossRefGoogle Scholar
  107. Weber GW, Bookstein FL (2011) Virtual anthropology. Springer Verlag, New YorkCrossRefGoogle Scholar
  108. Wild EM, Teschler-Nicola M, Kutschera W, Steier P, Trinkaus E, Wanek W (2005) Direct dating of early upper palaeolithic human remains from Mladeč. Nature 435:332–335CrossRefGoogle Scholar
  109. Wolpert DM, Doya K, Kawato M (2003) A unifying computational framework for motor control and social interaction. Philos Trans R Soc Lond B 358:593–602CrossRefGoogle Scholar
  110. Wu XJ, Liu W, Dong W, Que JM, Wang YF (2008) The brain morphology of Homo Liujiang cranium fossil by three-dimensional computed tomography. Chin Sci Bull 53:2513–2519CrossRefGoogle Scholar
  111. Zollikofer CPE, Ponce de León MS (2002) Visualizing patterns of craniofacial shape variation in Homo sapiens. Proc R Soc Lond B Biol 269:801–807CrossRefGoogle Scholar
  112. Zollikofer CPE, Ponce de León MS (2005) Virtual reconstruction: a primer in computer-assisted paleontology and biomedicine. Wiley, HobokenGoogle Scholar
  113. Zollikofer CPE, Ponce de León MS (2013) Pandora’s growing box: inferring the evolution and development of hominin brains from endocasts. Evol Anthropol 22:20–33CrossRefGoogle Scholar

Copyright information

© Springer Japan KK 2018

Authors and Affiliations

  • Naomichi Ogihara
    • 1
  • Hideki Amano
    • 1
  • Takeo Kikuchi
    • 1
  • Yusuke Morita
    • 1
  • Hiromasa Suzuki
    • 2
  • Osamu Kondo
    • 3
  1. 1.Department of Mechanical Engineering, Faculty of Science and TechnologyKeio UniversityYokohamaJapan
  2. 2.Department of Precision Engineering, Graduate School of EngineeringUniversity of TokyoTokyoJapan
  3. 3.Department of Biological Sciences, Graduate School of ScienceUniversity of TokyoTokyoJapan

Personalised recommendations