Inorganic–Organic Interactions

  • Tomohiko Okada
  • Makoto Ogawa
Part of the Nanostructure Science and Technology book series (NST)


Inorganic–organic interactions between layered solids and organic guest species have been recognized as an important chemistry to construct intercalation compounds as well as to apply layered solids as adsorbents and fillers. Depending on the interactions, the structures, the stabilities, and the properties of intercalation compounds vary. In addition to the host (layered solids)–guest interactions, the interactions between guest play role to determine the structures. In this chapter, the possible interactions are classified and the correlation between the interactions and the products (hybrids) are discussed from simple binary host–guest systems to the more complicated multi-components hybrid materials, to illustrate the present and potential of the layered solids and their intercalation compounds.


Ion exchange Selectivity Ion–dipole interactions Hydrogen bonding Coordination Polymerization Organophilic interactions Van der walls force 


  1. 1.
    Bergaya F, Theng BKG, Lagaly G (eds) (2006) Handbook of clay science. Elsevier Science, AmsterdamGoogle Scholar
  2. 2.
    Ruiz-Hitzky E, Aranda P, Darder M, Ogawa M (2011) Hybrid and biohybrid silicate based materials: molecular vs. blockassembling bottom–up processes. Chem Soc Rev 40:801CrossRefGoogle Scholar
  3. 3.
    Alberti G, Bein T (eds) (1996) Comprehensive supramolecular chemistry. vol 7. Pergamon, OxfordGoogle Scholar
  4. 4.
    Auerbach SM, Carrado KA, Dutta PK (eds) (2004) Handbook of layered materials. Marcel DekkerGoogle Scholar
  5. 5.
    Thomas JK (1988) Acc Chem Res 21:275CrossRefGoogle Scholar
  6. 6.
    Ogawa M, Kuroda K (1995) Chem Rev 95:399CrossRefGoogle Scholar
  7. 7.
    Ogawa M, Kuroda K (1997) Bull Chem Soc Jpn 70:2593CrossRefGoogle Scholar
  8. 8.
    Theng BKG (1974) The chemistry of clay-organic reactions. Adam Hilger, LondonGoogle Scholar
  9. 9.
    van Olphen H (1977) An introduction to clay colloid chemistry, 2nd edn. Wiley-Interscience, New YorkGoogle Scholar
  10. 10.
    Maes A, van Leemput L, Cremers A, Uytterhoeven J (1980) J Colloid Interface Sci 77:14CrossRefGoogle Scholar
  11. 11.
    Mizutani T, Takano T, Ogoshi H (1995) Langmuir 11:880CrossRefGoogle Scholar
  12. 12.
    Theng BKG, Greenland DJ, Quirk JP (1967) Clay Miner 7:1CrossRefGoogle Scholar
  13. 13.
    Ogawa M, Wada T, Kuroda K (1995) Langmuir 11:4598CrossRefGoogle Scholar
  14. 14.
    Lewis DR (1949) Analytical data on reference clay materials. In sect. 3, base-exchange data. american petroleum institute project 49 clay mineral standards, preliminary report no. 7, Columbia University, New York, p 91Google Scholar
  15. 15.
    Mehlich A (1948) Soil Sci 66:429CrossRefGoogle Scholar
  16. 16.
    Bascomb CL (1964) J Sci Food Agric 15:821CrossRefGoogle Scholar
  17. 17.
    Dohrmann R (2006) Appl Clay Sci 34:31CrossRefGoogle Scholar
  18. 18.
    Ogawa M, Nagafusa Y, Kuroda K, Kato C (1992) Appl Clay Sci 7:291CrossRefGoogle Scholar
  19. 19.
    Hang PT, Brindley GW (1970) Clays Clay Miner 10:203CrossRefGoogle Scholar
  20. 20.
    ASTM C 837-09 (2014) Standard test methods of methylene blue index of clay. Am Soc Test MaterGoogle Scholar
  21. 21.
    Dohrmann R (2006) Appl Clay Sci 34:38CrossRefGoogle Scholar
  22. 22.
    Bergaya F, Vayer M (1997) Appl Clay Sci 12:275CrossRefGoogle Scholar
  23. 23.
    (a) Grim RE, Allaway WH, Cuthbert FL (1947) J Am Ceram Soc 30:137 (b) Traynor MF, Mortland MM, Pinnavaia TJ (1978) Clays Clay Miner 26:318Google Scholar
  24. 24.
    Mermut AR (1994) CMS workshop lectures vol. 6, Layer charge characteristics of 2:1 silicate clay minerals. Clay Minerals Society, Aurora, USAGoogle Scholar
  25. 25.
    Ogawa M, Matsutomo T, Okada T (2008) J Ceram Soc Jpn 116:1309CrossRefGoogle Scholar
  26. 26.
    Egawa T, Watanabe H, Fujimura T, Ishida Y, Yamato M, Masui D, Shimada T, Tachibana H, Yoshida H, Inoue H, Takagi S (2011) Langmuir 27:10722CrossRefGoogle Scholar
  27. 27.
    Jordan JW (1950) J Phys Colloid Chem 54:294CrossRefGoogle Scholar
  28. 28.
    Lagaly G (1981) Clay Miner 16:1CrossRefGoogle Scholar
  29. 29.
    Cygan RT, Greathouse JA, Heinz H, Kalinichev AG (2009) J Mater Chem 19:2470CrossRefGoogle Scholar
  30. 30.
    (a) Heinz H (2012) Clay Miner 47:205 (b) Heinz H, Vaia RA, Farmer BL (2008) Langmuir 24:3727Google Scholar
  31. 31.
    Jones TR (1983) Clay Miner 18:399CrossRefGoogle Scholar
  32. 32.
    Pinnavaia TJ, Beall GW (eds) (2001) Polymer-clay nanocomposites. John Wiley & Sons Ltd., New YorkGoogle Scholar
  33. 33.
  34. 34.
  35. 35.
    Hayakawa T, Minase M, Fujita K, Ogawa M (2016) Clays Clay Miner 64:275Google Scholar
  36. 36.
    Ahmadi M, Rusling J (1995) Langmuir 11:94CrossRefGoogle Scholar
  37. 37.
    Seki T, Ichimura K (1990) Macromolecules 23:31CrossRefGoogle Scholar
  38. 38.
    Ogawa M, Shirai H, Kuroda K, Kato C (1992) Clays Clay Miner 40:485CrossRefGoogle Scholar
  39. 39.
    Ogawa M, Aono T, Kuroda K, Kato C (1993) Langmuir 9:1529CrossRefGoogle Scholar
  40. 40.
    Ogawa M, Kimura H, Kuroda K, Kato C (1996) Clay Sci 10:57Google Scholar
  41. 41.
    Kakegawa N, Ogawa M (2002) Appl Clay Sci 22:137CrossRefGoogle Scholar
  42. 42.
    Rusling JF (1991) Acc Chem Res 24:75CrossRefGoogle Scholar
  43. 43.
    Sasai R, Sugiyama D, Takahashi S, Tong Z, Shichi T, Itoh H, Takagi K (2003) Photochem Photobiol A 155:223CrossRefGoogle Scholar
  44. 44.
    Nagase T, Takahasi Y, Suzuki TM, Ebina T, Wakui Y, Onodera Y (2002) Chem Lett 776Google Scholar
  45. 45.
    Kinashi K, Kida H, Misaki M, Koshiba Y, Ishida K, Ueda Y, Ishihara M (2009) Thin Solid Films 518:651CrossRefGoogle Scholar
  46. 46.
    Fujii K, Kuroda T, Sakoda K, Iyi N (2011) J Photochem Photobiol A 225:125CrossRefGoogle Scholar
  47. 47.
    H. Rau (1990) Studies in organic chemistry: photochromism, molecules and systems. vol 40. In: Dürr H, Bouas-Laurent H (eds) Elsevier, Amsterdam, pp 165–192Google Scholar
  48. 48.
    Ogawa M, Hama M, Kuroda K (1999) Clay Miner 34:213CrossRefGoogle Scholar
  49. 49.
    Ogawa M, Fujii K, Kuroda K, Kato C (1992) Mater Res Soc Symp Proc 233:89CrossRefGoogle Scholar
  50. 50.
    Fujita T, Iyi N, Klapyta Z (1998) Mater Res Bull 33:1693CrossRefGoogle Scholar
  51. 51.
    Ogawa M (1996) Chem Mater 8:1347CrossRefGoogle Scholar
  52. 52.
    Ogawa M, Yamamoto M, Kuroda K (2001) Clay Miner 36:263CrossRefGoogle Scholar
  53. 53.
    Iyi N, Fujita T, Yelamaggad CV, Arbeloa FL (2001) Appl Clay Sci 19:47CrossRefGoogle Scholar
  54. 54.
    Ogawa M, Ishikawa A (1998) J Mater Chem 8:463CrossRefGoogle Scholar
  55. 55.
    Ogawa M, Goto R, Kakegawa N (2000) Clay Sci 11:231Google Scholar
  56. 56.
    Ogawa M, Ishii T, Miyamoto N, Kuroda K (2001) Adv Mater 13:1107CrossRefGoogle Scholar
  57. 57.
    Ogawa M, Ishii T, Miyamoto N, Kuroda K (2003) Appl Clay Sci 22:179CrossRefGoogle Scholar
  58. 58.
    Okada T, Watanabe Y, Ogawa M (2004) Chem Commun 320Google Scholar
  59. 59.
    Okada T, Watanabe Y, Ogawa M (2005) J Mater Chem 15:987CrossRefGoogle Scholar
  60. 60.
    Okada T, Sakai H, Ogawa M (2008) Appl Clay Sci 40:187CrossRefGoogle Scholar
  61. 61.
    Okahata Y, Shimizu A (1989) Langmuir 5:954CrossRefGoogle Scholar
  62. 62.
    Kandori H, Ishioka T, Sasaki M (2002) Chem Phys Lett 354:251CrossRefGoogle Scholar
  63. 63.
    Furutani Y, Ido K, Sasaki M, Ogawa M, Kandori H (2007) Angew Chem Int Ed 46:8010Google Scholar
  64. 64.
    Nir S, Polubesova T, Serban C, Rytwo G, Undaheytia T (2002) Adsorption of organic cations on clays: experimental results and modeling. In: Yariv S, Cross H (eds) Organo-clay complexes and interactions, pp 193–222. Marcel Dekker, New YorkGoogle Scholar
  65. 65.
    Rytwo G, Nir S, Margulies L (1996) J Colloid Interface Sci 181:551CrossRefGoogle Scholar
  66. 66.
    Weber JB, Perry PW, Upchurch RP (1965) Soil Sci Soc Proc 29:678CrossRefGoogle Scholar
  67. 67.
    Weber JB, Scott DC (1966) Science 152:1400CrossRefGoogle Scholar
  68. 68.
    Weed SB, Weber JB (1968) Am Miner 53:478Google Scholar
  69. 69.
    Villemure G, Detellier C, Szabo AG (1986) J Am Chem Soc 108:4658CrossRefGoogle Scholar
  70. 70.
    Villemure G, Detellier C, Szabo AG (1991) Langmuir 7:1215CrossRefGoogle Scholar
  71. 71.
    Yamagishi A, Soma M (1981) J Am Chem Soc 103:4640CrossRefGoogle Scholar
  72. 72.
    Yamagishi A (1985) J Am Chem Soc 107:732CrossRefGoogle Scholar
  73. 73.
    Yamagishi A (1983) J Chromatogr A 262:41CrossRefGoogle Scholar
  74. 74.
    Yamagishi A (1985) J Chromatogr A 319:299CrossRefGoogle Scholar
  75. 75.
    Yamagishi A, Sato H (2012) Clays Clay Miner 60:411CrossRefGoogle Scholar
  76. 76.
    Theng BKG (1971) Clays Clay Miner 19:383CrossRefGoogle Scholar
  77. 77.
    Michaels AS (1958) Ind Eng Chem 50:951CrossRefGoogle Scholar
  78. 78.
    Solomon DH, Loft BC, Swift JD (1968) Clay Miner 7:389CrossRefGoogle Scholar
  79. 79.
    Miyata H, Sugahara Y, Kuroda K, Kato C (1987) J Chem Soc Faraday Trans 1(83):1851CrossRefGoogle Scholar
  80. 80.
    Kakegawa N, Kondo T, Ogawa M (2003) Langmuir 19:3578CrossRefGoogle Scholar
  81. 81.
    Lagaly G (1979) Adv Colloid Interface Sci 11:105CrossRefGoogle Scholar
  82. 82.
    Lagaly G, Beneke K, Weiss A (1975) Am Mineral 60:650Google Scholar
  83. 83.
    Beneke K, Lagaly G (1977) Am Miner 62:763Google Scholar
  84. 84.
    Schwieger W, Lagaly G (2004) Alkali silicates and crystalline silicic acids. In: Auerbach SM, Carrado KA, Dutta PK (eds) Handbook of layered materials, Marcel Dekker, New York, pp 541–629Google Scholar
  85. 85.
    Lagaly G, Beneke K, Weiss A (1975) Am Miner 60:642Google Scholar
  86. 86.
    Ogawa M, Takizawa Y (1999) J Phys Chem B 103:5005CrossRefGoogle Scholar
  87. 87.
    Ogawa M, Iwata D (2010) Cryst Growth Des 10:2068CrossRefGoogle Scholar
  88. 88.
    Izawa H, Kikkawa S, Koizumi M (1983) Polyhedron 2:741CrossRefGoogle Scholar
  89. 89.
    Lagaly G, Beneke K (1976) J Inorg Nucl Chem 38:1513CrossRefGoogle Scholar
  90. 90.
    Miyata H, Sugahara Y, Kuroda K, Kato C (1988) J Chem Soc Faraday Trans 1:2677CrossRefGoogle Scholar
  91. 91.
    Nakato T, Iwata Y, Kuroda K, Kato C (1992) J. Inclusion Phenom Mol Recog 13:249CrossRefGoogle Scholar
  92. 92.
    Nakato T, Iwata Y, Kuroda K, Kaneko M, Kato C (1993) J Chem Soc Dalton Trans 1405Google Scholar
  93. 93.
    Ogawa M, Takizawa Y (1999) Chem Mater 11:30CrossRefGoogle Scholar
  94. 94.
    Nakato T, Kuroda K, Kato C (1992) Chem Mater 4:128CrossRefGoogle Scholar
  95. 95.
    (a) Nakato T, Sakamoto D, Kuroda K, Kato C (1992) Bull Chem Soc Jpn 65:322 (b) Nakato T, Kusunoki K, Yoshizawa K, Kuroda K, Kaneko M (1995) J Phys Chem 99:17896Google Scholar
  96. 96.
    Tong Z, Shichi T, Kasuga Y, Takagi K (2002) Chem Lett 1206Google Scholar
  97. 97.
    Miyamoto N, Nakato T (2003) Langmuir 19:8057CrossRefGoogle Scholar
  98. 98.
    Kinomura N, Kumada N, Muto F (1985) J Chem Soc Dalton Trans 2349Google Scholar
  99. 99.
    Reichle WT (1986) Solid States Ionics 22:135CrossRefGoogle Scholar
  100. 100.
    Miyata S (1983) Clays Clay Miner 31:305CrossRefGoogle Scholar
  101. 101.
    Yamaoka T, Abe M, Tsuji M (1989) Mater Res Bull 24:1183CrossRefGoogle Scholar
  102. 102.
    Iyi N, Sasaki T (2008) J Colloid Interface Sci 322:237CrossRefGoogle Scholar
  103. 103.
    Ogawa M, Inomata K (2011) Clay Sci 15:131Google Scholar
  104. 104.
    Li F, Duan X (2006) In: Duan X, Evans DG (eds) Applications of layered double hydroxides. Layered double hydroxides. Springer, HeidelbergGoogle Scholar
  105. 105.
    Rives V, Ulibarri MA (1999) Coord Chem Rev 181:61CrossRefGoogle Scholar
  106. 106.
    Meyn M, Beneke K, Lagaly G (1990) Inorg Chem 29:5201CrossRefGoogle Scholar
  107. 107.
    Newman SP, Jones W (1998) New J Chem 22:105CrossRefGoogle Scholar
  108. 108.
    Takagi K, Shichi T, Usami H, Sawaki Y (1993) J Am Chem Soc 115:4339CrossRefGoogle Scholar
  109. 109.
    Shichi T, Takagi K, Sawaki Y (1996) Chem Commun 2027Google Scholar
  110. 110.
    Morioka S, Tagaya H, Karasu M, Kadokawa J, Chiba K (1995) J Solid State Chem 117:337CrossRefGoogle Scholar
  111. 111.
    Xu ZP, Braterman PS (2007) J Phys Chem C 111:4021CrossRefGoogle Scholar
  112. 112.
    Okada T, Ide Y Ogawa M (2012) Chem Asian J 7:1980Google Scholar
  113. 113.
    Okada T, Seki Y, Ogawa M (2014) J Nanosci Nanotech 14:2121CrossRefGoogle Scholar
  114. 114.
    Ogawa M, Kuroda K, Kato C (1989) Chem Lett 18:1659CrossRefGoogle Scholar
  115. 115.
    Ogawa M, Hirata K, Kuroda K, Kato C (1992) Chem Lett 21:365CrossRefGoogle Scholar
  116. 116.
    Ogawa M, Hashizume T, Kuroda K, Kato C (1991) Inorg Chem 30:584CrossRefGoogle Scholar
  117. 117.
    Khaorapapong N, Ogawa M (2007) Appl Clay Sci 35:31CrossRefGoogle Scholar
  118. 118.
    Pimchan P, Khaorapapong N, Sohmiya M, Ogawa M (2014) Appl Clay Sci 95:310CrossRefGoogle Scholar
  119. 119.
    Doner HE, Mortland MM (1969) Science 166:1406CrossRefGoogle Scholar
  120. 120.
    Pinnavaia TJ, Mortland MM (1971) J Phys Chem 75:3957CrossRefGoogle Scholar
  121. 121.
    Okada T, Ogawa M (2002) Chem Lett 812Google Scholar
  122. 122.
    Okada T, Ogawa M (2003) Chem Commun 1378Google Scholar
  123. 123.
    Ruiz-Hitzky E, Rojo JM (1980) Nature 287:28CrossRefGoogle Scholar
  124. 124.
    Takahashi N, Kuroda K (2011) J Mater Chem 21:14336CrossRefGoogle Scholar
  125. 125.
    Ide Y, Sadakane M, Sano T, Ogawa M (2014) J Nanosci Nanotech 14:2135Google Scholar
  126. 126.
    Ruiz VSO, Petrucelli GC, Airoldi C (2006) J Mater Chem 16:2338CrossRefGoogle Scholar
  127. 127.
    Macedo TR, Airoldi C (2009) Dalton Trans 7402Google Scholar
  128. 128.
    Macedo TR, Airoldi C (2009) New J Chem 33:2081CrossRefGoogle Scholar
  129. 129.
    Toriya S, Kobayashi S, Takei T, Fuji M, Watanabe T, Chikazawa M (2003) Colloid Polym Sci 281:1121CrossRefGoogle Scholar
  130. 130.
    Ogawa M, Okutomo S, Kuroda K (1998) J Am Chem Soc 120:7361CrossRefGoogle Scholar
  131. 131.
    Okutomo S, Kuroda K, Ogawa N (1999) Appl Clay Sci 15:253CrossRefGoogle Scholar
  132. 132.
    Fujita I, Kuroda K, Ogawa M (2003) Chem Mater 15:3134CrossRefGoogle Scholar
  133. 133.
    Fujita I, Kuroda K, Ogawa M (2005) Chem Mater 17:3717CrossRefGoogle Scholar
  134. 134.
    Ide Y, Ogawa M (2007) Angew Chem Int Ed 46:8449CrossRefGoogle Scholar
  135. 135.
    Ide Y, Iwasaki S, Ogawa M (2011) Langmuir 27:2522CrossRefGoogle Scholar
  136. 136.
    Ide Y, Fukuoka A, Ogawa M (2007) Chem Mater 19:964CrossRefGoogle Scholar
  137. 137.
    Ide Y, Nakasato Y, Ogawa M (2008) Bull Chem Soc Jpn 81:757CrossRefGoogle Scholar
  138. 138.
    Ide Y, Matsuoka M, Ogawa M (2010) J Am Chem Soc 132:16762CrossRefGoogle Scholar
  139. 139.
    Ogawa M, Saito K, Sohmiya M (2014) Dalton Trans 43:10341CrossRefGoogle Scholar
  140. 140.
    Ozkan D, Kerman K, Meric B, Kara P, Demirkan H, Polverejan M, Pinnavaia TJ, Ozsoz M (2002) Chem Mater 14:1755CrossRefGoogle Scholar
  141. 141.
    Ghosh PK, Bard AJ (1984) J Phys Chem 88:5519CrossRefGoogle Scholar
  142. 142.
    Breu J, Seidl W, Stoll AJ, Lange KG, Probst TU (2001) Chem Mater 13:4213CrossRefGoogle Scholar
  143. 143.
    (a) Stöcker M, Seidl W, Seyfarth L, Senker J, Breu J (2008) Chem Commun 629 (b) Stöcker M, Seyfarth L, Hirsemann D, Senker J, Breu J (2010) Appl Clay Sci 48:146 (c) Mariychuk R, Baumgartner A, Wagner FE, Lerf A, Dubbe A, Moos R, Breu J (2007) Chem Mater 19:5377 (d) Baumgartner A, Sattler K, Thun J, Breu J (2008) Angew Chem Int Ed 47:1640Google Scholar
  144. 144.
    Ogawa M, Inagaki M, Kodama N, Kuroda K, Kato C (1993) J Phys Chem 97:3819CrossRefGoogle Scholar
  145. 145.
    Ogawa M, Tsujimura M, Kuroda K (2000) Langmuir 16:4202CrossRefGoogle Scholar
  146. 146.
    Kakegawa N, Ogawa M (2004) Langmuir 20:7004CrossRefGoogle Scholar
  147. 147.
    Martin JE, Patil AJ, Butler MF, Mann S (2011) Adv Funct Mater 21:674CrossRefGoogle Scholar
  148. 148.
    Sohmiya M, Omata S, Ogawa M (2012) Polym Chem 3:1069CrossRefGoogle Scholar
  149. 149.
    Raupach M, Emerson WW, Slade PG (1979) J Colloid Interface Sci 69:398CrossRefGoogle Scholar
  150. 150.
    Konno S, Fujimura T, Otani Y, Shimada T, Inoue H, Takagi S (2014) J Phys Chem C 118:20504CrossRefGoogle Scholar
  151. 151.
    Okada T, Matsutomo T, Ogawa M (2010) J Phys Chem C 114:539CrossRefGoogle Scholar
  152. 152.
    Hofmann U, Klemen RZ (1950) Anorg Allg Chem 262:95CrossRefGoogle Scholar
  153. 153.
    Jaynes WF, Traina SJ, Bigham JM, Johnston CT (1992) Clays Clay Miner 40:397CrossRefGoogle Scholar
  154. 154.
    Jaynes WF, Boyd SA (1991) Clays Clay Miner 39:428CrossRefGoogle Scholar
  155. 155.
    Herling MM, Kalo H, Seibt S, Schobert R, Breu J (2012) Langmuir 28:14713CrossRefGoogle Scholar
  156. 156.
    Margulies L, Rozen H, Cohen E (1985) Nature 315:658CrossRefGoogle Scholar
  157. 157.
    Ishida Y, Shimada T, Masui D, Tachibana H, Inoue H, Takagi S (2011) J Am Chem Soc 133:14280CrossRefGoogle Scholar
  158. 158.
    Takagi S, Shimada T, Eguchi M, Yui T, Yoshida H, Tryk DA, Inoue H (2002) Langmuir 18:2265CrossRefGoogle Scholar
  159. 159.
    Takagi S, Eguchi M, Tryk DA, Inoue H (2006) J Photochem Photobiol C Photochem Rev 7:104CrossRefGoogle Scholar
  160. 160.
    Takagi S, Shimada T, Ishida Y, Fujimura T, Masui D, Tachibana H, Eguchi M, Inoue H (2013) Langmuir 29:2108CrossRefGoogle Scholar
  161. 161.
    Fukushima Y, Inagaki S (1987) J Incl Phenomena 5:473CrossRefGoogle Scholar
  162. 162.
    Ide Y, Ozaki G, Ogawa M (2009) Langmuir 25:5276CrossRefGoogle Scholar
  163. 163.
    Nakamura T, Ogawa M (2012) Langmuir 28:7505CrossRefGoogle Scholar
  164. 164.
    Isoda K, Kuroda K, Ogawa M (2000) Chem Mater 12:1702CrossRefGoogle Scholar
  165. 165.
    Fuse Y, Ide Y, Ogawa M (2010) Polym Chem 1:849CrossRefGoogle Scholar
  166. 166.
    Ogawa M (2002) J Photochem Photobiol C 3:129CrossRefGoogle Scholar
  167. 167.
    Sohmiya M, Saito K, Ogawa M (2015) Sci Tech Adv Mater 16:054201CrossRefGoogle Scholar
  168. 168.
    Ogawa M, Saito K, Sohmiya M (2015) Eur J Inorg Chem 1126Google Scholar
  169. 169.
    Ogawa M, Kuroda K, Nakamura T (2002) Chem Lett 632Google Scholar
  170. 170.
    Sohmiya M, Sugahara Y, Ogawa M (2007) J Phys Chem B 111:8836CrossRefGoogle Scholar

Copyright information

© Springer Japan KK 2017

Authors and Affiliations

  1. 1.Department of Chemistry and Material Engineering, Faculty of EngineeringShinshu UniversityNaganoJapan
  2. 2.School of Energy Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC)RayongThailand

Personalised recommendations